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Commercial solar cells are currently less efficient in converting solar radiation into 
electricity. Photovoltaic (PV) performance decreases as temperature increases. Many 
efforts have been made to investigate and develop hybrid PV and thermal collector 
systems. A photovoltaic thermal (PVT) system generates both electric power and heat 
simultaneously. A significant amount of work has been carried out on these systems 
since 1970. Different PVT systems have been invented in the last 30 years. The aim of 
PVT systems is to improve electrical efficiency using a cooling system by reducing cell 
temperature, and an absorber collector takes the excess heat underneath the PV 
system. Then, the heat is transferred through working fluids such as water. The 
harvested heat is further used in low-temperature applications, including domestic hot 
water supply, water preheating, and space heating. This work shows the developments 
of the PVT systems, development of PVT systems with spectrum filters in recent 
research, the development and design of flat-plate water collectors in PVT systems, 
including various types of flat-plate solar collectors, and also a broad classification and 
review of published research work on the systems. The performance of PVT-based 
water collectors is determined by different combinations of absorption collectors and 
solar collectors as important elements of PVT systems. New design ideas and 
innovative configurations have emerged, especially when liquid as a medium of heat 
transfer is utilized to obtain useful heat from the back surfaces of PV panels. Various 
design configurations for hybrid PVT collectors are also compiled and assessed, and the 
emphasis is on the design performance of absorbers. The findings show that solar 
collector design parameters can easily affect and enhance the overall performance of 
PVT systems, especially electrical and thermal efficiency. The general performance of 
PVT systems may have benefited significantly from the extensive research conducted 
on this topic since the last decade. In order to develop novel PVT systems, more effort 
is needed in accurate modelling, exploration of novel materials, enhancement of PVT 
system stability, and the design of a supporting energy storage system. 
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1. Introduction 
 

The rapid demand of global energy is due to the increase of population and manufacturing 
activities [1]. Today's fossil fuels emit polluting gases in large quantities to meet energy needs, which 
severely damaged ecosystems. Global warming is a serious problem that threatens the survival of 
humans and other species. Energy crisis is a stumbling block to economic growth in many countries 
[2,3]. One of the most effective ways to solve this problem is to use renewable energy instead of 
fossil fuels [4,5]. Photovoltaic thermal (PVT) hybrid systems that consist of photovoltaic (PV) and solar 
thermal components generate electricity and heat [6]. The efficiency of a solar cell is proportional to 
the temperature of the cell, which means that the efficiency of PV is inversely proportional to the 
cell. As a result, it is proposed to use a solar PVT system to convert solar heat absorbed into thermal 
and electrical energy by Kern and Russell [7]. A typical theoretical study was conducted by Hendrie 
[8] on a thermal PV collector using a conventional thermal planning method. Several review articles 
have discussed the factors affecting the performance of PVT systems [9-13].  

The application and development of solar energy is a promising option because solar energy is 
the most abundant renewable energy source and the Earth absorbs heat (1.8 × 1014 kW) in the form 
of heat and light [14].The use of solar energy is less harmful to the global environment because it is 
renewable, inexpensive, and environmentally friendly [15]. Furthermore, solar energy is easy to use 
and apply, as well as convenient and efficient to use solar systems in village systems, industrial 
processes, and houses[16]. However, the total area required to meet the demand for heat and energy 
is very large. Therefore, it is advisable to use solar energy for producing electric power and heating 
[17]. Solar radiation can be converted into four types of energies: chemical, electrical, thermal, and 
mechanical energy, such as water vapour and wind, as shown in Figure 1 [18,19].  

 

 
Fig. 1. Different energy conversion paths from solar energy 
to electrical energy [18] 
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  Many designs have been considered to improve photoelectric performance and for that 
purpose, PVT collectors have been proposed. A good thermal conductivity between a heat  
absorption unit and a PV module can improve electrical and thermal efficiency. PVT technology has 
been developed in recent decades. According to a survey, each type of PVT system has its advantages, 
disadvantages, and applications, as shown in Table 1. Much research is needed to consistently 
improve their performance[20,21].  
 
