

Faculty of Manufacturing Engineering

WEAR PERFORMANCE OF ALUMINA BASED CUTTING TOOL WHEN MACHINED WITH AISI 1045 CARBON STEEL

Nur Syahirah Binti Mazda @ Mazdarudin

Master of Manufacturing Engineering (Manufacturing System Engineering)

2018

C Universiti Teknikal Malaysia Melaka

WEAR PERFORMANCE OF ALUMINA BASED CUTTING TOOL WHEN MACHINED WITH AISI 1045 CARBON STEEL

NUR SYAHIRAH BINTI MAZDA @ MAZDARUDIN

A thesis submitted in fulfillment of the requirements for the degree of Master of Manufacturing Engineering (Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this dissertation/project entitled "Wear Performance of Alumina Based Cutting Tool when Machined with AISI 1045 Carbon Steel" is the result of my own research except cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Manufacturing Engineering (Manufacturing System Engineering).

Signature

Supervisor Name

the second secon POT IR DR. MOHD HADZLEY BIN ABU BAKAK . 7/6/2018

Date

DEDICATION

This work is dedicated to my beloved parents who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve,

Mr. Mazda @ Mazdarudin bin Md. Isa & Mdm. Zoraida binti Muhamad,

other family members,

and

wonderful coursemates whom I shall forever remembered and grateful for your presence and support.

ABSTRACT

Latest developments in the manufacturing industry aim to produce high quality products with reduced time and cost. Automated and flexible manufacturing systems such as the computerized numerical control (CNC) machines are employed due to the capable of minimizing the processing time while achieving high accuracy. Machining essentially will produce high cutting temperature that reduce tool life. Tool wear is a paramount factor in determining tool life. It affects surface quality and precision of dimensions of the workpiece. Therefore, ceramic cutting tools are widely used for machining hard materials such as cast irons, alloy steels and carbon steels. These materials are so hard that they possess wide range of hardness and high temperature resistance due to high hot hardness and very good chemical stability (Whitney, 1994). Alumina cutting tool is commonly used for machining hard materials in high speed. It is also suitable for dry machining for its uniqueness in mechanical and chemical properties, especially at high temperature, such as high wear resistance, relatively low chemical reactivity with steels, high hot hardness, chemical inertness and high abrasion resistance (Deng et al., 2012). However, it is still expected that there will be temperature rise that may result to molten metal to cause material deformation. Another type of alumina cutting tool; alumina with zirconia reinforcement is said to offer an improved properties from the alumina based. The two types of ceramic cutting tool are fabricated and machined using AISI 1045 carbon steel to evaluate and compare the performance of tool wear and surface roughness of the workpiece. Results shows that both alumina and alumina-zirconia is capable to be fabricated as cutting tools and solidly represent the round shape of cutting tool with adequate hardness. Cutting tool fabricated with alumina and zirconia powder exhibited better wear performance as compared to the cutting tool with alumina only. The alumina-zirconia based cutting tool recorded a maximum of 200s tool life as compared to 145s for alumina based cutting tool. Surface roughness when AISI 1045 is machined with both cutting tools exhibited almost similar characteristics. Maximum value is recorded at 3.16 µm when machining with alumina-zirconia cutting tool after 150s. Whereas, minimum surface roughness is recorded at 0.67 μ m with the same cutting tool type; the alumina-zirconia based which is at 150s cutting time. Wear development of cutting tool demonstrated uniform wear land at the early stage of machining before gradually notching at the specific region of wear before attachment of built up edge along cutting edges. For alumina based tool, the wear mechanism is dominated by the obvious formation of built up edge and adhesive wear. Whereas for alumina-zirconia based cutting tool, wear mechanism is dominated by the minor formation of built up edge and small particles detachment at the cutting edge.

