

Faculty of Mechanical Engineering

INFLUENCE OF MECHANICAL PROCESS ON THE STRESS CORROSION CRACKING OF 316L STAINLESS STEEL FOR IMPLANT APPLICATION

Wan Mohd Farid bin Wan Mohamad

Doctor of Philosophy

2019

C Universiti Teknikal Malaysia Melaka

INFLUENCE OF MECHANICAL PROCESS ON THE STRESS CORROSION CRACKING OF 316L STAINLESS STEEL FOR IMPLANT APPLICATION

WAN MOHD FARID BIN WAN MOHAMAD

A thesis submitted

in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Influence of Mechanical Process on the Stress Corrosion Cracking of 316L Stainless Steel for Implant Application" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

I dedicate this thesis to my beloved mother, father, wife and sons

ABSTRACT

316L stainless steel (SS) is very synonym as a metal implant in medical application. This 316L grade is widely used at various implant divisions and makes it beneficial to the medical treatment of several injuries and diseases. However, their usage is slightly limited by the corrosion problems during implantation in the body. In this study, experiments are aimed to evaluate the stress corrosion cracking (SCC) of 316L SS in the simulated body environment. The 2.0 mm thick of 316L SS test specimens was undergone two steps mechanical processes; rolling and bending. The specimens were cold-rolled to 10%, 30% and 50% reduction in thickness and bent up to the U-bend shape using special bending equipment. The processing properties like plastic strain and springback after both processes were measured. The mechanical properties and structural modifications of cold worked specimens were assessed using tensile, hardness, bending and metallurgical tests. The corrosion tests were done in phosphate buffered saline (PBS) solution at temperature and pH of 37 °C and 7.4. The XRD and EDS methods were used to identify the corrosion products. Whereas, the morphology of SCC failed specimens was observed under microscopic method. From the results, the occurence of SCC has been evaluated as follows. The 316L SS was strain hardened after two steps mechanical processes. The strain hardening effect was clearly seen from the resulted processing properties and structural modification. It was indicated by a higher plastic strain and springback. The structural modification from coarse to dislocated and dense grain structures also makes the steel harder and stronger. Then, the bending process produced transversal cracks in the outer Ubend surface. The crack, which formed at the existing grain boundaries, was identified as the initial stage of SCC. Consequently, the chloride ions penetrate the crack during the corrosion process and facilitate the crack growth. The crack was propagated along with the previous rolled marks, under transgranular mode. In this work, SCC was clearly found on the U-bend 316L SS with 10% reduction in thickness. However, the steel with higher thickness reduction produced a greater strain hardening which then prevented the occurrence of transversal cracks. From the finding, this work shows the mechanical process greatly influenced the SCC rather than the corrosion process. The steel must be strain hardened by two steps mechanical processes to initiate the SCC failure.

