
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S5, April 2019

686

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

Abstract— Compared with the traditional networks, the SDN

networks have shown great advantages in many aspects, but also

exist the problem of the load imbalance. If the load distribution

uneven in the SDN networks, it will greatly affect the

performance of network. Many SDN-based load balancing

strategies have been proposed to improve the performance of the

SDN networks. Therefore, in this paper a finding form

comprehensive review help to improve further understanding of

lead b balancing algorithms in SDN.

Index terms—Software Defined Networking; SDN; Load

Balancing.

I. INTRODUCTION

The expand of the global networks which has demand
new specification of requirements to integrate the
internetworking systems and networking for current and
future networks[1]. Nowadays, the huge information and big
data bang crucial challenge of implementing the networks,
which leads to find an intelligent [2], efficient and reliable
network.

 The current networks have different hardware
equipment such as switches, routers and load balancer which
quiet difficult to deal with them by traditional architecture
networks [3]. To overcome these challenges, the term of
Software Defined Network (SDN) is involved in the general
network systems [4].

The SDN system architecture primarily comprises 3
layers (illustrated in Fig.1). These include the application
layer, control layer and infrastructure layer (may also be
termed the data layer). The application and control layers
interact with one another via API, which is the northward
interface. The control and infrastructure layers interact via
the control data surface interface, which is located in the
southward interface[5].

Fig.1SDN architecture

Revised Manuscript Received on December 22, 2018.

Mustafa Hasan ,Center for Advanced Computing Technology,

Faculty of Information Communication Technology

UniversitiTeknikal Malaysia Melaka UTeM

Melaka, Malaysia

However, SDN controllers have a global view of the
network and can produce more optimized load balances[6].

In this paper we introduce and review the load balance
algorithms. Load balancing is a significant component of
current network infrastructure and computer systems where
resources are distributed over vast ranges of systems and
require sharing from a populous end user-base. Load

balancing seeks to utilize resources, obtain minimum
response time and reduce overloads as optimally as possible
by distributing the workload. Load balancing is also a basic
problem in many practical systems in daily life. The
supermarket model is a popular example, whereby a central
balancer or dispatcher is in charge of assigning queued
customers to a particular server in order to reduce the
response time [7]. These Load Balancing techniques are
widely observed in the data-center and enterprise network
settings in order to bolster scaled-up services. Early works
[8] are based on Round Robin Domain Name System (RR-
DNS) to allocate inbound connections towards a group of
servers. Other well-known load-balancing approaches are
based on Internet Protocol (IP) level according to flow tuple
[9], or according to the relative load on the different network
instances [10].

 Layers 4 and 7 employ further load-balancers. These
load balancers are employed for numerous other network
services, including acting as network proxy servers, whereby
the load balancer is builds on the proxy-server’s cache
content. The main aim of this utilization is to raise the cache
hit ratio instead of achieving an equally spread out server
load balance [11].

The construction of this paper contains three sections,
where the first section explained the evolution of load
balancing, while the second section discuss the types of the
load balancing, finally the review the algorithms of load
balancing has been discussed in the third part.

II. EVOLUTION OF LOADBALANCING

In this section, we discuss the background of load
balancing in the networks that is illustrated in Fig. 2.

Domain Name System (DNS) is employed to achieve the
first load balancing technology. In this step, a name is
configured for numerous IP addresses, so as to enable clients
who query the name to receive one of the addresses. This
allows various clients to have access to different servers and

Load Balancing Algorithms in Software

Defined Network

Mustafa Hasan Al Bowarab, Nurul Azma Zakaria, Z.Zainal Abidin

Load Balancing Algorithms in Software Defined Network

687

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

thus fulfill load balancing. DNS load balancing is a
fundamental tool to this aim, but may suffer from not being
able to differentiate between servers and is not able to reflect
the servers’ current running status [12].

Due to the restriction of the DNS load balance approach,
Hardware load balancer (HLD) was introduced by several
manufacturers in the mid-1990s [13]. Decoupling load
balance function from application enables the DNS to use
network layer techniques such as Network Address
Translation (NAT) [14] or Direct Server Return (DSR) [15]
to send inbound and outbound traffic to the servers. Such
techniques are used to process the requests and replies to the
client.