ABSTRAK

Perkembangan terkini dalam industri perkilangan bertujuan untuk menghasilkan produk berkualiti tinggi dengan mengurangkan masa dan kos. Sistem perkilangan automatik dan fleksibel seperti mesin kawalan berangka berkomputer (CNC) digunakan kerana mampu meminimumkan masa pemprosesan selain ketepatannya yang tinggi. Pemesinan pada dasarnya akan menghasilkan suhu pemotongan tinggi yang mengurangkan hayat alat. Haus alat adalah faktor utama dalam menentukan hayat alat. Ia memberi kesan kepada kualiti permukaan dan ketepatan dimensi bahan kerja. Oleh itu, alat pemotong seramik digunakan secara meluas untuk pemesinan bahan keras seperti besi tuang, keluli aloi dan keluli karbon. Bahan-bahan ini sangat sukar sehingga mereka mempunyai pelbagai kekerasan dan rintangan suhu tinggi kerana kekerasan panas yang tinggi dan kestabilan kimia yang sangat baik (Whitney, 1994). Alat pemotong alumina biasanya digunakan untuk pemesinan bahan keras dalam kelajuan tinggi. Ia juga sesuai untuk pemesinan kering untuk keunikannya dalam sifat mekanikal dan kimia, terutamanya pada suhu tinggi, seperti rintangan haus yang tinggi, kereaktifan kimia vang rendah dengan keluli, kekerasan panas vang tinggi, ketaksempurnaan kimia dan rintangan lelasan yang tinggi (Deng et al., 2012). Walau bagaimanapun, dijangkakan bahawa kenaikan suhu akan mengakibatkan logam cair menyebabkan penyimpangan bahan. Satu lagi jenis alat memotong alumina; alumina dengan penambahan zirkonia dikatakan menawarkan sifat yang lebih baik dari alumina. Kedua-dua jenis alat pemotong seramik dibuat dan dimesin menggunakan keluli karbon AISI 1045 untuk menilai dan membandingkan prestasi alat dan kekasaran permukaan bahan kerja. Keputusan menunjukkan bahawa kedua-dua bahan ini mampu direka sebagai alat pemotong dan jelas mewakili bentuk bulat alat pemotong dengan kekerasan yang mencukupi. Alat pemotongan yang dibuat dengan serbuk alumina dan zirkonia mempamerkan prestasi haus yang lebih baik berbanding alat pemotong dengan alumina sahaja. Alat memotong alumina-zirconia mencatatkan maksimum 200s havat alat berbanding 145s untuk alat pemotong berasaskan alumina. Kekasaran permukaan apabila AISI 1045 dipotong dengan kedua-dua alat pemotong menunjukkan ciri-ciri yang hampir sama. Nilai maksimum dicatatkan pada 3.16 µm apabila pemesinan dengan alat pemotong alumina-zirconia pada 150s. Manakala kekasaran permukaan minimum direkodkan pada 0.67 µm dengan jenis alat pemotong yang sama; dengan masa pemotongan 150s. Haus pembangunan alat pemotong menunjukkan tanah haus seragam pada peringkat awal pemesinan sebelum beranjak secara beransur-ansur di rantau tertentu haus sebelum lampiran tepi dibina di sepanjang sisi pemotong. Untuk alat berasaskan alumina, mekanisme haus dikuasai oleh pembentukan jelas kelebihan binaan dan pelekat. Sedangkan untuk alat pemotong berasaskan alumina-zirconia, mekanisme haus dikuasai oleh pembentukan kecil tepi terbina dan pengurangan zarah kecil di sudut.

ii

ACKNOWLEDGEMENTS

In the name of ALLAH, The Most Gracious and The Most Merciful. Alhamdulillah, praise to ALLAH S.W.T that with His blessings had given me strength and perseverance to complete this work successfully.

I would like to express my deepest gratitude to my supervisor, Prof. Madya Ir. Dr. Mohd Hadzley bin Abu Bakar from the Faculty of Manufacturing Engineering Universiti Teknologi Malaysia Melaka (UTeM) for his full supervision, expert guidance, patience and encouragement in guiding me throughout the work. His understanding and kindness shall forever be appreciated and remembered.

Furthermore, I would like to express my gratitude to my parents and family, and also my course mate Lorita Lawi Anak Balai for helping me through this academic exploration. Thank you also to my other friends who have been amazing in supporting me to do my best in this project.