ABSTRAK

Keluli tahan karat 316L (SS) sangat sinonim sebagai implan logam dalam aplikasi perubatan. Gred 316L digunakan secara meluas dalam pelbagai divisyen implan dan menjadikannya bermanfaat untuk rawatan perubatan untuk beberapa jenis kecederaan dan penyakit. Bagaimanapun, penggunaan implan sedikit terhad kerana masalah kakisan semasa implantasi dalam badan. Dalam kajian ini, eksperimen bertujuan untuk menilai retak hakisan tegasan (SCC) bagi 316L SS dalam persekitaran simulasi badan. Keluli 316L SS sebagai bahan spesimen dengan ketebalan 2.0 mm menjalani dua peringkat proses mekanikal; iaitu gelekan dan lenturan. Spesimen-spesimen telah disejuk-gelekan kepada 10%, 30% dan 50% pengurangan tebal sebelum dilenturkan kepada bentuk lentur-U denagn menggunakan alat lentur khas. Sifat-sifat pemprosesan seperti terikan plastik dan springback selepas kedua-dua proses diukur. Sifat-sifat mekanikal dan ubahsuai struktur ke atas spesimen dikerja sejuk telah dinilai menggunakan ujian regangan, kekerasan, lenturan dan metalurgi. Ujian-ujian kakisan telah dibuat dalam larutan phosphate buffered saline (PBS) pada suhu dan pH adalah 37 °C dan 7.4. Kaedah XRD dan EDS digunakan untuk mengenalpasti produk-produk kakisan. Kemudian, morfologi spesimen vang gagal secara SCC telah diperhatikan melalui kaedah mikroskopik. Daripada keputusan, pembentukan SCC telah dinilai seperti berikut. 316L SS telah dikerasterikkan selepas melalui dua peringkat proses mekanikal. Kesan pengerasan terikan jelas kelihatan daripada hasil sifat-sifat pemprosesan dan pengubahsuaian struktur. Ia ditunjukkan oleh terikan plastik dan springback. Pengubahsuaian struktur daripada kasar kepada struktur butiran terkehel dan padat juga menjadikan keluli lebih keras dan kuat. Kemudian, proses lenturan telah menghasilkan retakan melintang pada pemukaan luar lenturan-U. Retak berkenaan, yang terbetuk pada sempadan butir sedia ada, telah dikenalpasti sebagai peringkat permulaan SCC. Akibatnya, ion klorida dapat menembusi ke dalam retak semasa proses kakisan dan memudahkan pertumbuhan retak. Retak telah merambat melalui tanda gelekan sebelumnya, yang berada di bawah mod transgranular. Dalam kajian ini, SCC jelas dijumpai pada 316L SS berbentuk lenturan-U dengan 10% pengurangan sejuk. Bagaimanapun, keluli dengan pengurangan sejuk yang lebih tinggi mewujudkan pengerasan terikan yang lebih besar yang kemudiannya dapat mencegah daripada berlaku retakan melintang. Daripada penemuan yang diperoleh, kajian ini telah menunjukkan proses-proses mekanikal sangat mempengaruhi SCC berbanding proses kakisan. Keluli mesti dikeras terikkan melalui dua peringkat prosesproses mekanikal untuk memulakan kegagalan SCC.

ACKNOWLEDGEMENTS

First, I would like to thank for my supervisor, Associate Professor Dr. Mohd Zulkefli bin Selamat from the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), who spent a lot of time to read my thesis and gave me useful suggestions and also for being patient with me through all the times. I really appreciate the guidance, supervision, support and encouragement towards the completion of this thesis.

I would also like to express my deepest gratitude to Dr. Bunbun Bunjali from Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (ITB), co-supervisor of this research for his advice and support in the evaluation of corrosion studies.

I would also like to give special thanks to all technicians from material, chemistry and mechanical laboratories, Faculty of Mechanical Engineering and technicians from corrosion laboratory, Faculty of Mathematics and Natural Sciences for their assistance and efforts in the laboratory works.

The financial support of the Jabatan Perkhidmatan Awam (JPA) and university research grant (PJP/2014/FKM(3A)/S01303) UTeM is gratefully acknowledged.

Finally, I give my distinguished appreciation to all my colleagues and my beloved families for their moral support throughout my postgraduate research life.

TABLE OF CONTENTS

iv

DECLARATION APPROVAL **DEDICATION** i ABSTRACT ii ABSTRAK **ACKNOWLEDGEMENTS** iii **TABLE OF CONTENTS** iv LIST OF TABLES vii **LIST OF FIGURES** X LIST OF APPENDICES xviii LIST OF SYMBOLS XX LIST OF ABBREVIATIONS xxii LIST OF PUBLICATIONS XXV

CHAPTER

1.	INT	RODUCTION	1
	1.1	Research background	1
	1.2	Stress corrosion cracking	3
	1.3	Problem statement of the research	6
	1.4	Objectives of the research	9
	1.5	Scopes of the research	9
	1.6	Thesis outline	11
	1.7	Summary	12
2.	LIT	ERATURE REVIEW	14
	2.1	Historical development of medical implants	14
	2.2	Common metal implants	18
		2.2.1 Cobalt-based alloys	22
		2.2.2 Titanium-based alloys	22
		2.2.3 Stainless steels	23
	2.3	316L stainless steel	26
		2.3.1 Compositions, structures and properties	27
		2.3.2 Mechanical processing techniques	39
		2.3.3 Medical implant applications	41
	2.4	Current trends and challenges	44
	2.5	Failure in 316L stainless steel implant	55
	2.6	Occurrence of stress corrosion cracking	61
		2.6.1 Testing and evaluation methods	62
		2.6.2 Failure and its mechanisms	75
		2.6.3 SCC in 316L grade for industrial applications	80

