

# Faculty of Information and Communication Technology

# AN EFFICIENT SIEVE TECHNIQUE IN MOBILE MALWARE DETECTION

Mohd Zaki bin Mas'ud

**Doctor of Philosophy** 

2018

C Universiti Teknikal Malaysia Melaka

## AN EFFICIENT SIEVE TECHNIQUE IN MOBILE MALWARE DETECTION

MOHD ZAKI BIN MAS'UD

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

## DECLARATION

I declare that this thesis entitled, "An Efficient Sieve Technique in Mobile Malware Detection" is the result of my own research work except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | :                      |
|-----------|------------------------|
| Name      | : Mohd Zaki Bin Mas'ud |
| Date      | :                      |

| C Universiti Teknikal | Malaysia | Melaka |
|-----------------------|----------|--------|
|-----------------------|----------|--------|

## APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

| Signature       | :                                       |
|-----------------|-----------------------------------------|
| Supervisor Name | : Prof. Datuk Ts. Dr. Shahrin Bin Sahib |
| Date            | :                                       |

| CUn | iversiti | Teknikal | Malaysia | Melaka |
|-----|----------|----------|----------|--------|
|-----|----------|----------|----------|--------|

### DEDICATION

This thesis is dedicated with

Deepest love and affections to my beloved parents,

Hj. Mas'ud Taib and Hajjah Siti Juariah Hamdan

My son

Muhammad Hifzhan Irfan Mohd Zaki

Brother and sisters

Rozita, Roslina and Nazri

Their love, patience, guidance, wisdom and strength

Have inspired me throughout these years in

Universiti Teknikal Malaysia Melaka

To be the best that I can be.

### ABSTRACT

Proliferation of mobile devices in the market has radically changed the way people handle their daily life activities. Rapid growth of mobile device technology has enabled users to use mobile device for various purposes such as web browsing, ubiquitous services, social networking, MMS and many more. Nowadays, Google's Android Operating System has become the most popular choice of operating system for mobile devices since Android is an open source and easy to use. This scenario has also ignited possibility of malicious programs to exploit mobile devices and consequently expose any sensitive transaction made by the user. A malware ability to quickly evolve has made mobile malware detection a more complex. Antivirus and signature based IDS require a constant signature database update to keep up with the new malware, thus exhausting a mobile device's resources. Even though, an anomaly-based detection can overcome this matter, an anomaly detection still produces a high amount of false alarms. Therefore, this research aims to improve Mobile Malware Detection by improving the accuracy, True Positive and True Negative as well as minimizing the False Positive rate using an n-gram system call sequence approach and a sieve technique. This research analyses the behaviour and traces of mobile malware application activity dynamically as mobile malware is executed on a mobile platform. Analysis done on mobile malware activity shows behaviour and traces of benign and malicious mobile applications are able to be distinctively classified through invocation of system call to a kernel level system by a mobile application. However, an n-gram system call sequence generated by this approach can contribute to a large amount of logged features that can consume a mobile device's memory and storage. Hence this research, introduces a sieve technique in Mobile Malware Detection process in order to search for an optimum set of n-gram system call. In order to evaluate the performance of the proposed approach Accuracy, True Positive Rate, True Negative Rate, False Positive Rate and Receiver Operating Characteristic curve are measured with dataset of mobile malware from Malware Gnome Project and benign mobile application from Google Play Store. The experiment finding indicates the 3-gram system call sequence is capable of improving Mobile Malware Detection performance in terms of accuracy as well as minimizing the false alert. Whereas the sieve technique is able to reduce number of ngram system call features and providing an optimize 3-gram system call sequence features. The outcome indicate that a Mobile Malware Detection using 3-gram system call sequence as features and sieve technique is able to be used in improving a Mobile Malware Detection in classifying the benign and malicious mobile applications. The evaluation and validation shows that a Mobile Malware Detection using 3-gram system call sequence with sieve technique improve the classification performance. As a conclusion the 3-gram system call sequence Mobile Malware Detection with sieve technique is capable of classifying the benign and malicious mobile application more accurately and at the same time minimizing the false alarm.