Atypically, Software Load Balancing (SLB) can be
implemented into Server Operating System (Server OS) such
as Windows Server 2016 [16] or Red Hat’s High
Availability Linux Server [17]. Most of the existing
solutions are focused on distributed network traffic
betweenclustered servers or server farms. SLB is flexible for
cloud visualization environment in which the servers have
individual OSs, or share an operating system. SLB in a
cluster environment that allows scaling of the
networkservices where additional servers can be added
dynamically to the cluster. SLB distributes the load between
servers, while a server cluster provides fault tolerance in the
system.

The proliferation of dynamic content led to the delivery
of dynamic services, content-rich applications that need to
understand the application-specific traffic. The traditional
load balancer could not cope with these growing
requirements. Therefore, HLB has evolved into Application
Delivery Controllers (ADCs) [18] over the past ten years.
Typically, in the data center, ADC is a device that sits

between the firewall and a web farm to provide several tasks
[11] One of these tasks is loading the traffic between web

servers. ADC can inspect packet headers and distribute the
traffic to a selected server based on this information.

Various load balancing algorithms and methods currently
exist. These include the round robin, fasted node selection,
weighted round robin, IP-based hashing and multi-tier round
robin methods. SDN is very flexible, enabling the
installation of company-defined software based on white-
box switch. It further allows the programming of current
equipment to fit the network requirements and decrease
costs related to deployment and management [19]. In the
context of data centers, the decision of customers to apply a
wide variety of load balancing algorithms depend on the
server size, resource availability, flexibility and peak traffic
hours. [20].

III. LOAD BALANCING ALGORITHMS

The core SDN controller mechanisms lays the
foundation for the autonomous network operations. These

are utilized by respective network applications to enable
advanced features for network operators, network providers
and users. Network applications and their elements may be
deployed onto SDN controller (SC) directly. Although in
practical settings, network owners restrict deployment due to
security and reliability concerns. Thus, only applications
which support network management and network service
provisions are enabled.

Load balancing occupies an important position to solve
over-load traffic problem in the network. It has been one of
the first appealing applications in SDN networks. These are
some commonly used load balancing approaches [21]:

• Random: This approach randomly distributes the
traffic to the available paths. Generally, hash
function is used to map requests to available paths.

• Round Robin: This approach distributes the request
to the paths in sequence, starting from the first path
to the last one in rotation continuously.

• Weighted Round Robin: This approach assigns
weight for each path, then distributes requests
sequentially with respect to the assigned weights.

• Least Connections: This approach forward the
request to the path that has the least number of
current connections.

IV. TYPES LOAD BALANCING TECHNIQUES

Load balancing methods may be classified as either
static, dynamic or both [1] as shown in Fig. 3. Prior
knowledge of the system is crucial to static methods, where
the rule is directly programmed within the load balancer.
The caveat is that user behavior cannot be forecasted and is
thus not optimal for networks. On the other hand, dynamic
methods avoids this problem and is more efficient as load is
spread out in a dynamic manner following a pre-
programmed load balancing pattern [2].

A. Static Load Balancing

In a static algorithm, equal division of traffic is done
within the servers. Static algorithm is suitable for systems
with low load variation. This algorithm needs to have prior
information of the system resources in order to be able to
make sure that decision of load shifting does not depend on
current system state.

The master processor delegates the initial tasks to be
executed to individual processors. The same processor is
always responsible for the tasks delegated. Thus, the work
load performance is determined from the onset via the
master processor [23]. The slave processors compute the
designated work and the results are fed to the master
processor. Tasks are always carried out on the
processorwhich receives the designated task. Static load
balancing methods are not pre-emptive, and is used to
decrease overall execution time for concurrent programs
while reducing the possible delays in communicating among
processors [24].

The features of Static Load Balancing methods are:

Fig.2The evolution stages of load balance

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S5, April 2019

688

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

• It needs less communication in order to minimize
the communication delays, where this reduces the
execution time.

• It needs less communication in order to minimize
the communication delays, where this reduces the
execution time.

• Weighted algorithms achieve a better response time
and processing time.

• Load balancing methods load the distribution
depending on the load at the time of selecting the
node before the execution starts.

• Static methods are mostly suitable for the constant
work application, and for homogeneous and stable
environments that can produce better results in

• within these environments.

• It is easy to be implemented.

• It is relatively simple to forecast the static methods’
behavior.

• It is very difficult to forecast the loads’ arrival and
processing times prerequisite for future loads [25].