TABLE OF CONTENTS

DECLARATION

DED	ICA'	ΓΙΟΝ		
ABS	TRA	СТ		i
ABS	TRA	K		ii
ACK	KNOV	VLEDG	EMENTS	iii
TAB	LE C	DF CON	TENTS	v
LIST	Г О F	TABLE	S	ix
LIST	OF	FIGUR	ES	xi
LIST	Г О F	APPEN	DICES	xii
LIST	r of	ABBRE	EVIATIONS, SYMBOLS AND NOMENCLATURE	XV
CHA	PTE	R		
1.	INT	RODU		1
	1.1	Backg	round of Study	1
	1.2	Proble	m Statement	3
	1.3	Object	ives	4
	1.4	Scope	of Study	4
	1.4	Organi	isation of Report	5
2.	LIT	ERATU	JRE REVIEW	6
	2.1	Machi	ning	6
	2.2	Turnin	g	7
		2.2.1	Turning Operations	8
	2.3	Cutting	g Parameters in Turning Operations	10
		2.3.1	Material Removal Rate	11
		2.3.2	Feed Rate	12
		2.3.3	Cutting Speed	12
		2.3.4	Depth of Cut	13
		2.3.5	Spindle Speed	13
		2.3.6	Effect of Cutting Parameters on Tool Wear	13
	2.4	Design	n of Cutting Tool	14
		2.4.1	Tool Geometry	15
		2.4.2	Insert Shape and Size	16
	2.5	Cutting	g Tool	17
		2.5.1	Ceramic Cutting Tool	17
		2.5.2	Alumina	18
		2.5.3	Zirconia	19
		2.5.4	Effect of Addition of Zirconia (ZrO ₂) to Alumina (Al ₂ O ₃) Structure	21
		2.5.5	Alumina Cutting Tool	22
	2.6		ation of Cutting Tool	22
		2.6.1	Solid State Process	22
		2.6.2	Compaction Method	23
		2.6.3	Slurry Casting	24
	2.7	Steel		25

		2.7.1	AISI 104	45 Medium Carbon Steel	25
	2.8	Wear			26
		2.8.1	Types of	f Tool Wear	27
		2.8.2	Tool We	ear Mechanisms	28
	2.9	Surfac	e Integrity	<i>I</i>	30
		2.9.1	Surface	Roughness	30
		2.9.2	Surface	Profile	31
	2.10	Previo	us Study		32
3.	ME	ГНОДО	OLOGY		35
	3.1	Projec	t Flowcha	rt	35
	3.2	Fabric		lumina Cutting Tools	37
		3.2.1	-	ion of Alumina Powder	37
		3.2.2		paction Process	38
		3.2.3	Compac	tion by Cold Isostatic Press	38
		3.2.4	Sintering	g Process	39
	3.3	Materi	al Selection	on	40
		3.3.1		of Workpiece	41
	3.4	Machi	ning Equi	pment	41
		3.4.1	CNC La	the Machine	42
	3.5	Experi	ment Prep	paration	43
				iental Set-up	43
		3.5.2	Process	Parameters	43
		3.5.3	Turning	Operation	44
	3.6	Data A	nalysis		44
		3.6.1	Stereo N	licroscope	44
		3.6.2	Surface	Roughness Tester	45
4.	RES	SULT A	ND DISC	CUSSION	47
	4.1	Introdu	uction		47
	4.2	Result	Analysis		48
		4.2.1	-	s of Flank Wear for Alumina (Al ₂ O ₃) Cutting Tool Analysis of Flank Wear for Alumina (Al ₂ O ₃)	48
			4 2 1 2	Cutting Tool at Different Cutting Speed	49
			4.2.1.2	Analysis of Flank Wear for Alumina (Al ₂ O ₃) Cutting Tool at Different Feed Rate	52
		4.2.2	Analysis	s of Flank Wear for Alumina-Zirconia (Al ₂ O ₃ -ZrO ₂)	
			Cutting		54
			4.2.2.1	Analysis of Flank Wear for Alumina-Zirconia	
			1.2.2.1	$(Al_2O_3.ZrO_2)$ Cutting Tool at Different Cutting Speed	54
			4.2.2.2	Analysis of Flank Wear for Alumina-Zirconia	01
				$(Al_2O_3-ZrO_2)$ Cutting Tool at Different Feed Rate	56
		4.2.3	Analysis	s on Comparison of Flank Wear for Alumina (Al_2O_3)	
			-	mina-Zirconia (Al2O3-ZrO ₂) Cutting Tools	58
		4.2.4		s of Surface Roughness for Alumina (Al_2O_3)	20
			Cutting	e	64
			4.2.4.1	Analysis of Surface Roughness for Alumina (Al_2O_3)	
				Cutting Tool at Different Cutting speed	65
			4.2.4.2	Analysis of Surface Roughness for Alumina (Al ₂ O ₃)	