i

### ABSTRAK

Perkembangan peranti mudah alih di pasaran telah mengubah cara kita mengendalikan aktiviti kehidupan seharian. Pertumbuhan pesat teknologi mudah alih telah membolehkan pengguna menggunakannya untuk pelbagai perkara seperti melayari web, perkhidmatan merata, rangkaian sosial, khidmat pesanan multimedia dan banyak lagi. Kini, Sistem Pengendalian Android Google telah menjadi sistem operasi pilihan utama untuk peranti mudah alih disebabkan ia adalah dari sumber terbuka dan mudah digunakan. Senario ini juga memunculkan kemungkinan perisian hasad yang boleh mengeksploitasi peranti mudah alih dan seterusnya mendedahkan sebarang transaksi sensitif pengguna. Keupayaan perisian hasad untuk berkembang pantas telah menjadikan pengesanan perisian hasad mudah alih rumit. Sistem Pengesan Pencerobohan berasaskan antivirus dan kaedah tandatangan memerlukan kemas kini pangkalan data tandatangan secara tetap bagi setiap penemuan perisian hasad baru. Ini menyebabkan sumber peranti mudah alih cepat penuh. Walaupun pengesanan berasaskan anomali dapat mengatasi isu ini; ia masih menghasilkan jumlah penggeraan palsu yang tinggi. Oleh itu, penyelidikan ini bercadang menambahbaik Pengesanan Perisian Hasad Mudah Alih dengan meningkatkan ketepatan, Positif Benar dan Benar Negatif serta meminimumkan kadar Positif Palsu dengan menggunakan pendekatan urutan Sistem Panggilan n-gram dan teknik penyaringan. Penyelidikan ini menganalisis tingkah laku dan jejak aktiviti aplikasi Perisian Hasad Mudah Alih secara dinamik. Hasil analisis menunjukkan tingkah laku dan jejak aktiviti aplikasi mudah alih yang benigna dan hasad dapat diklasifikasikan melalui sistem panggilan yang dipanggil oleh aplikasi mudah alih dari sistem kernel. Walau bagaimanapun, urutan Sistem Panggilan n-gram yang dihasilkan menyumbang kepada pengumpulan log yang besar dan menyebabkan penggunaan sumber peranti memori dan storan yang tinggi. Oleh itu, teknik penyaringan diperkenalkan dalam Pengesanan Perisian Hasad Mudah Alih untuk mencari set ciri Sistem Panggilan n-gram yang optimum. Untuk menilai prestasi kaedah pendekatan yang dicadangakan, pengukuran penilaian Ketepatan, Kadar Positif Benar, Kadar Negatif Benar, Kadar Positif Palsu dan lengkung Ciri Pengendali Penerima digunakan diatas set data aplikasi perisian hasad mudah alih daripada Projek Gnome Malware dan aplikasi mudah alih yang bersih dari Google Play Store. Penemuan awal menunjukkan urutan sistem panggilan 3-gram mampu meningkatkan prestasi pengesanan Perisian Hasad Mudah Alih dari segi Ketepatan, serta meminimumkan Kadar Positif Palsu. Manakala teknik penyaringan dapat mengurangkan jumlah ciri yang perlu dilog seterusnya menyediakan urutan Sistem Panggilan 3-gram yang optimum. Hasil penemuan menunjukkan urutan sistem panggilan 3-gram Pengesanan Perisian Hasad Mudah Alih dengan teknik penyaringan dapat mempertingkatkan Pengesanan Perisian Mudah Alih dalam dalam mengelaskan aplikasi mudah alih yang benigna dan hasad. Ujian Penilaian dan pengesahan menunjukkan yang urutan sistem panggilan 3-gram Pengesanan Perisian Hasad Mudah Alih dengan teknik penyaringan dapat mempertingkatkan prestasi pengelasan. Sebagai kesimpulan urutan sistem panggilan 3-gram Pengesanan Perisian Hasad Mudah Alih dengan teknik penyaringan mampu mengelaskan aplikasi benigna dan hasad dengan lebih tepat dan pada masa yang sama meminimumkan penggera palsu.

#### ACKNOWLEDGEMENTS

### In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for His strength and blessing in completing this thesis. I would like to express my gratitude to my respectful supervisor, Professor Datuk Ts. Dr. Shahrin Sahib, whose expertise, understanding, and patience significantly enhanced my graduate experience.

I would like to express my appreciation to my co-supervisor Professor Madya Dr. Mohd Faizal Abdollah, my mentors Dr. Siti Rahayu Selamat and Dr. Robiah Yusof for their support and aid in making my PhD journey a success. My appreciation also go to Universiti Teknikal Malaysia Melaka (UTeM) and Ministry of Education Malaysia for sponsoring this research. My deepest thanks to all the people who had given their support and motivation to make this journey a success especially to all my colleagues in the department of Sistem Komputer dan Komunikasi (SKK) and generally in Fakulti Teknologi Maklumat dan Komunikasi (FTMK) for their constructive discussions and help with the analysis and in thesis writing during the course of this research.

