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ABSTRACT

Lithography is the key process which transfers the pattern from mask (reticle) to wafer;
and pad inductor layer is the last layer in photo masking. The cycle time for pad inductor
layer has increased in Silterra Malaysia Sdn. Bhd., by 32% per month due to Global
Alignment (GA) error. Meanwhile, engineering team taking long duration during
troubleshooting of the lot at exposure and developing step. This is due to tool time
constrain which requires a Process Engineer to perform this activity manually. Most of the
lots undergo rework step which results in cost of per wafer to increase. The goal of this
project is to reduce the cycle time for pad inductor layers by introducing “Remote Global
Alignment Error” (RGAE) framework; in which this new framework will results in
alternative flow. The methodology was designed if encountering global alignment error.
During the process, the lot will automatically load in by “Remote Global Alignment Error”
(RGAE) framework by selecting the rejected wafers going for exposure and developing
process. This has eventually save more time for split wafers which will usually send for
rework or run the lot manually. Few DOE test was conducted to compare the cycle time
performance of the (RGAE) framework with the Manual Global Alignment (MGA)
method. Furthermore, there main photolithography process (coat, exposure, develop).
reject wafers and rework rate cycle time performance was also tested. In total, five test lots
and five production lots selected to run the DOE test. All the cycle time data which was
collected through this DOE test analyzed using Minitab 17 statistical software. The
analyzed report shows that the cycle time for RGAE method could be achieved within 2
hours. This success could be achieved by allowing the rejected wafers to run automatically
by using the alternative flow until the wafers successfully exposed. Furthermore, with the
(RGAE) framework, the production can save time for split, rework, remask and merge all
the wafers. The experimental result shows that (RGAE) framework able to provide fast
solution by achieving 97% reduction of cycle time for pad inductor layer comparing to
Manual Global Alignment (MGA) method.



ABSTRAK

Litografi adalah suatu proses utama yang memindahkan corak daripada reticle kepada
lapisan wafer dan pad induktor merupakan lapisan terakhir di dalam hirarki Litografi.
Kitaran masa untuk lapisan pad induktor menunjukkan peningkatan kerana mempunyai
32% daripada ralat penjajaran global (GA) sebulan di Silterra Malaysia Sdn Bhd. Dalam
masa yang sama, masa kejuruteraan akan diambil lama untuk menyelesaikan masalah lot
untuk menjalankan proses “expose” dan “develop”. Ini adalah kerana, masa penggunaan
mesin terhad untuk digunakkan oleh Jurutera Proses di dalam keadaan mod manual.
Kebanyakan lot dihantar untuk kerja semula menyebabkan kos proses “wafer” meningkat.
Matlamat projek ini adalah untuk mengurangkan masa kitaran untuk lapisan pad induktor
dengan memperkenalkan rangka kerja yang dikenali sebagai “Remote Global Alignment
Error” (RGAE) dengan aliran alternatif. Untuk itu, sebuah metodologi direka jika
menghadapi ralat penjajaran global (GA). Semasa proses itu, lot akan secara automatik
dimuatkan dengan menggunakan rangka kerja "Remote Global Alignment Error" (RGAE)
dengan memilih “wafer” yang ditolak untuk proses “expose” dan “develop”. Melalui
rangka kerja ini, membolehkan menjimat lebih banyak masa untuk memisahkan “wafer”
yang biasanya akan dihantar untuk kerja semula atau menjalankan lot secara mod
manual. Beberapa ujian DOE dijalankan untuk membandingkan prestasi masa kitaran
rangka kerja (RGAE) dengan kaedah “Manual Global Alignment” (MGA). Selain itu, tiga
proses photolithography utama (“coat”, “exposure”, “develop”), “wafer” yang ditolak
dan kadar kerja semula untuk prestasi masa kitaran juga divji. Secara keseluruhannya,
lima lot daripada ujian dan lima lot daripada produk pengeluaran dipilih untuk
menjalankan ujian DOE. Semua data masa kitaran yang dikumpulkan melalui ujian DOE
ini dianalisis dengan menggunakan perisian statistik Minitab 17. Laporan analisis
menunjukkan bahawa masa kitaran dengan untuk rangka kerja (RGAE) dapat dicapai
dalam masa dua jam. Kejayaan ini dapat dicapai dengan membenarkan “wafer” yang
ditolak untuk dijalankan secara automatik dengan menggunakan aliran alternatif sehingga
“wafer” tersebuat berjaya “expose”. Selain itu, dengan menggunakan rangka kerja
(RGAE), syarikat dapat menjimatkan masa untuk memisahkan “wafers”, kerja semula,
mengulang semula dan menggabungkan semua “wafer”. Hasil eksperimen menunjukkan
bahawa rangka kerja (RGAE) dapat mampu memberikan penyelesaian yang cepat dengan
mencapai 97% pengurangan masa kitaran untuk lapisan pada pad induktor yang
membandingkan dengan kaedah “Manual Global Alignment” (MGA).
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Semiconductor wafer fabrication is a procedure composed of many repeated
sequential processes to produce complete electrical or photonic circuits. Examples include
production of radio frequency (RF) amplifiers, LEDs, optical computer components and
CPUs for computers.