PAGE

		2.6.4 SCC in 316L grade for implant application	90
	2.7	Summary	98
3.	ME	THODOLOGY	101
	3.1	Research strategies	101
	3.2	Material used for the research study	105
	3.3	Sample preparation	106
		3.3.1 Primary machining process	107
		3.3.2 Secondary machining process	107
		3.3.3 Fabrication of bending jig	109
	3.4	Mechanical processes	111
		3.4.1 Rolling process	112
		3.4.2 Bending process	119
	3.5	Mechanical tests	127
		3.5.1 Tensile test	127
		3.5.2 Bending test	132
	2.6	3.5.3 Hardness tests	134
	3.6	Metallurgical tests	138
		3.6.1 Phase analysis	141
		3.6.2 Morphological study	141
	27	Corresion tests	142
	5.7	3.7.1 General corresion test	143
		3.7.2 Electrochemical corrosion test	144
	38	Material characterizations	140
	5.0	3.8.1 Flemental analysis	149
		3.8.2 Morphology of SCC	149
	3.9	Summary	150
4.	RES	SULT AND DISCUSSION	151
	41	Processing properties of 316L stainless steel	151
		4 1 1 Parameter changes after rolling	152
		4.1.2 Plastic strain after rolling	155
		4.1.3 Curvature changes and springback after bending	157
	4.2	Mechanical properties of cold worked steel	162
		4.2.1 Tensile properties	162
		4.2.2 Bending properties	169
		4.2.3 Hardness properties	172
	4.3	Structural modification after mechanical processes	181
		4.3.1 Microstructure evolution	181
		4.3.2 Morphology of tensile fracture surface	187
		4.3.3 Morphology of U-bend surface	195
	4.4	Corrosion behaviors of cold worked steel	199
		4.4.1 Corrosion resistances	200
		4.4.2 Composition of corrosion products	207
	4.5	Morphology of failed cold worked steel	225

		4.5.1 Uniform corrosion	225
		4.5.2 Pitting corrosion	227
		4.5.3 Stress corrosion cracking failure	229
	4.6	Summary	233
5.	CO]	NCLUSION AND RECOMMENDATIONS	235
	5.1	Conclusion	235
	5.2	Recommendations for future works	237
REFERENCES		240	
APPENDICES		271	

LIST OF TABLES

8 17 20
17 20
20
20
21
24
26
28
30
38
42

2.10	Several types of 316L SS temporary plate implants and	43
	specific dimensions	
2.11	Common techniques of surface treatments for 316L SS	47
	as metal implant	
2.12	Electrochemical measurements of uncoated and coated	50
	316L SS in SBF solution (Nagarajan and Rajendran, 2009)	
2.13	Breakdown potential of passive layer and corrosion	54
	current density of 316L SS plates (Azar et al., 2010)	
2.14	Typical ionic concentrations of human blood plasma	56
	(Oyane et al., 2003)	
2.15	The pH of the various SBF solutions at 37 °C	57
2.16	Standards of corrosion testing for research in medical	63
	application	
2.17	The parameters and electrochemical behaviors during	68
	electrochemical tests for 316L SS in different SBF	
	environments	
2.18	Standards of SCC testing for research in industrial	72
	applications	
2.19	Proposed SCC mechanisms (Sedricks and Syrett, 1990)	76
2.20	SCC mechanisms at the crack propagation stage	79
	(Prawoto et al., 2011)	
2.21	Several industrial applications of 316L SS and its	81
	operating environment	
2.22	Typical SCC failure in 316L SS for industrial applications	82
2.23	Evidence of SCC in 316L SS implant from clinical and	91
	laboratory test	
3.1	Chemical composition of the 316L SS as the research	106
	material	
3.2	Measurement of the curvatures before unbending for	124
	the U-bend specimen	