Table 1 
Comparisons of different types of Flat Plat PVT systems 

Type of flat 
plate PVT 
systems. 

Working fluid Advantages Disadvantages Applications 

Air- type PVT 
systems 
 

Air 
 

Simple design and  
Low maintenance cost. 
 

Low thermal 
performance. less 
applications of hot 
air 

Heating space and the 
agricultural sector 

 
 

Liquid-type PVT 
systems 

Water 
 

Large heat carrying 
capacity, Higher thermal 
and electrical efficiency 
than Air-type PVT system 

Normal structure 
and higher cost 

Space heating, Water 
heating system, Water 
percolation and Sea 
water desalination 

 Stage change 
material 

It is effectively used for 
thermal management of 
photovoltaic systems 

Inserted with the 
PVT system 

Integrated system and 
PV thermal 
management system 
management 

Liquid-type 
PVT systems 

Nanofluid Fine performance. 
Suitable Temperature 
and conductivity 

Limited exploration, 
difficult use in 
buldings and danger 
of use 

Water heating system. 
Build an integrated 
system 

Bifluid-based 
PVT systems 

Air and water High performance of 
thermal and electricity, 
hot water and hot air, 
excellent cooling of PV 
panels 

compound 
structures, 
expensive and 
limited applications 

Heating area and hot 
water heating system 

 
In the mid-1970s, PV technology was directed towards the PVT system, where the problem of PV 

power degradation at high temperatures for PV panels began to draw attention due to its high 
potential for energy production. Solar technology consists of solar collectors and PV solar technology 
as shown in Figure 2. Hybrid PVT systems were proposed and revised by Martin Wolf [22].  

 
2. Concept of Photovoltaic Thermal PVT 
 

PVT absorbers are very important as the absorbers can reduce the temperature of a cell or a PV 
unit, collect the heat from the hot working fluid, and increase the efficiency of a PV module. Figure 3 
illustrates a PVT system. 

It is always useful to discuss recent developments in technology to understand the development 
process and to present future development trends. There are different studies describing different 
aspects of PVT systems, and several published audit papers from 2010 to 2019 are shown in Table 2. 
The purpose of this article is to provide a broad classification of PVT systems in order to discuss 
experimental and theoretical works of PVT systems in recent years. This paper also includes a review 
of the application of other PVT liquid systems with different absorption collectors. A comparative 
study based on the main advantages of PVT technology is also included. 
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Fig. 2. Solar technologies [23] 

 

 
Fig. 3. Concept of PVT system 

 
Table 2 
Summary of previous reviewes articles on dealing with research and development aspects 
Investigato 
Year  

Studied 
System 

PV Type Method  Main Method Performance Results 

Sarhaddi 
et al., 
2010 
[24] 

Air based PVT 
system 
 

monocrysta
lline silicon 

Simulated 
and 
experimental 

Study are thermal 
and electrical 
parameters of a 
typical PVT air 
collector 

Thermal efficiency, electrical 
efficiency and overall energy 
efficiency of PVT air collector is 
about 17.18%, 10.01% and 45% 
respectively 

Daghigh 
et al., 
2011 
[25] 

Liquid based 
PVT system 

Summary 
Type of 
cells 

Simulated 
and 
experimental 

Review the 
refrigerant and 
water type PV/T 
collectors amongst 
the PVT liquid 

The water based photovoltaic 
thermal collector systems are 
practically more desirable and 
effective than air based systems 

Ghani et 
al., 2012 
[26] 

A hybrid PVT 
water 
collector 

 Simulated  Study Effect of 
flow distribution 
on the 
photovoltaic 
performance 

flow distribution was uniform, 
photovoltaic performance was 
improved by over 9% in 
comparison to a traditional 
photovoltaic (PV) collector, for 
poor flow performance was only 
improved by approximately 2% 

Swapnil 
Dubey et 
al., 2013 
[27] 