B. Dynamic Load Balancing

Dynamic load balancing techniques are more effective
than the static counterparts due to the dynamic distribution
of pre-programmed load balancer patterns [22], [26]. The
proper load balancing is crucial to optimizing minimum
response time, maximal throughput, minimal resource
consumption, scalability and not running into any resource
overloads. The Dynamic Load Balancing method can be
achieved based on three ways: non-distributed, distributed,
or semi-distribute methods. In the non-distributed method,
there is one node (centralized) that receives all requests and
distributes them to the servers. In the distributed method, all
nodes are shared with the distribution of the requests. As for
the semi-distributed method, the nodes are divided up into a
group of clusters, where each cluster works as a central node
in order to distribute the requests, and all clusters are
responsible for the load balancing distribution[25].

The features of Dynamic Load Balancing methods are as
follow:

• It selects the suitable node that requires real time
communication with the networks, which will lead
to an extra traffic to be added to a system. Dynamic
methods provide better performance.

• It is difficult to be implemented.

• Dynamic methods are suitable for adaptive
applications where the workload is unpredictable, or
keeps changing during an execution [27].

• Dynamic methods are also mostly suitable for
heterogeneous and distributed systems.

• These methods require that each node must know
the states of other nodes.

• Even within nodes during execution, processes may
freely migrate from one another in order to
guarantee equal loads.

1) Distributed Algorithms: Distributed dynamic

scheduling methods distribute load balancing over all slave

nodes rather than only on the master node. Knowledge of

the work load is retrieved depending in the level of demand

present. These methods possess average scalability over a

particular centralized scheme, but suffer from the

disadvantage of being expensive to retrieve and maintain

due to the dynamic nature of system information [28].

There are a number of distributed algorithms as described in

the following subsections.

QoS-Aware Algorithm: SDN systems are unique in that

they are programmable due to control and data plane

decoupling. In particular, they offer basic and user-friendly

programmable network devices instead of complicated

network devices, as those found in active network

protocols. SDN also attempts to separate control and data

planes within the architectural design of the network, with

which the network could be controlled on a separate control

plane and not impact data flows. Therefore, network

intelligence could be removed from switching devices and

implemented within controllers. Subsequently, switching

devices could be manipulated by software without built-in

intelligence. Control plane decoupling within the data plane

seeks to both simplify the programmable environment as

well as enable more flexibility in defining the network

behavior [29],[30].
Much of the modern network applications, from media

streaming, cloud services and so on, necessitate the use of
predictable and steady network resources possessing
intensive Quality of Service (QoS) criteria. On the other
hand, OpenFlow is a software-defined network which
enables flow level programmability which supports the
network programming as per QoS criteria as well as network
traffic conditions, all in a dynamic manner. Consequently,
QoS-aware network reprogramming is crucial to traffic
steering within the multi service SDN-based networks. For
the particular resource reallocation, network traffic flows
comprise links as per QoS criteria and traffic engineering
requirements.

Thus, various problems arise hindering the role of flow
level resource allocation, such as big flows and network
resource partitions, burst and dynamic traffics, as well as
many traffic classes operating under different criteria.
Resource partitioning remains an essential side effect of the
level of dynamicity of network traffic and big flows. If it is
assumed that two 10 Gb/s path from node A and B exist,

Figure 3: The Classification of Load Balancing in SDN

Load Balancing Algorithms in Software Defined Network

689

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

each with 500 Mb/s free bandwidth, then there is 800 Mb/s
rate from the first to the second node. Because of resource
partitioning, flow cannot be routed appropriately, thus
network bears 1 Gb/s free bandwidth capacity. To combat
these negative effects, flow routing must be executed with a
holistic view of network while taking into consideration its
effect on all other flows. To elaborate, big flow routing
requires the rerouting of a number of other flows because of
resource partitioning. Therefore, it is apparent that static
network configurations are not sufficient. Furthermore, big
flows and dynamic network traffic necessitates the
reprogramming of the network on a timely basis, which may
lead to instability and undesirable impact on QoS of flows.
Within SDN networks, network features comprise the main
problem of network reconfiguration with minimum side-
effect and overhead. It is important to note that network
reconfiguration overhead depends on the number of rerouted
flows. Raising this number may lead to network instability
as well as heightened packet loss and end-to-end delay [3].

a) Heuristic Approaches: are utilized to achieve

optimal hybrid routing configurations. Studies have found

that hybrid routing achieves optimal load balancing in

comparison to pure explicit routing. On the other hand,

latency, overhead and method utilization may not be taken

into account [6] [32] [33]. These studies have compared

among various heuristic approaches in order to heighten the

resilience of software-defined networks in order to oppose

connection failure among nodes and controllers. Attempts

have been made to maximize controller placement

reliability [34]. A minimum number of controllers are

heuristically searched and assigned to individual nodes in

conjunction with proper node placement, with the ultimate

aim of achieving a particular threshold reliability. Many

studies have focused on resilience opposing network

failures but do not take into account the further metrics such

as πimbalance or πmax latency [34], [35]. More

specifically, trade-offs among metrics and objectives, such

as πmax latency is also not discussed. As opposed to

evaluating entire solution spaces, no guarantee is made for

optimizing the results obtained in the study [36].