viii

3.3	Specific dimension of the tensile dog-bone specimen	128
3.4	Specification of the Rockwell hardness test	136
4.1	Rolling parameters for the cold-rolled 316L SS	154
4.2	The dimensional changes and equivalent plastic strain of	156
	the 316L SS after undergoing the rolling process	
4.3	Bend curvatures and springback parameters of U-bend	161
	316L SS after undergoing the bending process; after and	
	before unbending	
4.4	Tabulated mass losses and corrosion rate of cold-rolled	201
	316L SS in PBS solution for seven days	
4.5	Corrosion potential, corrosion current density and	206
	breakdown potential of cold worked 316L SS in PBS	
	solution at 37 °C and pH 7.31 obtained from	
	potentiodynamics polarization curves	
4.6	Composition and ratio between Fe, P and O obtained	209
	from EDS mapping of cold-rolled and U-bend 316L SS	
4.7	Quantitative analysis of element present on the cold-rolled	212
	316L SS	
4.8	Quantitative analysis of elements present on the U-bend	216
	316L SS at pitting corrosion	
4.9	Quantitative analysis of elements obtained from the EDS	218
	spectrum of U-bend 316L SS with 10% reduction in	
	thickness at different local sites	
4.10	Quantitative analysis of elements obtained from the EDS	220
	spectrum of U-bend 316L SS with 10% reduction in	
	thickness at transversal crack (Area #1)	
4.11	Quantitative analysis of elements obtained from the EDS	222
	spectrum of U-bend 316L SS with 10% reduction in	
	thickness at transversal crack (Area #2)	
4.12	Quantitative analysis of elements obtained from the EDS	224
	spectrum of U-bend 316L SS with 10% reduction in	
	thickness at transversal crack (Area #3)	

LIST OF FIGURES

TITLE

PAGE

FIGURE

1.1	Example of fixation plates; (a) bridging plate,	2
	(b) buttress plate and (c) a combination of a bent,	
	twisted-plate and two lag screws (Muller, 1995)	
1.2	Three main factors causing the SCC (Jayaraman	3
	and Prevey, 2005)	
1.3	Morphology of SCC failure (Lou et al., 2017)	5
2.1	Microstructure of the 316L SS in (a) solution annealed	32
	and (b) heavily cold-rolled (Ravi Kumar et al., 2011)	
2.2	Microstructure of the cold-rolled 316L SS	33
	(Xue et al., 2007)	
2.3	TEM micrograph of cold-rolled 316L SS (a) fine	33
	twins, (b) intersected twins and (c) microbands cut	
	through the twins structure (Xue et al., 2007)	
2.4	SEM micrograph of 316L SS in (a) as-received and	34
	(b) cold-rolled condition (Silva et al., 2011)	
2.5	XRD patterns of cold-rolled 316L SS at (10%, (b) 50%	35
	and (c) 80% reduction in thickness (Bakhtiari and	
	Berenjani, 2015)	
2.6	XRD patterns of 316L SS wire in (a) as-received and	36
	(b) severe reduction in thickness (Wang et al., 2005)	
2.7	XRD pattern of 316L SS obtained by selective laser	37

	melting (SLM), hot pressing (HP) and conventional	
	casting (CS) (Bartolomeu et al., 2017)	
2.8	Potentiodynamics polarization curves of uncoated	49
	and coated 316L SS in DMEM compared to SBF	
	media (Al-Rashidy et al., 2017)	
2.9	XRD pattern of original 316L, 316L SS coated with	51
	zirconium and zirconium oxide (Li et al., 2017)	
2.10	(a) Fractured femoral compression plate and (b) SEM	58
	micrograph showing fatigue striations related with	
	secondary cracking (Azevedo and Hippert Jr., 2002)	
2.11	Failure of 316L SS nail implant showing (a) ductile	59
	fracture and (b) non-metallic inclusions (Sudhakar, 2005)	
2.12	SEM fractograph of 316L SS condylar blade showing	59
	(a) fracture surface and (b) striations formation	
	(Naghdi et al., 2007)	
2.13	SEM micrograph showing the fatigue failure on 316L SS	60
	supercondylar blade plate (Guerra-Fuentes et al., 2015)	
2.14	Open circuit potential for 316L and 316LVM SS in	65
	(a) Ringer's and (b) Hank's solution for 30 minutes	
	(Sinha et al., 2012)	
2.15	Open circuit potential for 316L SS and Ti-6Al-4V	65
	in (a) Ringer's and (b) PBS solution after 14 days	
	(El-Taib Heakal et al., 2014)	
2.16	A schematic cyclic polarization curve (Peter et al., 2002)	67
2.17	Potentiodynamics polarization curves of 316L SS in	69
	PBS solution at different immersion times	
	(Fadl-allah et al., 2011)	
2.18	Cyclic polarization curves of the ISO 5832-1 austenitic	71
	SS with 0 to 70% cold deformation (Ramirez et al., 2013)	
2.19	Optical morphology of SCC propagation in cold worked	83
	316L SS (Du et al., 2016)	
2.20	SCC of the 316L SS in (a) single U-bend specimen exposed	85
	for one month at 93 °C, (b) double U-bend specimen (inner	