PVT water 
collector 
system 

 A 
monocrysta
lline and B 
multicrystal
line  

Experimental 
and  
Theoretical 

testing of two 
different 
photovoltaic–
thermal (PVT) 
modules A, B 

Thermal efficiency and PV 
efficiency for Type A PVT 

module are 40.7% and 11.8%, 
respectively, and for Type B are 
39.4% and 11.5%, respectively 

Dupeyrat 
et al., 
2014 
[28] 

PVT solar hot 
water system 

 Experimental 
and 
simulations 
using TRNSYS 

Study of the 
thermal and 
electrical 
performances of 

Electrical output for equivalent 
roof area for the combination 
PVT/PV is around 12.7% in Paris, 
12.6% in Lyon and10.7% in Nice 
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PVT solar hot 
water system. 

Jicheng 
Zhou, 
2015 
[29] 

PV module polycrystalli
ne 

Simulation Study of 
temperature 
distribution of the 
cell layer 

highest temperature of 331.76 K 
near the solar cell center. The 
lowest temperature difference 
between the center and the 
edge is 0.68 K and the highest 
temperature difference 
between the center and corner 
is 1.2 K 

Jee Joe 
Michael & 
Iniyan 
Selvarasan 
2016 [30] 

PVT water 
collector 

monocrysta
lline 

Experimental A novel PVT 
collector was 
developed, by 
laminating the 
solar cells directly 
to a copper metal 
thermal absorber 

reducing the thermal resistance 
by 9.93 % for effective heat 
transfer fromthe PV cells to the 
heat transfer fluid. Due to the 
presence of the copper sheet 

Ali H.A. Al-
Waeli at 
el., 2017 
[31] 

Air based PVT 
system, PVT 
water 
collector 

Summary 
Type of 
cells 

Review for all 
method 

The study will 
focus on the type 
of fluid used and 
its effect on the 
thermal and 
electrical efficiency 
of the system 

Suggested that the use of 
nanoparticles and water as base 
fluid improves the overall 
system efficiency, more 
research is essential to reduce 
the cost and, improve the 
effectiveness and technical 
design of such systems 

Jiajun Cen 
et al., 
2018 [32] 

PVT water 
collector 
system  

Monocryst
alline,polyc
rystalline,bi
facial 
monocrysta
lline 

Experimental 
and 
theoretical 
model 

In this experiment, 
three types of PV 
panel are used 

demonstrated the capability to 
provide hot water of 
approximately 
80 °C for a family of four, as well 
as providing excess electricity 
towards household applications 

Jicheng 
Zhoua, 
2018 [33] 

PVT water 
collector 

Polycrystalli
ne silicon 

Experimental 
and 
simulations 
using TRNSYS 

We investigate the 
effect of multiple 
factors on the 
temperature 
distribution, 
including tube 
spacing, absorber 
materials, inlet 
velocity and tube 
row arrangement, 
respectively 

Reducing tube spacing and 
using absorber materials are the 
most effective way to increase 
uniformity of temperature 
distribution 

Neha 
Dimri et 
al., 2019 
[34] 

PVT-TEC water 
collectors 

 Thermal 
model 

Considering three 
different types of 
PV modules, 
namely opaque, 
semitransparent 
and Aluminum 
base and 
comparative 
between them 

The results demonstrate that 
the daily overall electrical 
energy gain, daily rate of 
thermal energy gain and daily 
overall exergy gain is the 
highest for [Case 3] Aluminum 
base PVT-TEC water collector 

 
3. Classification of PVT systems 

 

PVT systems are largely classified according to the order of thermal extraction, working medium, 
and end applications. In addition, PVT systems can be classified based on the concentration of 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 59, Issue 1 (2019) 107-141 

112 
 

radiation. The outstanding works done in modern PVT systems are discussed in the following text. 
PVT is reviewed in this section with a focus on the PVT system classification as shown in Figure 4. 

 
Fig. 4. Classification of PVT system 

 

The system of the work by Martin [35] consists of the casing (C), solar cells (S), absorption (A), liquid 
(F), and the atmosphere. A suction device with a tube filled with liquid below the absorption sheet is 
considered, as shown in Figure 5. The results show that the solar cell efficiency is in the range of 
9.5%–10.5%. 
 