				Cutting Tool at Different Feed Rate	67
		4.2.5	Analysis	s of Surface Roughness for Alumina-Zirconia	
			$(Al_2O_3-Z_3)$	ZrO ₂) Cutting Tool	70
			4.2.5.1	Analysis of Surface Roughness for Alumina-Zirconia	
				$(Al_2O_3$ -ZrO ₂) Cutting Tool at Different Cutting speed	70
			4.2.5.2	Analysis of Surface Roughness for Alumina-Zirconia	
				(Al ₂ O ₃ -ZrO ₂) Cutting Tool at Different Feed Rate	72
		4.2.6	Analysis	on Comparison of Surface Roughness for Alumina	
			(Al_2O_3)	and Alumina-Zirconia (Al ₂ O ₃ -ZrO ₂) Cutting Tool	75
		4.2.7	Flank W	ear Images of Stereo Microscope	81
5.	CO	NCLUS	ION ANI	O RECOMMENDATIONS	86
	5.1	Conclu	usion		86
	5.2	Recon	nmendatio	ns	87
REF	ERE	NCES			88
APP	END	ICES			93

LIST OF TABLES

TAB	LE
-----	----

TITLE

PAGE

2.1	Properties of alumina	19
2.2	Properties of zirconia	20
2.3	AISI 1045 chemical composition	26
2.4	AISI 1045 mechanical composition	26
3.1	Properties of AISI 1045	41
3.2	Specifications of CNC lathe machine DMG Mori Seiki	
	CTX 310 Ecoline	42
3.3	Cutting parameters and their values	43
3.4	Specification of stereo microscope	45
3.5	General specifications of surface roughness tester	46
4.1	Flank wear rate of alumina cutting tool	49
4.2	Flank wear at cutting speed 200 m/min	49
4.3	Flank wear at cutting speed 250 m/min	51
4.4	Flank wear with feed rate 0.1 mm/rev	52
4.5	Flank wear with feed rate at 0.125 mm/rev	53
4.6	Flank wear rate of alumina-zirconia cutting tool	54
4.7	Flank wear at speed 200 m/min	54
4.8	Flank wear at speed 250 m/min	55
4.9	Flank wear with feed rate at 0.1 mm/rev	56
4.10	Flank wear with feed rate at 0.125 mm/rev	57
4.11	Comparison of Flank Wear for Alumina and Alumina-Zirconia	
	Cutting Tools with cutting speed at 200 m/min	58
4.12	Comparison of Flank Wear for Alumina and Alumina-Zirconia	
	Cutting Tools with cutting speed at 250 m/min	60
4.13	Comparison of Flank Wear for Alumina and Alumina-Zirconia	
	Cutting Tools with feed rate at 0.1 mm/rev	61

vii

C Universiti Teknikal Malaysia Melaka

Comparison of Flank Wear for Alumina and Alumina-Zirconia	
Cutting Tools with feed rate at 0.125 mm/rev	63
Surface roughness for each cutting tool at different cutting speed	
and feed rate	65
Surface roughness with cutting speed at 200 m/min	65
Surface roughness for cutting speed at 250 m/min	66
Surface roughness with feed rate at 0.1 mm/rev	67
Surface roughness with feed rate at 0.125 mm/rev	69
Surface roughness for each cutting tool at different cutting speed	
and feed rate	70
Surface roughness with cutting speed at 200 m/min	70
Surface roughness for cutting speed at 250 m/min	72
Surface roughness with feed rate at 0.1 mm/rev	73
Surface roughness with feed rate at 0.125 mm/rev	74
Comparison of Surface Roughness for Alumina and	
Alumina-Zirconia Cutting Tools with cutting speed at 200 m/min	75
Comparison of Surface Roughness for Alumina and	
Alumina-Zirconia Cutting Tools with cutting speed at 250 m/min	76
Comparison of Surface Roughness for Alumina and	
Alumina-Zirconia Cutting Tools with feed rate at 0.1 mm/rev	78
Comparison of Surface Roughness for Alumina and	
Alumina-Zirconia Cutting Tools with feed rate at 0.125 mm/rev	79
Flank wear on Al ₂ O ₃ cutting tool surface	82
Flank wear on Al ₂ O ₃ -ZrO ₂ cutting tool surface	83
	Cutting Tools with feed rate at 0.125 mm/rev Surface roughness for each cutting tool at different cutting speed and feed rate Surface roughness with cutting speed at 200 m/min Surface roughness for cutting speed at 250 m/min Surface roughness with feed rate at 0.1 mm/rev Surface roughness with feed rate at 0.125 mm/rev Surface roughness for each cutting tool at different cutting speed and feed rate Surface roughness with cutting speed at 200 m/min Surface roughness with cutting speed at 200 m/min Surface roughness for cutting speed at 200 m/min Surface roughness with feed rate at 0.125 mm/rev Surface roughness with feed rate at 0.1 mm/rev Surface roughness with feed rate at 0.125 mm/rev Comparison of Surface Roughness for Alumina and Alumina-Zirconia Cutting Tools with cutting speed at 250 m/min Comparison of Surface Roughness for Alumina and Alumina-Zirconia Cutting Tools with cutting speed at 250 m/min Comparison of Surface Roughness for Alumina and Alumina-Zirconia Cutting Tools with cutting speed at 250 m/min Comparison of Surface Roughness for Alumina and Alumina-Zirconia Cutting Tools with feed rate at 0.1 mm/rev Flank wear on Al ₂ O ₃ cutting Tools with feed rate at 0.125 mm/rev

