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ABSTRACT 

 

 

316L stainless steel (SS) is very synonym as a metal implant in medical application. This 
316L grade is widely used at various implant divisions and makes it beneficial to the 
medical treatment of several injuries and diseases. However, their usage is slightly limited 
by the corrosion problems during implantation in the body. In this study, experiments are 
aimed to evaluate the stress corrosion cracking (SCC) of 316L SS in the simulated body 
environment. The 2.0 mm thick of 316L SS test specimens was undergone two steps 
mechanical processes; rolling and bending. The specimens were cold-rolled to 10%, 30% 
and 50% reduction in thickness and bent up to the U-bend shape using special bending 
equipment. The processing properties like plastic strain and springback after both 
processes were measured. The mechanical properties and structural modifications of cold 
worked specimens were assessed using tensile, hardness, bending and metallurgical tests. 
The corrosion tests were done in phosphate buffered saline (PBS) solution at temperature 
and pH of 37 oC and 7.4. The XRD and EDS methods were used to identify the corrosion 
products. Whereas, the morphology of SCC failed specimens was observed under 
microscopic method. From the results, the occurence of SCC has been evaluated as 
follows. The 316L SS was strain hardened after two steps mechanical processes. The strain 
hardening effect was clearly seen from the resulted processing properties and structural 
modification. It was indicated by a higher plastic strain and springback. The structural 
modification from coarse to dislocated and dense grain structures also makes the steel 
harder and stronger. Then, the bending process produced transversal cracks in the outer U-
bend surface. The crack, which formed at the existing grain boundaries, was identified as 
the initial stage of SCC. Consequently, the chloride ions penetrate the crack during the 
corrosion process and facilitate the crack growth. The crack was propagated along with the 
previous rolled marks, under transgranular mode. In this work, SCC was clearly found on 
the U-bend 316L SS with 10% reduction in thickness. However, the steel with higher 
thickness reduction produced a greater strain hardening which then prevented the 
occurrence of transversal cracks. From the finding, this work shows the mechanical 
process greatly influenced the SCC rather than the corrosion process. The steel must be 
strain hardened by two steps mechanical processes to initiate the SCC failure. 
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ABSTRAK 

 

 

Keluli tahan karat 316L (SS) sangat sinonim sebagai implan logam dalam aplikasi 
perubatan. Gred 316L digunakan secara meluas dalam pelbagai divisyen implan dan 
menjadikannya bermanfaat untuk rawatan perubatan untuk beberapa jenis kecederaan 
dan penyakit. Bagaimanapun, penggunaan implan sedikit terhad kerana masalah kakisan 
semasa implantasi dalam badan. Dalam kajian ini, eksperimen bertujuan untuk menilai 
retak hakisan tegasan (SCC) bagi 316L SS dalam persekitaran simulasi badan. Keluli 
316L SS sebagai bahan spesimen dengan ketebalan 2.0 mm menjalani dua peringkat 
proses mekanikal; iaitu gelekan dan lenturan. Spesimen-spesimen telah disejuk-gelekan 
kepada 10%, 30% dan 50% pengurangan tebal sebelum dilenturkan kepada bentuk lentur-
U denagn menggunakan alat lentur khas. Sifat-sifat pemprosesan seperti terikan plastik 
dan springback selepas kedua-dua proses diukur. Sifat-sifat mekanikal dan ubahsuai 
struktur ke atas spesimen dikerja sejuk telah dinilai menggunakan ujian regangan, 
kekerasan, lenturan dan metalurgi. Ujian-ujian kakisan telah dibuat dalam larutan 
phosphate buffered saline (PBS) pada suhu dan pH adalah 37 oC dan 7.4. Kaedah XRD 
dan EDS digunakan untuk mengenalpasti produk-produk kakisan. Kemudian, morfologi 
spesimen yang gagal secara SCC telah diperhatikan melalui kaedah mikroskopik. 
Daripada keputusan, pembentukan SCC telah dinilai seperti berikut. 316L SS telah 
dikerasterikkan selepas melalui dua peringkat proses mekanikal. Kesan pengerasan 
terikan jelas kelihatan daripada hasil sifat-sifat pemprosesan dan pengubahsuaian 
struktur. Ia ditunjukkan oleh terikan plastik dan springback. Pengubahsuaian struktur 
daripada kasar kepada struktur butiran terkehel dan padat juga menjadikan keluli lebih 
keras dan kuat. Kemudian, proses lenturan telah menghasilkan retakan melintang pada 
pemukaan luar lenturan-U. Retak berkenaan, yang terbetuk pada sempadan butir sedia 
ada, telah dikenalpasti sebagai peringkat permulaan SCC. Akibatnya, ion klorida dapat 
menembusi ke dalam retak semasa proses kakisan dan memudahkan pertumbuhan retak. 
Retak telah merambat melalui tanda gelekan sebelumnya, yang berada di bawah mod 
transgranular. Dalam kajian ini, SCC jelas dijumpai pada 316L SS berbentuk lenturan-U 
dengan 10% pengurangan sejuk. Bagaimanapun, keluli dengan pengurangan sejuk yang 
lebih tinggi mewujudkan pengerasan terikan yang lebih besar yang kemudiannya dapat 
mencegah daripada berlaku retakan melintang. Daripada penemuan yang diperoleh, 
kajian ini telah menunjukkan proses-proses mekanikal sangat mempengaruhi SCC 
berbanding proses kakisan. Keluli mesti dikeras terikkan melalui dua peringkat proses-
proses mekanikal untuk memulakan kegagalan SCC. 
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