	sheet) exposed for one month at 176 °C and (c) cracks on	
	the outer surface (Caseres and Mintz, 2010)	
2.21	Optical micrograph of 316L SS for (a) single, (b) welded	86
	and (c) cleaned welded U-bend specimens with exposure	
	time of 32 weeks at 43 °C (Caseres and Mintz, 2010)	
2.22	SCC morphology of (a) 10% cold-rolled, (b) its enlarge	87
	picture and (c) 20% cold-rolled 316L SS after CBB test	
	at 288 °C containing dissolved oxygen (Ishiyama et al., 2005)	
2.23	Distribution of micro Vickers hardness with the distance	88
	from the surface of the cross sectional region of 10% cold-	
	rolled 316L and 316 SS (Ishiyama et al., 2005)	
2.24	SEM micrographs showing (a) crack initiation at the outer	89
	surface of 316L SS bellows and (b) magnified view	
	showing branching cracks (Panda et al., 2014)	
2.25	SCC morphology of 316L SS specimens after boiling	92
	$MgCl_2$ test showing the cracks (a) transgranular and small	
	pits and (c) propagate under intergranular mode (Thomas	
	and Robinson, 1976)	
2.26	SCC morphology of 316L SS specimen after modified	93
	MgCl ₂ test showing the cracks might have started at small	
	pit (Thomas and Robinson, 1976)	
2.27	Evidence of SCC on 316L SS implant from the fracture	94
	surface showing optical micrograph of a crack tip and SEM	
	micrograph of the crack initiation and propagation region	
	(Bombara and Cavallini, 1977)	
2.28	The fracture surface of the Harrington distraction rod	95
	showing the SCC (Prikryl et al., 1989)	
2.29	SEM micrograph showing the SCC on the vertebral	95
	316L SS implant (Aksakal et al., 2004)	
2.30	SEM micrograph showing SCC at the twisted area of	97
	316L SS sternal wire (Shih et al., 2005)	
2.31	SEM micrograph showing (a) SCC on a cross-section	97
	316L SS sternal wire and (b) initiation stage at corrosion	

pits (Shih et al., 2005)

3.1	Main methodology diagram	102
3.2	Flow chart of the present research for experimeantal work	103
3.3	Schematic of cold-rolled 316L SS sheets used for sample	108
	preparation in (a) metallurgical, hardness and corrosion tests,	
	(b) bending test and (c) tensile test (all dimension in mm)	
3.4	Drawing of the bending jig	110
3.5	Actual bending jig at the normal, top and side position	110
3.6	Rolling machine and the insertion of the test piece	112
3.7	The set-up of the rolling machine in measuring the	114
	(a) displacement per pass and (b) rolling speed	
3.8	Schematic illustration of the measurement rolling	116
	passing time	
3.9	Symbol used for the measurement of the rolling load	116
	(Dieter, 1988)	
3.10	Measurement of the deformed length of cold-rolled	118
	specimens	
3.11	The U-bend specimens after (a) secondary machining,	120
	(b) unbending and (c) re-bending	
3.12	Schematic illustration of bending process at; (a) before	122
	unbending, (b) after unbending and (c) re-bending for	
	determination of the bend curvatures and springback	
3.13	Profile projector including its main components	123
3.14	Sequence of the measurement of (a) bend angle using	125
	angle method and (b) bend radius using circle method	
	for the U-bend specimen after unbending	
3.15	Experimental set up for the tensile test	129
3.16	Measurement of the strain hardening exponent	132
3.17	Sequence of bending test at (a) initial insertion setup,	133
	(b) apply the bending load, (c) release of the load and	
	(d) specimen's removal from the jig	
3.18	Preparation of hardness specimens using linear precision	134
	cut for (a) cutting area; (b) cutting process of cold-rolled	