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	A shear plane model of cutting zone and chip formation	7
2.2	Cutting and feed motion during turning, 1- workpiece, 2- tool	8
2.3	Lathe operations	10
2.4	Turning cutting tool geometry	16
2.5	Relative edge strength and tendency for chipping and breaking	
	of inserts with various shapes	17
2.6	Alumina-based ceramics cutting tool	18
2.7	Molecular structure of alumina	18
2.8	Molecular structure of zirconia	
	(grey: zirconium ion, red: oxygen ion)	20
2.9	Types of zirconia structures (a) monoclinic (b) cubic (c) tetragonal	
	(red: zirconium's ion and blue: oxygen ion)	20
2.10	Alumina cutting tool	22
2.11	Process flow of slurry casting	24
2.12	Flank wear region of SiC whisker reinforced alumina ceramic	
	cutting tool	27
2.13	Notch wear in Ti[C,N] mixed alumina ceramic cutting tool	
	when machined with martensitic stainless steel	27
2.14	Wear types on cutting tools: (a) flank wear; (b) crater wear;	
	(c) notch wear; (d) nose radius wear; (e) comb (thermal) cracks;	
	(f) parallel (mechanical) cracks; (g) built-up edge;	
	(h) gross plastic deformation; (i) edge chipping or frittering;	
	(j) chip hammering; (k) gross fracture	28
2.15	Surface roughness coordinate	31

2.16	Surface damage during machining using a carbide cutting tool	32
3.1	Project flowchart	36
3.2	Spray dried alumina powder	38
3.3	A Cold Isostatic Press (CIP) machine	39
3.4	Sintering of green body	40
3.5	Fabricated alumina and alumina-zirconia inserts	40
3.6	AISI 1045 medium carbon steel	41
3.7	CNC lathe machine	42
3.8	Stereo microscope	44
3.9	Surface roughness tester	45
4.1	Flank Wear at cutting speed, 200 m/min	50
4.2	Flank wear at cutting speed, 250 m/min	51
4.3	Flank wear with feed rate 0.1 mm/rev	52
4.4	Flank wear with feed rate at 0.125 mm/rev	53
4.5	Flank wear at cutting speed 200 m/min	55
4.6	Flank wear at cutting speed 250 m/min	56
4.7	Flank wear with feed rate 0.1 mm/rev	57
4.8	Flank wear with feed rate 0.125 mm/rev	58
4.9	Graph on comparison of flank wear between alumina and	
	alumina-zirconia cutting tools at Vc = 200 m/min	59
4.10	Graph on comparison of flank wear between alumina and	
	alumina-zirconia cutting tools at Vc = 250 m/min	60
4.11	Graph on comparison of flank wear between alumina and	
	alumina-zirconia cutting tools at $F = 0.1 \text{ mm/rev}$	62
4.12	Graph on comparison of flank wear between alumina and	
	alumina-zirconia cutting tools at $F = 0.125 \text{ mm/rev}$	63
4.13	Surface roughness at cutting speed 200 m/min	65
4.14	Surface roughness for cutting speed at 250 m/min	66
4.15	Surface roughness with feed rate at 0.1 mm/rev	68
4.16	Surface roughness with feed rate at 0.125 mm/rev	69
4.17	Surface roughness with cutting speed at 200 m/min	71
4.18	Surface roughness with cutting speed at 250 m/min	72
4.19	Surface roughness with feed rate at 0.1 mm/rev	73
4.20	Surface roughness with feed rate at 0.125 mm/rev	74