Heuristic-based mechanisms have illustrated novel
optimization methods. Studies have attempted to implement
such optimization methods for load balancing problems.
These methods range from honey bee swarm algorithm [37],
lion optimization algorithm [38], whale optimization
algorithm [39], gray wolf optimization algorithm [40], bat
optimization algorithm [41].

b) Wardrop Load Balancing: The Wardop Load-

Balancing algorithm is employed to converge arbitrarily

small neighborhoods of particular equilibrium for loads

within providers. Due to its features, the algorithm is

feasible for various SDN scenarios, where service requests

originate from network nodes and controlled by SDN

controllers.

Various load-balancing methods have been studied
previously by researchers [42]. It has been recommended to
categorize load-balancing algorithms as either global-based,
cooperative-based or non-cooperative based approaches.
Global algorithms entail that individual nodes transmit
current status to centralized load balancers via an extensive
and cohesive system network. Thus, jobs are delegated to
each resource which also optimizes a particular objective,
such as the response time of the whole system over all jobs.
This method has been popularly used in conjunction with

methods such as nonlinear optimization, until being
outclassed by the other two aforementioned methods.
Cooperative algorithms utilize various decision makers
which agree on decisions cooperatively such that each
operates optimally individually. On the other hand, non-
cooperative algorithms utilize multiple decision makers
optimizing individual response times regardless of the status
of others, and is thus not cooperating with others. In these
cases, Nash equilibrium condition is achieved when no
decision makers are able to obtain further benefits by
altering its own decisions unanimously. To specify, the
network stability in these cases are studied in terms of
achieving load distribution so that individual jobs are able to
switch between nodes with lower number of jobs.

Load-balancing algorithms may be classified as either
static or dynamic. The former relies on the currently
possessed knowledge for application load, whereas the latter
relies on settings where information pertaining to load
distribution is unknown.

Many studies have analyzed load balancing, with a
notable studies by [43] studying centralized static
cooperative load balancing; [44] and [45] studying
centralized static non-cooperative load balancing; [46] and
[47] studying centralized dynamic load balancing; and [48]
addressing the issue of distributed dynamic load balancing
relying upon local cooperation among neighboring network
nodes.

One study analyzed the non-cooperative dynamic load-
balancing method, which is popularly implemented in game
theory frameworks with problems consisting of dynamic
load-balancing game where users distribute loads in non-
cooperatively and selfishly [49]. The study also considered
the renowned game theory traffic model proposed by
Wardrop [50], which sought to describe road traffic with
infinitely numbered agents, each in charge of a very small
amount of traffic. The framework considers flow demand to
be routed from a given source to a destination by utilizing
various paths. The agents are able to distribute its own flow
within admissible paths. The network bears the trait of non-
decreasing latency functions which are based on edge flows.
Multiple flows ensure that latencies of employed paths are as
low as possible, which is called the Wardrop equilibrium.
Therefore, the Nash equilibrium is dubbed a Wardrop
equilibrium when there exists an infinite number of decision
makers [51].

2) Centralized Algorithms: In this approach, the concern

of the load-balancing decision remains with the master node

and the data used for the load balancing is gathered from the

remaining (slave’s) nodes on either on demand basis or after

a certain predefined time interval. The obvious point is since

the data is not sent arbitrarily; the unnecessary traffic over

the network is minimized. But, the scalability remains

limited with this technique [28] [29]. There are a number of

centralized algorithms as described in the following

subsections.

a) Routing Control Platform (RCP): Roughly a

decade earlier, numerous studies have focused on the

Routing Control Platforms (RCP) [52-56]. These studies

were the first to refactor IP routing architecture and made a

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S5, April 2019

690

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

logically centralized control plane distinct from forwarding

elements and more towards the BGP decision processes and

route control requirements given by a large operator.