	sample, (c) cutting area; and (d) cutting process of U-bend sample	
3.19	(a) The Rockwell hardness machine, (b) the position of	137
	the cold-rolled specimen and (c) the position of the	
	U-bend specimen	
3.20	Grinding and polishing process during the metallographic preparation techniques	140
3.21	Scanning electron microscope used for the microstructure and morphology analysis	142
3.22	The corrosion wheel oven test (a) with 24 slot of the sample holder and temperature controller, (b) bottles containing corrosive fluid and (c) corroded specimens	145
3.23	The actual and schematic images of the working electrode for (a) cold-rolled and (b) U-bend specimen	146
3.24	The electrochemical test showing (a) experimental set-up, (b) cold-rolled and (c) U-bend specimen in PBS solution at 37 °C	148
4.1	The 316L SS specimens in (a) accepted and (b) rejected condition after the rolling process	152
4.2	The resulted deflections, in lateral and longitudinal direction for (a) a set of U-bend 316L SS and the steel with (b) 0%, (c) 10% (d) 30% and (d) 50% reduction in thickness	158
4.3	 (a) Tensile stress-strain curves of as-received and cold-rolled 316L SS; and the calculated modulus of elasticity using linear fitting technique for the steel with (b) 0% and (b) 50% reduction in thickness 	163
4.4	Tensile properties of cold-rolled 316L SS with 0%, 10%, 30% and 50% reduction in thickness	165
4.5	Log ₁₀ true stress-strain curves of cold-rolled 316L SS with 0% , 10%, 30% and 50% reduction in thickness	167
4.6	Fracture strength and time to failure of cold-rolled 316L SS with 0%, 10%, 30% and 50% reduction in thickness	168
4.7	Bending stress-strain curves of U-bend 316L SS with	170

	0 %, 10 %, 30 % and 50 % reduction in thickness	
4.8	Bending properties of U-bend 316L SS with 0%, 10%,	171
	30% and 50% reduction in thickness	
4.9	Rockwell hardness number for the cold-rolled and U-bend	173
	316L SS with 0%, 10%, 30% and 50% reduction in thickness	
4.10	Microhardness values for the cold-rolled and U-bend	175
	316L SS with 0%, 10%, 30% and 50% reduction in	
	thickness	
4.11	Microhardness distributions at the cross-sectional area	177
	of cold-rolled 316L SS with 0%, 10%, 30% and 50%	
	reduction in thickness	
4.12	Microhardness distributions at the cross-sectional area	179
	of U-bend 316L SS with 0%, 10%, 30% and 50%	
	reduction in thickness	
4.13	XRD patterns of cold-rolled 316L SS with	183
	0%, 10%, 30% and 50% reduction in thickness	
4.14	SEM micrograph of 316L SS (a) in as-received state;	185
	and after (b) 10%, (c) 30% and (d) 50% reduction in	
	thickness	
4.15	The fractured steel after subjected to uniaxial tensile	188
	load with (a) 0%, (b) 10%, (c) 30% and 50%	
	reduction in thickness	
4.16	Deformation at fracture, in length and width for	188
	the 316L SS with 0%, 10%, 30% and 50%	
	reduction in thickness	
4.17	SEM fractographs at side view showing the tensile	190
	fractured surface of 316L SS with (a) 0%, (b) 10%,	
	(c) 30% and (d) 50% reduction in thickness	
4.18	SEM fractographs at normal view showing the tensile	192
	fracture surface of 316L SS with (a) 0%, (b) 10%,	
	(c) 30% and (d) 50% reduction in thickness	
4.19	SEM morphology of fracture surfaces and corresponding	193
	dimple structures for the 316L SS with (a) 0%, (b) 10%,	

