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ABSTRACT

In the car manufacturing industry, countless inventions, improvements, and
modifications are continuously being updated to meet customer expectations.
Therefore, engineers and inventors always give higher priority to improving every
part of a vehicle. However, there are still numerous reports of customer frustration,
especially in medium-priced cars parts reliability. One of the main issues are
involves engine mounts, which are exposed to high temperatures from the engine
heat, leading to a short life span. An engine mount is the part that holds the engine to
the body or to the engine cradle (sub-frame) of the car. The engine mount exposed
high heat energy from the engine during the combustion process (130°C). This
causes the engine mount to lose its mechanical strength, resulting in a short service
life. The lifespan of the engine mount depends on the effectiveness of heat
dissipation during dynamic state. Therefore, it is essential to improve the heat
transfer of the engine mounting. Thus, the aim of this research is to develop and
evaluate a spherical dimple profile for a smooth surface to enhance heat transfer rate.
It is widely known that introducing a dimple profile results in improved heat transfer
over a surface. This research focuses on geometric modification and optimization of
cooling parameters for a spherical dimpled surface of an aluminium block. The
aluminium block is used throughout this experiment because it is one of the best
conductors of heat. Thus, in this experiment, the dimpled design is the main focus. In
this project, experimental and numerical investigation were carried out to examine
the cooling effect and flow structure of the spherical dimple profile during steady
laminar flow in a wind tunnel. Seventeen different sets of parameters related to the
dimple diameter (10-14 mm), dimple orientation (60°-90° angle), and airflow
velocity (16-18 m/s) were studied. The Box-Behnken of Response Surface
Methodology (RSM) was used as a Design of Experiments (DoE) tool to evaluate
the effect of these parameters on cooling time. This work applies Analysis of
Variance (ANOVA) in order to establish the significant effect of the input
parameters. ANSYS Fluent software was used as a simulation tool to analyze the
flow structure of the dimpled surface. The optimal cooling time is produced from the
experiment is 7.23 minutes with a relative error of 5.24% compared to the prediction
results. The optimal parameters are a dimple diameter of 12 mm, a dimple
orientation angle of 60°, and an airflow velocity of 18 m/s.




ABSTRAK

Dalam industri pembuatan kereta, terdapat banyak penemuan, penambahbaikan dan
pengubahsuaian yang sentiasa dikemas kini untuk memenuhi kehendak pelanggan.
Oleh itu jurutera dan pereka sentiasa memberi keutamaan yang lebih tinggi kepada
penambahbaikan pada setiap bahagian kenderaan. Walau bagaimanapun, masih ada
banyak laporan  mengenai  kekecewaan pelanggan  terutama  terhadap
kebolehpercayaan komponen kategori kereta murah. Salah satu isu adalah mengenai
pemegang enjin yang mengalami suhu tinggi daripada haba enjin dan membawa
kepada jangka hayat yang pendek. Pemegang enjin adalah bahagian yang memegang
enjin ke badan kenderaan (kerangka). Pemegang enjin menerima tenaga haba yang
tinggi daripada enjin semasa proses pembakaran (130°C) di mana ia menyebabkan
pemegang enjin kehilangan kekuatan mekanikal dan membawa kepada jangka hayat
pendek. Jangka hayat pemegang enjin bergantung kepada keberkesanan pelesapan
haba semasa keadaan dinamik. Oleh itu, peningkatan pemindahan haba pemegang
enjin adalah penting. Oleh itu, matlamat penyelidikan ini adalah untuk
membangunkan dan menilai profil cawak yang sfera pada permukaan licin untuk
meningkatkan kadar pemindahan haba pada blok aluminum. Pemilihan aluminum
dalam ujikaji ini kerana pengalir haba yang baik. Ujikaji ini lebih fokus kepada
rekabentuk cawak. Sudah diketahui umum bahawa memperkenalkan profil cawak
menyebabkan peningkatan dalam pemindahan haba ke permukaan. Penyelidikan ini
memberi tumpuan kepada pengubahsuaian geomeiri dan mengoptimumkan
parameter pendinginan permukaan cawak yang sfera pada bongkah aluminium.
Dalam projek ini, siasatan eksperimen dan berangka telah dijalankan untuk mengkaji
kesan penyejukan dan struktur aliran profil cawak sfera semasa aliran laminar
mantap dalam terowong angin. Tujuh belas set parameter yang berkaitan dengan
diameter cawak (10-14 mm), orientasi cawak (60° - 90° sudut) dan halaju aliran
udara (16-18 m / s) telah dikaji. Kaedah Surface Respon Box-Behnken (RSM)
digunakan sebagai alat reka bentuk eksperimen (DOE) untuk menilai parameter ini
pada masa penyejukan. Kerja ini berkaitan dengan analisis varians (ANOVA) dalam
usaha untuk menentukan kesan yang ketara parameter.Perisian ANSYS FLUENT
digunakan sebagai alat simulasi untuk menganalisis struktur aliran permukaan yang
cawak. Masa penyejukan optimum yang dihasilkan oleh eksperimen adalah sebanyak
7.23 minit dengan ralat relatif sebanyak 5.24% berbanding dengan ramalan.
Parameter optimum dan tahapnya adalah diameter cawak 12 mm, orientasi cawak
60° dan halaju aliran udara ialah 18 n/s.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Project

The automotive industry plays a crucial role in developing a country’s economy.
The automotive industry consists of five phases, which are commonly known as
conceptualities, designing, development, manufacturing, and marketing.
Manufacturing is considered the biggest challenge in the automotive industry. This is
due to the product quality and reliability, which must always be maintained to ensure
a good reputation.