Last but not least, from the bottom of my heart a highest gratitude to my family for their love and caring. Especially to my late father, Haji Mas'ud Hj. Taib and my mother, Hajjah Siti Juariah Hj. Hamdan for their encouragement and blessing, my eternal love to my son, Muhammad Hifzhan Irfan, who has been the pillar of strength in all my endeavours. Finally, to those who indirectly contributed to this research, your kindness has inspired me to embark on this journey

iv

|        | TABLES OF CONTENTS                                                                                |           | Comment [JD1]: Formatting note:             |
|--------|---------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| DECI   | ARATION                                                                                           | PAGE      | Page 113 should be on right margin of table |
| -      | OVAL                                                                                              |           | (subheading 4.5.4)                          |
|        | CATION                                                                                            |           |                                             |
| ABST   | RACT                                                                                              | i         |                                             |
| ABST   | RAK                                                                                               | ii        |                                             |
| -      | NOWLEDGEMENTS                                                                                     | iii       |                                             |
|        | ES OF CONTENTS                                                                                    | V         |                                             |
|        | OF TABLES                                                                                         | viii      |                                             |
|        | OF FIGURES                                                                                        | x         |                                             |
|        | OF APPENDICES                                                                                     | xiv       |                                             |
|        | OF ABBREVIATIONS<br>OF PUBLICATIONS                                                               | xv<br>xvi |                                             |
| LIST   | OF FUBLICATIONS                                                                                   | XVI       |                                             |
| CHAF   | TER                                                                                               |           |                                             |
| 1. IN' | FRODUCTION                                                                                        | 1         |                                             |
| 1.1    | Introduction                                                                                      | 1         |                                             |
| 1.2    | Research Problem                                                                                  | 3         |                                             |
| 1.3    | Research Questions                                                                                | 6         |                                             |
| 1.4    | Research Aim and Objectives                                                                       | 7         |                                             |
| 1.5    | Research Scope                                                                                    | 9         |                                             |
| 1.6    | Research Contributions                                                                            | 10        |                                             |
| 1.7    | Thesis Organization                                                                               | 11<br>13  |                                             |
| 1.8    | Summary                                                                                           | 15        |                                             |
|        | TERATURE REVIEW                                                                                   | 15        |                                             |
| 2.1    | Introduction                                                                                      | 15        |                                             |
| 2.2    | Chapter Objective                                                                                 | 15        |                                             |
| 2.3    | Chapter Outline                                                                                   | 16        |                                             |
| 2.4    | Overview of Mobile Malware Issues                                                                 | 17        |                                             |
|        | <ul><li>2.4.1. Mobile Malware Evolution</li><li>2.4.2. Mobile Malware Threat and Impact</li></ul> | 18<br>19  |                                             |
|        | 2.4.2. Mobile Malware Theat and Impact<br>2.4.3. Android Architecture and Security Framework      | 21        |                                             |
| 2.5    | Mobile Malware Detection (MMD)                                                                    | 23        |                                             |
| 2.5    | 2.5.1. Mobile Malware Detection                                                                   | 25        |                                             |
|        | 2.5.2. Mobile Malware Analysis Approach                                                           | 27        |                                             |
|        | 2.5.3. Mobile Malware Audit Data Source and Detection Technique                                   | 30        |                                             |
|        | 2.5.4. Mobile Malware Detection Classification Analysis                                           | 36        |                                             |
|        | 2.5.5. Data Acquisition                                                                           | 38        |                                             |
|        | 2.5.6. Feature Selection Process                                                                  | 46        |                                             |
|        | 2.5.7. Evaluation Process                                                                         | 49        |                                             |
| 2.6    | The Proposed Mobile Malware Detection                                                             | 52        |                                             |
|        | 2.6.1. N-gram System Call Sequence                                                                | 54        |                                             |
|        | 2.6.2. Wrapper Feature Selection Method                                                           | 56        |                                             |
| 0.7    | 2.6.3. Support Vector Machines                                                                    | 58        |                                             |
| 2.7    | Summary                                                                                           | 60        |                                             |