Integrated Circuit (IC) is fabricating process for a various step sequence of
chemical and photographic processes that performed on the wafer. A wafer or substrate
fabricated on a thin slice of silicon is mainly used in most semiconductor chips companies.
The various processes used to make an integrated circuit (IC) on the wafer are
photolithography, resist removal, etching, layering, wafer cleaning and doping. Figurel.1
represents one cycle of the primary steps and their sequence.

On the other hand, May (2006) explained more details regarding layering
techniques that used to grow thin layers of film on the wafer surface. Photolithography
uses light to transfer a geometric pattern from a photomask to a light-sensitive photoresist
on the substrate. The photoresist needs to be stripped away. Etching is the process of using
strong acid to cut into the unprotected parts of a metal surface to create a design in the
metal. Doping is the process of impurity atoms being used in order to define the electrical
properties of this region. Cleaning is used to remove particulates and chemical impurities

so contaminant-free surfaces can be obtained.
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Figure 1.1: Semiconductor Wafer Process Flow (Spierings, 2013).

In the semiconductor wafer process, the photolithography process has the most
expensive equipment and one of the bottleneck process compared to other wafer
fabrication processes in the production line. Photolithography is the temporarily coat
photoresist on wafer and transfers designed pattern to the photoresist. It is the core of the
manufacturing process flow (Yen, 2012).

The goal of the photolithography process is to determine the high resolution, high
photoresist sensitivity, precision alignment within 10 percentage of minimum feature size,

precise process parameters control and low defect density (Lai, 2009).



The process sequence for photolithography is photoresist coating, alignment,
exposure and photoresist developing the layer (Lucas, 1999). It requires high resolution,
high sensitive, precise alignment and low defect density that contributes to high yield and

good imaging. Figure 1.2 shows the photolithography process flow in wafer fabrication.

Track Stepper/

Figure 1.2: Photolithography Process Flow (Spierings, 2013).

The photolithography process flow is repeated for up to 30 times for one device
(depending on technology and device). The repetition of this process normally requires
different reticles (poly, contact, metal, via & pad inductor) which have different chrome
patterns on it (Saandilian, 2016). However, some layers like some implant layers share the
same reticle. Figure 1.3 shows that photolithography layer sequence flow. It starts from the
first layer (island) until the last layer (pad inductor). The pad inductor or passivation layer
is the last layer performed in photolithography to prevent physical damage (scratches) and

as a barrier to mobile ion contaminants.
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Figure 1.3: Photolithography Layer Sequence (Saandilian, 2016)

Alignment (overlay) is a key challenge process in photolithography since the
minimum dimension of integrated circuits (ICs) has been shrinking (Zhang, 2013). Modern
CMOS integrated circuits have almost 30 layers to be aligned perfectly to avoid
misalignment. Alignment marks are placed on the wafer at the beginning of the process
during the first level of photolithography. Furthermore, the good alignment mark can
prevent misalignment that induces to reduce overall photolithography cycle time
(Saandilian, 2016).

In wafer fabrication, reduction of cycle time is very important for all semiconductor
process (Chen, 2013b). Cycle time consists of queuing time for reticle changes, tool
downtime, engineering work, preventative maintenance, visual inspection time, production
processing time and lot transportation time. The main objective of the cycle time is to have
a shorter cycle time (Spierings, 2013).

One of a most important part of photolithography is a reduction of cycle time for
pad inductor layer; since it is the last layer in photolithography (Saandilian, 2016).
Manufacturing always gives high priority to pad inductor layer in determining not have

any delay in the process.