At its core, RCPs comprise three architectural principles:
path computations based on a consistent network state,
expressively specified routing policies and controlled
communication between routing protocol layers [52].
Compared to BGP configurations distributed complexly over
various routers, these methods allow individual AS to
rapidly utilize novel, customer-facing services [54].

In the RCP architecture, legacy network routing
comprises iBGP Route Reflector (RR), which obtains
network information and switches it with RCP. Network
information is retrieved consistently by retrieving eBGP
learned routes. Therefore, the retrieved information is
directly distributed over border routers possessing full route
access. Consequently, the optimal routes are calculated
depending on the route learned from the eBGP. The entire
routing configuration and states are contained within the
RCP control plane. For proper handling, RCP maintains
local registries with global views and information exchanges
with external RCP for routing between domains. Utilizing
the RCP appropriately within the SDN is referred to as
‘Intelligent Route Service’. Control Point (IRSCP) is an
architecture mainly employed prior to the advent of SDN
[57].

The current RouteFlow Control Platform (RFCP)
architecture has advanced from prior prototypes [58] to more
sophisticatedly-layered, distributed system design and
possessing ample flexibility to be employed within diverse
virtualization cases. This method is based on a modular
architecture comprising three major components, as show in
Fig. 4. These include the RF-Slave, RF-Server and RF-
Controller. The RF-Slave collects routing and forwards
information from the Linux host. Alternatively, in order to
extract complementary routing information, it utilizes peers
such as iBGPs to hook using a routing engine. Next, the RF-
Server is a standalone application in charge of the core
system logic, including event processing, VM-to-switch
mapping, and resource management. RFCP Services are also
utilized as operator-tailored modules utilizing a
knowledgeable information base to carry out arbitrary high-
level routing logic. Lastly, the RF-Controller is an
application above the OpenFlow Controller serving RFCP
via switch interaction and the topology sate collection of the
network [59].

Fig. 4 Route Flow Control Platform (Architecture design) [57].

b) Server-Based Load Balancing Algorithm

(SBLA):The SBLA load balancing algorithm was proposed

in [60] and it was suitable for server - cluster in virtual

environment Firstly, the controller used the SNMP protocol

to collect the state information of the servers, then calculated

the load of the serve is according to the SBLA algorithm,

and finally selected the lightest load server to respond to the

users. The algorithm minimized the server’s response time,

but was unsuitable for unstructured networks and data

centers.

c) DUTE Algorithm: Gandhi et al. proposed a DUTE

scheme which combined the hardware with the software

[61]. The scheme used the existing switches to build a

hardware load balancer to effectively increase the capacity,

reduce the cost and delay, but the flexibility was poor.

Especially, when the switch failed, the disadvantage was

especially obvious. The hardware load balancer dealt with a

large number of traffic, while the software load balancer

served as a backup to ensure high availability and Gandhi et

al proposed a DUTE scheme which combined flexibility, but

it was difficult to implement.

C. Hybrid Load Balancing

These methods are achieved and employed to get rid of
the disadvantages associated with Dynamic and Static Load
Balancing methods, and they are being used to aggregate the
benefits and merits of static and dynamic algorithms in order
to design a new one [22]. In fact, this implies that
combinations the benefits of two or more existed algorithms
either dynamic or static algorithms are able to present a new
one.

Load Balancing Algorithms in Software Defined Network

691

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

The features of the Hybrid Load Balancing methods are:

• The word “data” is plural, not singular.

• The main disadvantage lies in its incapacity to
enable noncomplex methods.

• Hybrid methods take over the attributes of both
static and dynamic LB techniques, seeking to
overcome the drawbacks of both methods. They are
more scalable.

V. EVALUATION OF LOAD BALANCING

ALGORITHMS

This paper classifies the load balancing researches in
SDN networks, as show in Fig. 3. The SDN architectures
can be divided into centralized single controller architectures
and distributed multiple controller’s architectures according
to the number and organization of the controllers in SDN
networks, in the centralized architectures load balancing
researches are divided into the data plane and the control
plane. The data plane mainly includes link load balancing
and server load balancing. The distributed architectures are
divided into the flat architecture and the hierarchical
architecture. This paper introduces, analyzes and
summarizes types of load balancing researches, so that
researchers can quickly understand the relevant knowledge
in this field.