| 3. RE | SEARCH METHODOLOGY                                                   | 62  |
|-------|----------------------------------------------------------------------|-----|
| 3.1   | Introduction                                                         | 62  |
| 3.2   | Chapter Objective                                                    | 62  |
| 3.3   | Chapter Outline                                                      | 63  |
| 3.4   | Research Design                                                      | 63  |
| 3.5   | Research Approach                                                    | 64  |
| 3.6   | Research Framework                                                   | 65  |
| 3.7   | Research Process                                                     | 67  |
|       | 3.7.1. Clarify Research Question                                     | 68  |
|       | 3.7.2. Experimental Approach                                         | 69  |
|       | 3.7.3. Design Framework                                              | 74  |
| 3.8   | Research Methodology and Research Objectives                         | 80  |
| 3.9   | Summary                                                              | 81  |
| 4. MO | OBILE MALWARE BEHAVIOUR THROUGH N-GRAM SYSTEM                        |     |
|       | LL SEQUENCE                                                          | 83  |
| 4.1   | Introduction                                                         | 83  |
| 4.2   | Chapter Objective                                                    | 83  |
| 4.3   | Chapter Outline                                                      | 84  |
| 4.4   | Mobile Malware Behaviour Experimental Approach Overview              | 85  |
| 4.5   | Mobile Malware Behaviour Analysis                                    | 86  |
|       | 4.5.1. DroidKungfu Behaviour Analysis                                | 86  |
|       | 4.5.2. AnserverBot Behaviour Analysis                                | 90  |
|       | 4.5.3. DroidDream Behaviour Analysis                                 | 93  |
|       | 4.5.4. GoldDream Behaviour Analysis                                  | 96  |
|       | 4.5.5. Discussion on Malicious Mobile Malware Behaviour              | 98  |
| 4.6   | Mobile Malware Behaviour Traces through System Call Sequence         | 100 |
|       | 4.6.1. Accessing, Reading and Writing to a File                      | 100 |
|       | 4.6.2. Connecting to the External Server                             | 102 |
|       | 4.6.3. Capturing and Logging SMS Received                            | 104 |
|       | 4.6.4. Discussion on Mobile Malware Behaviour and Sequence of System | 101 |
|       | Call                                                                 | 105 |
| 4.7   | The N-gram System Call Sequence Generator                            | 105 |
| 1.7   | 4.7.1. Data Acquisition Process                                      | 107 |
|       | 4.7.2. Feature Vector Generation Process                             | 110 |
| 4.8   | Summary                                                              | 110 |
|       |                                                                      | 115 |
|       | GRAM SYSTEM CALL SEQUENCE FEATURES WITH EFFICIENT                    |     |
|       | EVING TECHNIQUE                                                      | 115 |
| 5.1   | Introduction                                                         | 115 |
| 5.2   | Chapter Objective                                                    | 116 |
| 5.3   | Chapter Outline                                                      | 116 |
| 5.4   | N-gram Evaluation Experiment and Analysis                            | 117 |
| 5.5   | The Feature Selection Process                                        | 121 |
|       | 5.5.1. Feature Selection Method Evaluation Experiment                | 122 |
|       | 5.5.2. Feature Selection Method Evaluation and Analysis Result       | 125 |
|       | 5.5.3. Sieve Technique with Wrapper Feature Selection and Best First |     |
|       | Search Method                                                        | 127 |
| 5.6   | The Evaluation Process                                               | 129 |
| 5.7   | The Proposed 3-gram System call and Sieve Technique in MMD           | 132 |

| 5.8    | Summary                                                               | 134 |
|--------|-----------------------------------------------------------------------|-----|
| 6. N-0 | GRAM MOBILE MALWARE DETECTION WITH SIEVING TECHNIQUE                  |     |
| EV     | ALUATION AND VALIDATION                                               | 136 |
| 6.1    | Introduction                                                          | 136 |
| 6.2    | Chapter Objective                                                     | 137 |
| 6.3    | Chapter Outline                                                       | 137 |
| 6.4    | Dataset and Experimental Setup                                        | 138 |
| 6.5    | System Call Evaluation                                                | 141 |
|        | 6.5.1. Result and Findings for System Call Evaluation                 | 141 |
| 6.6    | The 3-gram System Call Evaluation Experiment.                         | 145 |
|        | 6.6.1. Result and Findings for 3-gram System Call Sequence Evaluation | 145 |
| 6.7    | Sieve Technique Evaluation                                            | 150 |
|        | 6.7.1. Result and Findings for Sieve Technique Evaluation             | 150 |
| 6.8    | Summary                                                               | 154 |
| 7. CC  | DNCLUSION AND RECOMMENDATION                                          | 157 |
| 7.1    | Research Recapitulation                                               | 158 |
| 7.2    | Research Contribution                                                 | 161 |
|        | 7.2.1. Mobile Malware Behaviour                                       | 163 |
|        | 7.2.2. 3-gram System Call Sequence                                    | 164 |
|        | 7.2.3. An Efficient Sieve Technique                                   | 164 |
|        | 7.2.4. Improve effectiveness of Mobile Malware Detection              | 165 |
| 7.3    | Recommendation and Future Work                                        | 165 |
| 7.4    | Conclusion                                                            | 166 |
| REFE   | ERENCES                                                               | 168 |
| APPE   | INDICES                                                               | 188 |