	(c) 30% and 50% reduction in thickness	
4.20	SEM morphology at the concave surface of U-bend	196
	316L SS with (a) 0%, (b) 10%, (c) 30% and (d) 50%	
	reduction in thickness	
4.21	Open circuit potential for cold-rolled 316L SS in PBS	202
	solution at 37 °C	
4.22	Open circuit potential for U-bend 316L SS in PBS	202
	solution at 37 °C	
4.23	Potentiodynamics polarization curves for cold-rolled	203
	316L SS with (a) 0%, (b) 10%, (c) 30% and (d) 50%	
	reduction in thickness in PBS solution at 37 °C	
4.24	Potentiodynamics polarization curves for U-bend	204
	316L SS with (a) 0%, (b) 10%, (c) 30% and (d) 50%	
	reduction in thickness in PBS solution at 37 °C	
4.25	XRD patterns of cold-rolled 316L SS with different	207
	reduction in thickness showing the composition of	
	iron phosphate	
4.26	EDS mapping analysis of cold-rolled 316L SS with	209
	10% reduction in thickness	
4.27	EDS mapping analysis of U-bend 316L SS with 30%	210
	reduction in thickness	
4.28	SEM-EDS spectrum of cold-rolled 316L SS with	211
	(a) 10%, (b) 30% and (c) 50% reduction in thickness	
	after performing electrochemical test in PBS solution	
4.29	SEM-EDS spectrum of U-bend 316L SS with (a) 0%,	214
	(b) 30% and (c) 50% reduction in thickness at	
	pitting corrosion	
4.30	SEM-EDS spectrum of U-bend 316L SS with 10%	215
	reduction in thickness at pitting corrosion	
4.31	SEM-EDS spectrum of U-bend 316L SS with 10%	217
	reduction in thickness at (a) Local site #1, (b) Local	
	site #2 and (c) Local site #3	
4.32	SEM-EDS spectrum of U-bend 316L SS with 10%	220

	reduction in thickness at transversal crack (Area #1)	
4.33	SEM-EDS spectrum of U-bend 316L SS with 10%	222
	reduction in thickness at transversal crack (Area #2)	
4.34	SEM-EDS spectrum of U-bend 316L SS with 10%	223
	reduction in thickness at transversal cracks (Area #3)	
4.35	(a) Actual corroded 316L SS; and SEM morphology of	226
	uniform corrosion indicating the formation of white rust	
	at (b) entire surface and (c) grain boundaries	
4.36	Occurrence of pitting corrosion on the U-bend 316L SS	228
	with (a) 0%, 10%, (c) 30% and 50% reduction in	
	thickness	
4.37	Occurrence of SCC on the top concave surface of U-bend	230
	316L SS with 10% reduction in thickness showing the	
	(a) failure (dark area), (b) intergranular mode of cracking	
	(c) involvement of corrosion product	
4.38	Occurence of SCC on the side surface of U-bend 316L	231
	SS with 10% reduction in thickness showing the (a) overall,	
	(b) rolled marks and (c) enlarge picture	

xvii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Catalogue of the implant manufacturer	271
В	Simulated body fluids and their chemical	272
	compositions	
С	Catalogue of 316L SS as the research material	273
D	Result of optical emission spectroscopy test	274
E	Engineering drawings of the bending jig	275
F	Measurement of rolling parameters	277
G	Measurements of deformed dimension and	279
	equivalent plastic strain	
Н	Measurements of bend curvatures and	281
	springback parameters	
Ι	Tensile properties of cold-rolled 316L SS	283
J	Strain hardening exponent of cold-rolled	284
	316L SS	
Κ	Bending properties of U-bend 316L SS	286
L	Hardness and distribution of microhardness	287
М	Deformation after break of tensile specimens	291
Ν	Optical micrograph of etched 316L SS	292
0	Morphology of U-bend 316L SS (top	293
	concave surface)	

xviii

Р	Measurements of mass losses for general	295
	corrosion test	
Q	XRD patterns of cold-rolled 316L SS showing	296
	the presence of iron phosphate	
R	EDS mapping of cold-rolled 316L SS showing	298
	the composition of iron phosphate	
S	EDS mapping of U-bend 316L SS showing	303
	the composition of iron phosphate	