VI. CONCLUSION

Software Defined Network has been developed to
manage large networks like data center big data. Due to
huge expanding of internet, enormous number of request is
arriving at server per second. In this paper a detailed survey
of load balancing algorithms has been done. The
classifications of load balancing have been divided to three
types of static, dynamic and hybrid load balancing. There is
requirement of efficient algorithm to balance the load of
server to avoid network degradation. The centralized
controller of SDN has the global view of network which
makes load balancing in SDN easy. The load balancing
algorithm must consider the current load to reflect the real
time change. Using single centralized controller can lead to
single point of failure. So load balancing algorithm should
be mainly based on distributed decision. Researchers
should do more detailed study of distributed architecture to
develop better load balancing algorithms taking advantage
of SDN architecture. The algorithm should be designed in
such a way that it minimizes the latency and response time
and maximize the throughput.

ACKNOWLEDGMENT

The researchers would like to thank the university technical

Malaysia Melaka (UTeM) for sponsoring this work.

REFERENCES

1. P. Martinez-julia and A. F. Skarmeta, “Empowering the Internet of
Things with Software Defined Networking,” White Pap. IoT6-FP7
Eur. Res. Proj., 2014.

2. M. Nasser et al., “Cyber-Security Incidents: A Review Cases in
Cyber-Physical Systems,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no.
1, 2018.

3. P. Kumari and D. Thakur, “Load Balancing in Software Defined
Network,” Int. J. Comput. Sci. Eng., vol. 5, no. 12, pp. 227–232,
2017.

4. J. Li, E. Altman, and C. Touati, “A General SDN-based IoT
Framework with NVF Implementation,” ZTE Commun., vol. 13, no.
3, pp. 42–45, 2015.

5. X. You and Y. Wu, “Software Defined Network Architecture based
Research on Load Balancing Strategy,” in AIP Conference
Proceedings, 2018, vol. 1967.

6. A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee,
“Load Balancing Mechanisms in the Software Defined Networks: A
Systematic and Comprehensive Review of the Literature,” IEEE
Access, vol. 6, pp. 14159–14178, 2018.

7. S. Islam, “Network Load Balancing Methods : Experimental
Comparisons and Improvement,” arXiv Prepr. arXiv1710.06957.,
2017.

8. E. D. Katz, M. Butler, and R. McGrath, “A scalable HTTP server:
The NCSA prototype,” Comput. Networks ISDN Syst., vol. 27, no. 2,
pp. 155–164, 1994.

9. A. Bestavros, M. Crovella, J. Liu, and D. Martin, “Distributed Packet
Rewriting and its Application to Scalable Server Architectures,” in
Proceedings Sixth International Conference on Network Protocols
(Cat. No.98TB100256), 1998, pp. 290–297.

10. L. Aversa and A. Bestavros, “Load Balancing a Cluster of Web
Servers Using Distributed Packet Rewriting Luis,” in Conference
Proceedings of the 2000 IEEE International Performance,
Computing, and Communications Conference (Cat. No.00CH37086),
2000, pp. 24–29.

11. E. Doron and M. Sekiguchi, “Techniques for providing scalable
application delivery controller services,” US9386085B2, Apr-2016.

12. W. Chen, H. Li, Q. Ma, and Z. Shang, “Design and implementation
of server cluster dynamic load balancing in virtualization
environment based on OpenFlow,” in International Joint Conference
on Awareness Science and Technology & Ubi-Media Computing
(iCAST 2013 & UMEDIA 2013), 2014, pp. 691–697.

13. J. Ju, G. Xu, and K. Yang, “An Intelligent Dynamic Load Balancer
for Workstation Clusters,” ACM SIGOPS Oper. Syst. Rev., vol. 29,
no. 1, pp. 7–16, 1995.

14. P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT),” RFC 1631, pp. 1–16, 2000.

15. C. Kopparapu, Load Balancing Servers, Firewalls, and Caches. 2002.

16. J. H. Huh and K. Seo, “Design and test bed experiments of server
operation system using virtualization technology,” Human-centric
Comput. Inf. Sci., pp. 1–21, 2016.

17. S. Cash, A. Karve, T. Mathews, S. Mullen, and M. Mulsow,
“Managed infrastructure with IBM Cloud OpenStack Services,” vol.
60, no. 2, pp. 1–12, 2016.

18. K. Salchow Jr, “Load Balancing 101 : The Evolution to Application
Delivery Controllers,” 2007.

19. S. Khan, M. Ali, N. Sher, Y. Asim, W. Naeem, and M. Kamran,
“Software-Defined Networks (SDNs) and Internet of Things (IoTs):
A Qualitative Prediction for 2020,” Int. J. Adv. Comput. Sci. Appl.,
vol. 7, no. 11, pp. 385–404, 2016.