4.21	Graph on comparison of surface roughness between alumina	
	and alumina-zirconia cutting tools at $Vc = 200 \text{ m/min}$	75
4.22	Graph on comparison of surface roughness between alumina	
	and alumina-zirconia cutting tools at $Vc = 250$ m/min	77
4.23	Graph on comparison of surface roughness between alumina	
	and alumina-zirconia cutting tools at $F = 0.1 \text{ mm/rev}$	78
4.24	Graph on comparison of surface roughness between alumina	
	and alumina-zirconia cutting tools at $F = 0.125 \text{ mm/rev}$	80
4.25	3.05 mm	82
4.26	1.59 mm	82
4.27	2.32 mm	82
4.28	1.98 mm	82
4.29	0.67 mm	83
4.30	3.11 mm	83
4.31	1.58 mm	83
4.32	3.16 mm	83

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Gantt Chart for Master Project 1	93
В	Gantt Chart for Master Project 2	94
С	Experimental Result for Alumina Cutting Tool	95
D	Experimental Result for Alumina-Zirconia Cutting Tool	96

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

Al_2O_3	-	Alumina
ZrO ₂	-	Zirconia
0	-	Degree
°C	-	Degree of Celsius
cm	-	Centimetre
g	-	Gram
m	-	Meter
mm	-	Millimetre
mol	-	Mole
Κ	-	Kelvin
HF	-	Hydrogen fluoride
$\mathrm{H}_2\mathrm{SO}_4$	-	Sulphuric acid
rev	-	Revolution
RPM	-	Revolutions per minute
D_{avg}	-	Average diameter of workpiece, mm
d	-	Depth of cut, mm
f	-	Feed rate, mm/rev
Ν	-	Rotational speed of workpiece, RPM
D_o	-	Initial diameter of workpiece, mm
D_f	-	Final diameter of workpiece, mm
d	-	Depth of cut, mm
f	-	Feed rate, mm/rev
V	-	Cutting speed, m/min
D	-	Diameter of workpiece, m
Ν	-	Rotational speed of workpiece, RPM
D_o	-	Initial diameter of workpiece, mm

xiii

D_f	-	Final diameter of workpiece, n	ım	
V	-	Cutting speed, m/min		
D	-	Diameter of workpiece		
М	-	Mega		
G	-	Giga		
Pa	-	Pascal		
psi	-	Pounds per square inch		
ksi	-	One thousand pounds per square inch		
BUE	-	Built up edge		
Ra	-	Surface roughness		
WC	-	Tungsten carbide		
Vc	-	Cutting speed		
F	-	Feed rate		
DoE	-	Design of experiment		
ANOVA	-	Analysis of Variance		
CNC	-	Computerised	Numerical	Control

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Tool wear is a paramount factor in determining tool life. It affects surface quality and precision of dimensions of the workpiece. Machining is the process of removing unwanted materials into a desired shape that serves with function. There are three major factors that contributed to efficiency of machining which are cutting tools, workpiece material and cutting parameters. The machining process strongly depends on the cutting tool to shear the workpiece and perform abrasive actions. If cutting edge fails, tool is obsolete and no longer can be used. Therefore, ceramic cutting tools are widely used for machining hard materials such as cast irons, alloy steels and carbon steel. These materials are so hard that they possess wide range of hardness and high temperature resistance due to high hot hardness and very good chemical stability (Whitney, 1994). The ceramic cutting tool has been extensively used to machine these materials due to their excellent properties to endure load in high speed and high temperature machining.

Latest developments in the manufacturing industry aim to produce high quality products with reduced time and cost. Automated and flexible manufacturing systems such as the computerized numerical control (CNC) machines are employed due to the capable of minimizing the processing time while achieving high accuracy. Turning process is one of the most used methods for cutting and finishing of machined parts (Gao et al., 2016).

Machining essentially will produce high cutting temperature, which not only reduces tool life, but also affect the product quality. High performance cutting tools that have high strength, high toughness and high hardness are required to machine these materials effectively and safely (Azuan, 2013; Khan *et al*, 2009). Machining using a cutting tool is done either in wet or dry condition. Wet machining has been a concern in terms of machining cost, health and effects on the environment.