In the car manufacturing industry, countless inventions and modifications are
continuously updated to satisfy customer expectations. Therefore, engineers and
inventors always give higher priority towards improving every part of a vehicle.
Quality Engineers often have to review customer feedback in order to improve
product quality. These characteristics have a vital impact on the mechanical
performance of the overall system balance. Basically, customer complaints regarding
the life span of car parts are always highlighted.

The engine is the most important part of a vehicle. The main function of an
engine is to change a potential chemical energy form into mechanical energy.

Therefore, the engine can be considered as the soul of the vehicle. Inside the engine,




a process called internal combustion takes place, where static motion changes into
dynamic motion. In other words, the function of the internal combustion ‘heat
engine’ is to convert potential heat energy contained in the fuel into mechanical
work. An engine mount is the part that holds the engine to the body or to the engine
cradle (sub-frame) of the car. In a typical car, the engine and transmission are bolted
together and held in place by three or four mounts. The mount that holds the
transmission is called the transmission mount, while the others are referred to as
engine mounts.

Engine mounting are commonly used to provide vibration attenuation and to
isolate the vibration source (Ripin and Ean, 2010). This material plays an important
role in the efficient functioning of automotive systems. Generally, these engine
mounts greatly affect the noise, vibration, and harshness (NVH) characteristics of
automobiles (Panda, 2016). A deficiency in the engine mounting of vehicles could
lead to excessive engine vibrations and eventual damage to the gearbox components
(Yu et al., 2001). In addition, without the rubber mounting the passengers and the
driver of the vehicle might be exposed to uncomfortable vibrations from the engine
and road excitations (Darsivan and Martono, 2006). From one study on dynamic
damping measurement of engine mounts was found important in providing
information on dynamic damping characteristics under real operation conditions, as
it acts as a damper to damp the vibration and noise created by the engine.

Current engine mounts are usually exposed to high temperature from the engine
heat, which causes a reduction in service life. The low heat dissipation of the engine
mount can be considered as a factor for its short life span. This is because of the

exterior appearances of the engine mount. The rubber engine mount’s external



surface is very smooth and flat as shown in Figure 1.1. The flat surface area
promotes low heat dissipation in the engine mount. Besides that, the temperature of
the engine while the car is moving is very high and this affects the performance of
the engine mount. This will also cause poor heat transfer in the engine mount. The
molecules that bond inside the engine mount are also weakened due to high heat
energy. One disadvantage of the engine mount is that it does not undergo
maintenance or regular service if it is found problematic; instead, it is usually just

replaced with a new one.

Figure 1.1: The smooth surface of the engine mounting (Longman, 2016)

1.2 Problem Statement

Despite the numerous efforts of automotive manufacturers to innovate materials
and the design of the engine mount, there are still countless reports of customer
frustration regarding the aspects of noise, vibration, and harshness (NVH); especially
with medium-priced cars. Increasingly hostile under-the-hood environment calls for
a product with high resistance to vibration and heat. The engine mount is prone to

being exposed to high temperature from the engine, which shortens its service life
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(Verma et al., 2017). This might also cause misalignment of critical control linkages
such as the throttle, clutch, or transmission.

Studies have demonstrated that component life is typically reduced by about
50% for every 10°C increase in operating temperature (Lippincott, 2008). Generally,
engine mountings exposed high heat energy from the engine during the combustion
process, and this causes the engine mounting to lose its mechanical strength. This is
because the excessive heat takes a longer time to dissipate from the engine
mounting. The excessive heat causes the molecules that bond inside the engine
mounting to weaken. The rate of heat dissipation from the engine mounting can be
considered as a factor for its short life span. Generally, the engine mount surface is
flat. The flat surface area promotes low heat dissipation in the engine mount. This
could lead to the shortened life span of the engine mount. Therefore, it is important
to lower the time taken to dissipate the high heat from the engine mounting. Changes
must also be made in the engine mount surface area in order to enhance its heat
transfer rate. When the surface area is increased, the rate of heat transfer is increased
and vice versa. This is expressed via Newton’s law of cooling in Eq. (1.1):

Qconv =h Ag(Ty — T ) (1.1)
Where h is the coefficient of convection heat transfer (Wm?”°C), A, is the surface
area (mz) where the convection heat transfer takes place, T is the temperature of the
surface, and T,, is the fluid temperature, which is sufficiently far from the surface.
This equation explains that the rate of heat transfer is directly proportional to surface
area. By increasing the surface area of the engine mounting, the heat transfer rate can

also be increased.




In the past few years, a few methods were introduced to increase the surface
area of engine mounts, which directly improves their heat transfer rate. The methods
include introducing pins, protrusions, dimples, and fins. The dimple method is
considered the most effective method out of all these methods. This is because by
introducing a dimple on a flat surface, it not only increases the heat transfer rate, it
also lowers the pressure drop penalties (Zhang et al., 2014). The heat transfer rate is
higher because the dimple profile creates vortex pairs, flow separation, and produces
a reattachment zone. Creating a dimple profile on a flat surface promotes minimum
pressure drop penalties (Beves et al., 2004). Another added advantage in dimple
manufacture is the removal of material, which also reduces the cost and weight of
the equipment. Introducing a dimpled feature on the engine mounting will promote
good heat transfer rate.

Therefore, this research investigates the engine mount surface characteristic. In
this study, a dimple profile is introduced on a flat surface. This study focuses on the
effects of the dimple feature on heat transfer rate. Therefore, the effect of the dimple
profile on cooling time will be studied in more detail in a wind tunnel during the
cooling process. In addition, Computational Fluid Dynamics (CFD) will be used to
simulate the flow phenomena of the dimple profile during the cooling process. The
Finite Element Method (FEM) in CFD is one of the best methods to investigate the
dimple profile effects on the heat dissipation rate and flow rate with different cooling
process parameters. In CFD, the analysis of one dimple profile can be studied in

much more detail and be easily compared to the real process.