### LIST OF TABLES

| TABLE | TITLE                                                           | PAGE |
|-------|-----------------------------------------------------------------|------|
| 1.1   | Research Problem                                                | 5    |
| 1.2   | Summary of Research Questions                                   | 7    |
| 1.3   | Summary of Research Problems (RP), Research Questions (RQ) and  | 9    |
|       | Research Objectives (RO)                                        |      |
| 1.4   | Summary of Research Contributions                               | 10   |
| 2.1   | Mobile Malware Analysis Approach Use by Previous Researcher     | 28   |
| 2.2   | Summary of Audit Data Source and Mobile Malware Detection       | 32   |
|       | Technique                                                       |      |
| 2.3   | The Advantages and Disadvantages of each MMD Element            | 36   |
| 2.4   | Analysis on Feature Vector Generation                           | 44   |
| 2.5   | Mobile Malware Detection Framework Enhancement Process          | 52   |
| 3.1   | Summary of Hardware and Software Used in Experimental Network   | 71   |
|       | Design                                                          |      |
| 3.2   | Previous Research on System Call Feature Selection              | 79   |
| 3.3   | Research Methodology Mapping with RO1, RO2 and RO3              | 80   |
| 4.1   | A Sample of the System Call Encoding Scheme                     | 109  |
| 5.1   | The Classifier Performance Evaluation Result                    | 116  |
| 5.2   | List of Feature Selection Method Evaluated and Analysed in this | 121  |
|       | Research                                                        |      |

| 5.3   | The Feature Selection Method Performance Evaluation Result                | 122 |
|-------|---------------------------------------------------------------------------|-----|
| 6.1   | Numbers of Sample for Each Dataset.                                       | 135 |
| 6.2   | 1-gram System Call Sequence Evaluation                                    | 137 |
| 6.3.1 | Summary of Classification Accuracy Percentage                             | 140 |
| 6.3.2 | ANOVA with Single Factor Result                                           | 140 |
| 6.4   | 3- gram System Call Sequence Vs 1-gram System Call<br>Sequence Evaluation | 142 |
| 6.5   | Significance T-Test On 3-gram and 1-gram System Call Sequence             | 145 |
| 6.6   | 3- gram System Call Sequence With Sieve Technique Evaluation              | 147 |
| 6.7   | Significance T-Test on 3-gram                                             | 149 |
|       |                                                                           |     |

## LIST OF FIGURES

| FIGURE | TITLE                                                 | PAGE |
|--------|-------------------------------------------------------|------|
| 1.1    | Distribution of Mobile Malware by Platform, 2012      | 2    |
| 1.2    | Thesis Outline                                        | 11   |
| 2.1    | The Structure of Chapter Two                          | 16   |
| 2.2    | The Known Mobile Malware Known Variant 2009-2016      | 18   |
| 2.3    | Architecture of Android Platform                      | 22   |
| 2.4    | Mobile Malware Detection processes                    | 26   |
| 2.5    | Android Malware Detection Taxonomy                    | 35   |
| 2.6    | Filter Method                                         | 46   |
| 2.7    | Wrapper Method                                        | 47   |
| 2.8    | General Overview of Feature Selection                 | 56   |
| 2.9    | SVM Hyperplane Separating Benign and Malicious Mobile | 57   |
|        | Application                                           |      |
| 3.1    | Chapter Three Outline                                 | 62   |
| 3.2    | Research Design                                       | 63   |
| 3.3    | Research Phases                                       | 64   |
| 3.4    | Research Process                                      | 66   |
| 3.5    | Experimental Design                                   | 69   |
| 3.6    | Experimental Network Designs for Testbed              | 70   |