20. D. Mithbavkar, H. Joshi, H. Kotak, D. Gajjar, and L. Perigo, “Round
Robin Load Balancer using Software Defined Networking (SDN),”
Capstone Team Research Project. pp. 1–9, 2016.

21. M. Alanyali and B. Hajek, “Analysis of simple algorithms for
dynamic load balancing,” 1997.

22. A. S. Milani and N. Jafari, “Load balancing mechanisms and
techniques in the cloud environments : Systematic literature review
and future trends,” J. Netw. Comput. Appl., vol. 71, pp. 86–98, 2016.

23. H. Kameda, E. S. Fathyt, I. Ryut, and J. Lis, “A Performance
Comparison of Dynamic vs. Static Load Balancing Policies in a
Mainframe - Personal Computer Network,” in Proceedings of the
39th IEEE Conference on Decision and Control (Cat.
No.00CH37187), 2000, pp. 1415–1420.

24. I. Journal and F. Technological, “Comparison of Static and Dynamic
Load Balancing in Grid Computing,” Int. J. Technol. Res. Eng., vol.
2, no. 7, pp. 1337–1340, 2015.

25. S. Hamadah, “A Survey : A Comprehensive Study of Static ,
Dynamic and Hybrid Load Balancing Algorithms,” Int. J. Comput.
Sci. Inf. Technol. Secur. (IJCSITS), vol. 7, no. 2, pp. 27–32, 2017.

26. S. Chen, Y. Chen, and S. Kuo, “CLB: A novel load balancing
architecture and algorithm for cloud services,” Comput. Electr. Eng.,
vol. 58, pp. 154–160, 2017.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S5, April 2019

692

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

27. I. Publication, “A comparative study of static and dynamic
Load Balancing Algorithms,” IJARCSMS, vol. 2, no. 12, pp.
386–392, 2014.

28. B. Kang and H. Choo, “An SDN-enhanced load-balancing
technique in the cloud system,” J. Supercomput., pp. 1–24,
2016.

29. A. A. Hassan, W. Shah, M. F. Iskandar, M. S. Talib, and A.
Abdul-jabbar, “K Nearest Neighbor Joins and MapReduce
process enforcement for the cluster of data sets in BigData ''
Jour of Adv Research in Dynamical & Control Systems,vol. 10,
pp. 690-695, 2018

30. W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “Survey on
software-defined networking,” IEEE Commun. Surv. Tutorials,
vol. 17, no. 1, pp. 27–51, 2015.

31. M. M. Tajiki, B. Akbari, and N. Mokari, “Optimal Qos-aware
network reconfiguration in software defined cloud data
centers,” Comput. Networks, vol. 120, pp. 71–86, 2017.

32. Y. N. Hu, W. D. Wang, X. Y. Gong, X. R. Que, and S. D.
Cheng, “On the placement of controllers in software-defined
networks,” J. China Univ. Posts Telecommun., vol. 19, pp. 92–
97, 2012.

33. H. Yannan, W. Wendong, G. Xiangyang, Q. Xirong, and C.
Shiduan, “Reliability-aware Controller Placement for Software-
Defined Networks,” EEE Int. Symp. Integr. Netw. Manag., no.
February, pp. 672–675, 2013.

34. F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability
in software-defined networks,” Proc. third Work. Hot Top.
Softw. Defin. Netw. - HotSDN ’14, no. May, pp. 31–36, 2014.

35. Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of
split-architecture networks,” in IEEE Global
Telecommunications Conference - GLOBECOM 2011, 2011.

36. S. Lange et al., “Heuristic Approaches to the Controller
Placement Problem in Large Scale SDN Networks,” IEEE
Trans. Netw. Serv. Manag., vol. 12, no. 1, pp. 4–17, 2015.

37. D. Karaboga, “An idea based on honey bee swarm for
numerical optimization,” 2005.

38. M. Yazdani and F. Jolai, “Lion Optimization Algorithm (LOA):
A nature-inspired metaheuristic algorithm,” J. Comput. Des.
Eng., vol. 3, no. 1, pp. 24–36, 2016.

39. S. Mirjalili and A. Lewis, “The Whale Optimization
Algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, 2016.

40. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf
Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014.

41. X. Yang and A. H. Gandomi, “Bat Algorithm : A Novel
Approach for Global Engineering Optimization,” Eng.
Comput., vol. 29, no. 5, pp. 464--483, 2012.