So the study is focused on the performance of machining in dry condition to counter the issues occurred if cutting fluids are involved. Dry machining has been proved to offer better surface roughness due to softening caused by heat generation during machining the material (Azevedo, 2013). Despite those advantages, it may affect the life span of cutting tool. Amongst many ceramic cutting tools, alumina based materials are frequently used materials for dry cutting and high speed machining. The alumina based cutting tools have unique mechanical and chemical properties, especially at high temperature, such as high wear resistance, relatively low chemical reactivity with steels, high hot hardness, chemical inertness and high abrasion resistance. As promising as the cutting tool can be, alumina alone has its own flaws. The addition of zirconia to alumina structure is said can increase the density, flexural strength and fracture toughness of alumina, basically fabricating a more advanced cutting tool.

The study also includes the fabrication of alumina and alumina-zirconia cutting tools and experimental procedures to investigate the performance of both of the cutting tools and the material AISI 1045 carbon steel using various approach and equipment.

1.2 Problem Statement

There are many ceramic-based cutting tools used in the industry. Cemented carbide, cubic boron nitrite, silicon carbide and diamond are among the frequent and preferred cutting tools. This is due to their excellent performance in high speed and high temperature machining (Kalpakjian and Schmid, 2013). It goes back to the nature of ceramics that possess variety properties such as high hardness, high thermal shock resistance and high chemical stability. Composite ceramics cutting tools are developed in order to eliminate the use of coolant and hence promoting sustainable machining practice.

Alumina cutting tool is commonly used for machining hard materials in high speed. It is also suitable for dry machining for its uniqueness in mechanical and chemical properties, especially at high temperature, such as high wear resistance, relatively low chemical reactivity with steels, high hot hardness, chemical inertness and high abrasion resistance (Deng et al., 2012). However, it is still expected that there will be temperature rise that may result to molten metal to cause material deformation. Another type of alumina cutting tool; alumina with zirconia reinforcement is said to offer an improved properties from the alumina based.

Cutting parameters also affect wear performance of the cutting tool. Therefore, it is necessary to study the performance of both of the alumina cutting tools in dry condition. Both types of the cutting tools is fabricated to go through machining process. It is done to investigate their performance in terms of tool wear as well as effect to surface roughness of the workpiece used, thus comparison can be made within those aspects. Wear mechanisms occured from the machining can also be observed and understood better.

1.3 Objectives

The objectives of the study are:

- 1) To fabricate alumina and alumina-zirconia cutting tools.
- To evaluate the performance of alumina and alumina-zirconia cutting tools in terms of tool wear and surface roughness when machined with AISI 1045 carbon steel in dry condition.
- To compare the performance of alumina and alumina-zirconia cutting tools.
- To analyse the failure modes of alumina and alumina-zirconia cutting tools after machined with AISI 1045 carbon steel.

1.4 Scope of Study

The study involves a machining process that is conducted using a CNC lathe machine. The cutting tools, alumina and alumina-zirconia insert is fabricated. Then the alumina cutting tool is to be machined with AISI 1045 carbon steel by varying parameters such as cutting speed, feed rate while depth of cut is kept constant. There might be some uncontrollable factors that may influence the surface roughness. However, only these controllable parameters are considered and tested in this study as the uncontrollable factors such as vibration are unpredictable and require special tools such an accelerometer for vibration detection and measurement. The performance of the machining is evaluated in terms of flank wear and surface roughness values. A surface roughness tester is used to obtain the values. A microscope is used to observe the surface profile to study the failure modes of alumina cutting tool after machined with AISI 1045 carbon steel. The

carbon steel is analysed and evaluated. Further comparison between the cutting tools is presented in the study.

1.5 Organisation of Report

This master project report consists of several completed chapters. Chapter 1, Chapter 2 and Chapter 3 are completed during Master Project 1, meanwhile Chapter 4 and 5 are finalised during Master Project 2. In Chapter 1, introduction of the project such as background, objective and scope of study is discussed. Then, Chapter 2 discussed the literature review of the study such as introduction to machining, ceramics cutting tools, causes of tool wear and failure, surface roughness and so on. Chapter 3 deliberated the methodology of study which elaborate in details about the parameters selected and the procedures needed to carry out the experiment. Chapter 4 presented the results and discussion on analysis obtained through the experiment. Lastly, Chapter 5 concluded the findings of study and recommendations are also provided for future improvement.