| 3.7   | Processes of Data Acquisition and Feature Vector Generation.      | 74 |
|-------|-------------------------------------------------------------------|----|
| 3.8   | Experimental Evaluation Process                                   | 75 |
| 3.9   | Process of Feature Selection Evaluation                           | 77 |
| 4.1   | Chapter Four Outline                                              | 82 |
| 4.2.1 | The Captured System Call in DroidKungfu Execution Associated      | 85 |
|       | with an Attempt for Root Access                                   |    |
| 4.2.2 | The Captured System Call in DroidKungfu Execution Associated      | 86 |
|       | with an Attempt to Communicate to External Server                 |    |
| 4.2.3 | The Captured Network Traffic Communication to External Server in  | 87 |
|       | DroidKungfu Execution                                             |    |
| 4.3.1 | The Captured System Call from Anserverbot Execution Associated to | 88 |
|       | Access Malicious Payload                                          |    |
| 4.3.2 | The Captured System Call from Anserverbot Execution Associated to | 89 |
|       | Connection Made to an External Server                             |    |
| 4.3.3 | The Captured Network Traffic Communication to External Server in  | 90 |
|       | Anserverbot Tcpdump Log                                           |    |
| 4.4.1 | The Captured System Call from DroidDream Execution Associated to  | 91 |
|       | Accessing File                                                    |    |
| 4.4.2 | The Captured System Call from DroidDream Execution Associated to  | 92 |
|       | Connection Made to an External Server                             |    |
| 4.4.3 | The Captured Network Traffic Communication to an External Server  | 93 |
|       | in Anserverbot Tcpdump Log                                        |    |
| 4.5.1 | The Captured System Call From GoldDream Execution Associated to   | 94 |
|       | Capturing the Incoming SMS                                        |    |
| 4.5.2 | The Captured System Call From GoldDream Execution Associated to   | 95 |

| 4.5.3  | The Captured Network Traffic Communication to An External Server | 95  |
|--------|------------------------------------------------------------------|-----|
| ч.5.5  |                                                                  | ))  |
|        | In GoldDream Tepdump Log                                         |     |
| 4.6    | Malicious Mobile Malware Behaviour                               | 96  |
| 4.7    | Malicious Mobile Malware Behaviour Execution Flow                | 97  |
| 4.8.1  | System Call Sequence for change mode                             | 99  |
| 4.8.2  | System Call Sequence for Accessing and Writing File              | 99  |
| 4.8.3  | System Call Sequence for Access and Rename File                  | 100 |
| 4.8.4  | System Call Sequence for Delete a File                           | 100 |
| 4.9.1  | Sequence of System Call Used to do a DNS Query                   | 101 |
| 4.9.2  | Sequence of System Call Used to Connect to the External Server   | 101 |
| 4.10   | Sequence of System Call Used to Capturing and Logging            | 103 |
|        | SMS Received                                                     |     |
| 4.11   | Number of Features Generated Based on n                          | 104 |
| 4.12   | Mobile Malware Detection                                         | 105 |
| 4.13   | Data Acquisition Process                                         | 106 |
| 4.14   | Example of the System Call Log                                   | 107 |
| 4.15   | Feature Vector Generation Process                                | 108 |
| 4.16.1 | Algorithm for System Call Encode.                                | 109 |
| 4.16.2 | Algorithm for Generating n-gram                                  | 110 |
| 5.1    | Chapter Five Outline                                             | 114 |
| 5.2    | n-gram Evaluation Experiment Procedure                           | 115 |
| 5.3    | Classifier Performance vs n-gram                                 | 116 |
| 5.4    | ROC Curve of n-gram System Call Sequence                         | 117 |
| 5.5    | Feature Selection Method Evaluation and Analysis                 | 120 |

## experiment procedure

| 5.6   | Sieve Technique with WR-BF Process Flow                         | 124 |
|-------|-----------------------------------------------------------------|-----|
| 5.7   | Grid Search with Cross Validation Experimental Flow             | 126 |
| 5.8   | Classification Accuracy Based on Different Penalty Parameter, C | 127 |
| 5.9   | MMD with 3-gram System Call Sequence and Sieve Technique        | 129 |
| 6.1   | Chapter Six Outline                                             | 133 |
| 6.2   | Evaluation and Validation Experiment Procedure                  | 136 |
| 6.3.1 | ROC curve for Dataset 1, D1                                     | 138 |
| 6.3.2 | ROC curve for Dataset 2, D2                                     | 138 |
| 6.3.3 | ROC curve for Dataset 3, D3                                     | 139 |
| 6.4.1 | ROC curve 3-gram vs 1 gram for Dataset 1, D1                    | 142 |
| 6.4.2 | ROC curve 3-gram vs 1 gram for Dataset 2, D2                    | 143 |
| 6.4.3 | ROC curve 3-gram vs 1 gram for Dataset 3, D3                    | 143 |
| 6.5.1 | ROC curve Best 3-gram vs all 3-gram for Dataset 1, D1           | 147 |
| 6.5.2 | ROC curve Best 3-gram vs all 3-gram for Dataset 2, D2           | 148 |
| 6.5.3 | ROC curve Best 3-gram vs all 3-gram for Dataset 3, D3           | 148 |
| 7.1   | The Objectives and Contributions Mapping                        | 158 |

xiii

## LIST OF APPENDICES

| APPENDIX | TITLE                      | PAGI |
|----------|----------------------------|------|
| А        | System Call Description    | 188  |
| В        | System call Representation | 191  |