42. D. Grosu, A. . Chronopoulos, and M. . Leung, “Cooperative
load balancing in distributed systems,” Concurr. Comput. Pract.
Exp., vol. 20, no. 16, pp. 1953–1976, 2008.

43. S. U. Khan and I. Ahmad, “A Cooperative Game Theoretical
Technique for Joint Optimization of Energy Consumption and
Response Time in Computational Grids,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 3, pp. 346–360, 2009.

44. D. Grosu and A. T. Chronopoulos, “Noncooperative load
balancing in distributed systems,” J. Parallel Distrib. Comput.,
vol. 65, no. 9, pp. 1022–1034, 2005.

45. R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Game-theoretic
approach for load balancing in computational grids,” IEEE
Trans. Parallel Distrib. Syst., vol. 19, no. 1, pp. 66–76, 2008.

46. E. Even-Dar, A. Kesselman, and Y. Mansour, “Convergence
Time to Nash Equilibria,” Int. Colloq. Autom. Lang. Program.,
vol. 2719, pp. 502–513,2003.

47. E. Even-Dar and Y. Mansour, “Fast Convergence of Selfish
Rerouting,” Proc. Sixt. Annu. ACM-SIAM Symp. Discret.
Algorithms, pp. 772–781, 2005.

48. S. Shah and R. Kothari, “Convergence of the dynamic load
balancing problem to Nash equilibrium using distributed local
interactions,” Inf. Sci. (Ny)., vol. 221, pp. 297–305, 2013.

49. H. Ackermann, S. Fischer, M. Hoefer, and M. Schöngens,
“Distributed algorithms for QoS load balancing,” Distrib.
Comput., vol. 23, no. 5–6, pp. 321–330, 2011.

50. J. Wardrop, “Some theoretical aspects of road traffic research,”
in trid.trb.org, 1952, vol. 1, no. 3, pp. 325–362.

51. H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal load
balancing in distributed computer systems. 1997.

52. R. Ramjee et al., “Separating Control Software from Routers,”
2006 1st Int. Conf. Commun. Syst. Softw. Middlew., pp. 1–10,
2006.

53. N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van
der Merwe, “The case for separating routing from routers,”
Proc. ACM SIGCOMM Work. Futur. Dir. Netw. Archit. -
FDNA ’04, pp. 5–12, 2004.

54. J. Van der Merwe et al., “Dynamic connectivity management
with an intelligent route service control point,” Proc. 2006
SIGCOMM Work. Internet Netw. Manag. - INM ’06, pp. 29–
34, 2006.

55. Y. Wang, I. Avramopoulos, and J. Rexford, “Design for
configurability: Rethinking interdomain routing policies from
the ground up,” IEEE J. Sel. Areas Commun., vol. 27, no. 3, pp.
336–348, 2009.

56. T. D. Mohammed AA, Burhanuddin MA, Basiron H, “Key
enablers of IoT strategies in the context of smart city
innovation.,” Adv. Res. Dyn. Control Syst, vol. 10, no. 4, 2018.

57. P. Verkaik, D. Pei, T. Scholl, A. Shaikh, A. C. Snoeren, and J.
E. van der Merwe, “Wresting control from BGP: scalable fine-
grained route control,” 2007 USENIX Annu. Tech. Conf. Proc.
USENIX Annu. Tech. Conf., pp. 295–308, 2007.

58. M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A.
Corrêa, S. C. de Lucena, and M. F. Magalhães, “Virtual Routers
as a Service: The RouteFlow Approach Leveraging Software-
Defined Networks,” Proc. 6th Int. Conf. Futur. Internet
Technol. - CFI ’11, vol. 1, pp. 34–37, 2011.

59. C. Rothenberg et al., “Revisiting IP Routing Control Platforms
with OpenFlow-based Software-Defined Networks,” Futur.
Internet Exp. Res. Work., 2012.

60. W. Chen, Z. Shang, X. Tian, and H. Li, “Dynamic Server
Cluster Load Balancing in Virtualization Environment with
OpenFlow,” Int. J. Distrib. Sens. Networks, vol. 11, no. 7, pp.
1–9, 2015.

61. R. Gandhi et al., “Duet : cloud scale load balancing with
hardware and software,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 4, pp. 27–38, 2014.

Load Balancing Algorithms in Software Defined Network

693

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number:F11200476S519/19©BEIESP