 
Fig. 5. Configuration of PVT hybrid system [35] 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 59, Issue 1 (2019) 107-141 

113 
 

The performance of a PVT air collector was studied extensively by researchers, which was 
developed by Sopian et al., [36] .The behavior of single- and double-pass was analysed under 
constant conditions. The results show that the double-pass PVT collector exhibits better behavior 
than the single-pass PVT collector, as shown in Figure 6. 

 
(a) 

 

 
(b) 

Fig. 6. Configuration of (a) single pass and (b) double pass 
photovoltaic thermal solar collector [36] 
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Fujisawa et al., [37] developed a PVT hybrid collector. The system consists of a flat solar collector 
heated with a monocrystalline solar cell on the substrate of a non-selective aluminum absorption 
plate, as shown in Figure 7. The results show the solar cell efficiency of 9.1%. 
 

 
Fig. 7. Cross section of the PVT collector [37] 

 

A comparative study for the performance of four PVT solar air collector models was conducted 
by Hegazy et al., [38], as shown in Figure 8. For model A, air passes over the absorber, under the 
absorber for model B, and both sides of the absorber for model C, and model D used the double-pass 
method. The results show that model A of the PVT collector has the lowest overall performance, 
whereas model C has the highest overall performance, followed by model D and model B collectors. 

 

  

(a) (b) 

  
(c) (d) 

Fig. 8. Configuration of the various PVT models [38] 

      
 Four different design configurations of combined water and air PVT solar collector systems were 

developed by Zondag  [39] .The design concepts can be divided into four different groups as shown 
in  Figure 9, which are sheet and tube (A), channel (B), free flow (C), and two-absorber PVT (D) 
collectors, where 9 designs were evaluated for combined PV thermal collectors. From the results 
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shown in Table 3 for thermal and electrical efficiencies, the channel below transparent PV design 
gives the best efficiency. Although the annual efficiency of the PV system for the sheet-and-tube 
design in the solar heating system is only 2%, it is easier to manufacture and this design is considered 
as a good alternative. 
 

  
(a) (b) 

 

 
 

(c) (d) 
Fig. 9. Configuration of the various PVT system:(A) sheet- and- tube  (B) channel,(C) free flow , (D) 
two-absorber (insulated type) [39] 

 
Table 3 
Thermal efficiency at zero reduced temperature with simulation production of electricity and 
corresponding electrical at zero reduced temperature for various PVT –collector design concepts 
[39] 
Panel type Thermal efficiency Electrical efficiency 

PV laminate - 0.097 
Sheet and tube PVT-Collector 0 cover 0.5 0.097 
Sheet and tube PVT-Collector 1 cover 0.58 0.089 
Sheet and tube PVT-Collector 2 cover 0.58 0.081 
PVT-collector with channel above PV 0.65 0.084 
PVT-collector with channel below opaque PV 0.60 0.090 
PVT-collector with channel below 
transparent PV 

0.63 0.090 

Free flow PVT-collector 0.64 0.086 
Two-absorber PVT-collector (insulated type) 0.66 0.085 
  0.65 0.084 
Thermal collector 0.83 - 

 

A study on the performance of  PVT solar water collectors was carried out by Dubey and Tiwari 
[40] .The system consists of a glass cover, a solar cell, tubes or flowing channels through the absorber, 
and also a fluid, as shown in Figure 10. The results show that the solar cell efficiency is in the range 
of 11.4%–11.6%. 
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Fig. 10. Configuration of the PVT System [40] 

 

The performance of  PVT solar air collectors for three different flat-plate solar air heaters  was 
evaluated by Alta et al., [41] .Two of the systems have fins (b and c) and the other system is without 
fins (a), as shown in Figure 11. The results show that the heater with double-glass cover and fins 
(model b) is more effective, followed by model c and a. 