## LIST OF ABBREVIATIONS

**Comment [JD2]:** This list should be in alphabetical sequence, beginning with: AB Anomaly Base

Ending with: TPR True Positive Rate

| API | - | Application Program Interface     |
|-----|---|-----------------------------------|
| RP  | - | Research Problem                  |
| RQ  | - | Research Question                 |
| RO  | - | Research Objective                |
| IDS | - | Intrusion Detection System        |
| MMD | - | Mobile Malware Detection          |
| ТР  | - | True Positive                     |
| TN  | - | True Negative                     |
| FP  | - | False Positive                    |
| FN  | - | False Negative                    |
| SB  | - | Signature Base                    |
| AB  | - | Anomaly Base                      |
| SPB | - | Specification Base                |
| SVM | - | Support Vector Machine            |
| TPR | - | True Positive Rate                |
| FPR | - | False Positive Rate               |
| TNR | - | True Negative Rate                |
| ROC | - | Receiver operating characteristic |
| IG  | - | Information Gain                  |
| CHI | - | Chi-Square test,                  |
| CFS | - | Correlation-based feature         |
| BF  | - | Best First                        |
| GA  | - | Genetic Algorithm                 |
| EA  | - | Evaluation Algorithm              |
| PSO | - | Particle Swam Optimization        |
| CNC | - | Command and Control               |
|     |   |                                   |

## LIST OF PUBLICATIONS

| Mohd Zaki Mas'ud, Shahrin Sahib, Mohd Faizal Abdollah, Siti Rahayu Selamat and Choo    |                                                                         |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Yun Huoy, 2017. A Comparative Study on Feature Selection Method for n-gram Mobile      |                                                                         |
| Malware Detection. International Journal of Network Security, 19(5), pp. 727-733.      | Comment [JD3]: See above                                                |
|                                                                                        |                                                                         |
| Mohd Zaki Mas'ud, Shahrin Sahib, Mohd Faizal Abdollah, Siti Rahayu Selamat and Robiah  |                                                                         |
| Yusof, 2016. An Evaluation of n-gram System Call Sequence in Mobile Malware Detection. | Comment [JD4]: See above                                                |
| ARPN Journal of Engineering and Applied Sciences, 11(5), pp. 3122-3126.                |                                                                         |
|                                                                                        |                                                                         |
| Mohd Zaki Mas'ud, Shahrin Sahib, Mohd Faizal Abdollah, Siti Rahayu Selamat and Robiah  |                                                                         |
| Yusof, 2014, May. Analysis of Features Selection and Machine Learning Classifier in    |                                                                         |
| Android Malware Detection. In 2014 IEEE International Conference on Information        |                                                                         |
| Science and Applications (ICISA), pp. 001-005.                                         |                                                                         |
|                                                                                        |                                                                         |
| Mohd Zaki Mas'ud, Shahrin Sahib, Mohd Faizal Abdollah, Siti Rahayu Selamat and Robiah  |                                                                         |
| Yusof, 2014. Android Malware Detection System Classification. Research Journal of      | <b>Comment [JD5]:</b> Article titles should have minimal capitalisation |
| Information Technology, 6(4), pp. 325-341.                                             |                                                                         |
|                                                                                        |                                                                         |
| Mohd Zaki Mas'ud, Shahrin Sahib, Mohd Faizal Abdollah, Siti Rahayu Selamat, Robiah     |                                                                         |
| Yusof & Rabiah Ahmad, 2013. Profiling Mobile Malware Behaviour through Hybrid          |                                                                         |
| Malware Analysis Approach. In 9th IEEE International Conference on Information         |                                                                         |
| Assurance and Security (IAS), 2013, pp. 78-84                                          |                                                                         |

xvi

### **CHAPTER 1**

#### INTRODUCTION

### 1.1 Introduction

The popularity of mobile devices over recent vears has been continuously growing; with functionality similar to a personal computer. Mobile device users can do more than just making calls and handling Short Message Service (SMS). According to the International Telecommunication Union (ITU) (2016), at the end of 2016 there are almost 7.5 billion mobile users with more than 3.8 billion mobile-broadband subscriptions worldwide. The rise of mobile devices which have full functionality of a personal computers and support of latest communication technology has enabled users to always get connected to the Internet anywhere at any time. A mobile device can be used for various purposes such as web browsing, ubiquitous services, social networking, Multimedia Messaging Service (MMS) and many more. Robust Operating System (OS) Technology supporting mobile devices has also contributed to the rapid development of mobile applications on the mobile devices.

Currently, there are several mobile device OSs namely iOS from Apple, Blackberry, Symbian, Windows mobile and Android by Google. Among these OSs, Google's Android OS is widely consume in the mobile devices market shares;, Gartner Inc. stated that 84.1% smartphone sales during the first quarter of 2017 is on Android platform (Forni and Meulen, 2017). Android OS open source nature, credibility, performance and ease of customizing has made most mobile users choose mobile devices supported by Android OS from the others. Despite a rapid growth of Android-based mobile devices in the market, ahead off the other competitors, it also has **Comment [JD6]:** Zaki Masud – it appears that the subheading numbering was updated while I was proofreading (this was not intentional on my part). Apologies for this; however, it should be corrected after all other changes are updated (after you accept or reject each change throughout the thesis) and Track Changes is then turned off. Then click on update Table of Contents – this should correct

Comment [JD7]: recent

Comment [JD8]: ...ahead of...

become an ideal place for malware writers. An increase in mobile applications in Android has also ignited the possibility of malicious programs which can exploit mobile devices. These malicious program are targeting the mobile devices because of the devices are used for online banking, online shopping or any sensitive transaction.

In early 2000, malicious software or malware has been only associated mainly with Desktop Computers but as the mobile technology evolved the malware has now proliferated the mobile space. Proliferation of malware on mobile technology exposed mobile user's sensitive information to malicious actions. Since 2010 new mobile malware is appearing at a regular interval. In 2012, Kaspersky Security Bulletin (Denis and Yuri, 2012) has reported that Android-based malware is growing at an alarming rate. Figure 1.1 shows that 98.96% of newly found mobile malware is targeting the Android-based platform. Mobile malware effect is lethal, mobile malware can steal credential information from the device, sniffed user activity and location, overbilled users by sending random SMS and MMS to contacts, launched denial of services attack from user devices and overloaded device resources such as memory, battery and storage (La Polla et al., 2013).

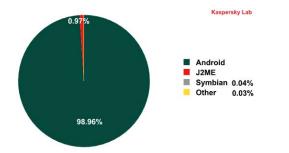



Figure 1.1: Distribution of Mobile Malware by Platform, 2012 (Denis and Yuri, 2012)

In 2010, Malware in general has cost consumer in United States USD 2.3 billion and caused 1.3 million personal computers to be replaced. In addition, in the same year, malware infection has cause USD 118 billion financial impact worldwide. As mobile devices technology

is now adapting all the personal computer capabilities, mobile devices are going to have similar effects. According to Juniper Network Mobile Threat Center (2012), the effect of mobile malware includes exploiting vulnerabilities in mobile payment gateway that can provide the attacker an immediate USD 10 million profit. Mobile malware has become an emerging threat in cyber security and some countermeasures need to be taken to overcome mobile malware infections. Therefore, developing and improving mobile devices security to the same level as computer security is important, especially in finding a mechanism to protect the system and data resources from any kind of intrusion (Sundaram, 1996).

#### 1.2 Research Problem

Malicious software or called malware, is purposely written to exploit the vulnerabilities found in a computer system. Malware developers write malware code for different purposes which mostly are used for malicious intention (Robiah et al., 2009). The rapid evolution of malware signature and behaviour have made it difficult to stop. Previously, malware such as Virus, Trojan, Worm and Botnet are synonym to personal computers and rarely found in a mobile device. However, as the mobile devices are become increasingly complex and can support complex OS, mobile devices has become the malware's next target. The worldwide epidemic of malware infections has given malware authors a generous financial benefit through their activities in stealing credential information and gaining access to financial accounts. At present, in response to the emergence of mobile malware, security companies have released mobile antivirus applications as a defence mechanism.

Anti-malware applications, known as Antivirus for mobile, have a similar function as the one on the Desktop version; mobile version antivirus still detects malware based on the known malware signature and is useful for cleaning up the device after it has been infected. With a more advanced malware introduced, the signature is kept on changing from one variant to Comment [JD9]: ADD TO REFERENCE LIST Comment [JD10]: Do you mean IT ? If so, add IT to list of abbreviations. Otherwise, replace with specific noun.

**Comment [JD11]:** Revise word choice (associated with?)

Comment [JD12]: reward / benefit