 

 
Fig. 11. Configuration of the various PVT models 
of (a),(b) and (c)[41] 

 

Chow [42] studied the performance of hybrid PVT water collectors with front glass, in which the 
design concepts can be divided into four different groups: sheet and tube (a), box channel (b), 
channel above PV unit (c), and channel below PV unit (d), as shown in Figure 12. 
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Fig. 12. Configuration of the various PVT models [42] 

 

Zhang et al., [43] studied the performance of PVT solar water collectors comprising several layers, 
namely from the top to bottom, a flat-plate thermally clear covering as the top layer, a layer of PV 
cells or a commercial PV lamination laid beneath the cover with a small air gap, tubes or flowing 
channels through the absorber and closely adhered to the PV cell layer, and also a thermally-insulated 
layer located right below the flow channels, as shown in Figures 13(a) and (b). 

 

  
(a) (b) 

Fig. 13. (a) Configuration of the PVT System  (b) Schematic of flowing channels through the absorber [43] 
 

The performance of hybrid heat pipe PVT water collectors was studied by Wu et al., [44] The 
system consists of : (1) Solar PV modules, (2) solar PV panel, (3) thermal conductivity material, (4) 
heat pipe,(5) insulation material in evaporator section, (6) glass side seal, (7) glass cover, (8) 
insulation material in adiabatic section,(9) cooling (heated) fluid outlet pipe; (10) cooling (heated)    
fluid outlet header; (11) radial fins; (12) cooling (heated) fluid channel,(13) cooling (heated) fluid inlet 
header, and (14) cooling (heated) fluid inlet pipe and the heat pipe was made of copper as show in 
Figure 14. The results show that the overall thermal, electrical and exergy efficiencies of heat pipe 
PV/T hybrid system could reach up to 63.65%, 8.45% and 10.26%, respectively. 
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Fig. 14. Configuration of heat pipe PVT hybrid 
system [44] 

 

The comparison of electrical and thermal performance of glazed and unglazed hybrid PVT water 
collectors was conducted by Kim and Kim [45]. Glazed PVT collectors, as shown in Figure 15, produced 
more heat but have slightly lower electrical yield. Meanwhile, unglazed PVT collectors, as shown in 
Figure 16, produced relatively less thermal energy but showed higher electrical performance. 

 
 

 
Fig. 15. Sectional view of a glazed PVT collector [45] 

 

 
Fig. 16. Sectional view of an unglazed PVT collector [45] 

 

A novel integration of a PVT flat-plate collector and heat pipes was designed and constructed by 
Gang et al., [46] , as shown in Figure 17. A dynamic model was developed to predict the performance 
of the heat pipe PVT (HP-PVT) system, and experiments were conducted to validate the simulation 
results. The results show that the average total first- and second-law efficiencies of the system in the 
test duration are 51.5% and 7.1%, respectively. 
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Fig. 17. The HP-PVT solar collector [46] 

 
The implementation of heat transfer fluids in two common PVT water collector designs was 

investigated by Dupeyrat et al., [28] , as shown in  Figure 18 (a) and (b) for covered and uncovered 
PVT collectors, respectively. The system consists of: (1) laminated solar cells, (2) heat exchanger 
construction, (3) heat removal fluid, (4) a glass cover, (5) aluminum frames, (6) thermal insulation, 
and a (7) static air layer. The results show an additional glass cover gives a much better operating 
efficiency in the relevant reduced temperature range compared to non-covered collectors. 
 

 
Fig. 18. Cross-sections of the two common 
PVT collector designs using water : (a) a 
covered and (b) a uncovered PVT 
collector[28] 

 

A comparative study of the performance of five PVT solar air collector models was done by Shan 
et al., [47] , as shown in Figure 19. Based on energy-balance equations, mathematical models for 
several PVT systems with different configurations were developed. The results show that the 
electrical and thermal performance is optimal in case b and case d, respectively. 
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Fig. 19. Configuration of the various PVT models of a, b, c, d 
and f [47] 

 
In recent years, PVT systems have used liquid as a heat transfer fluid more than air, and the most 

frequently used liquid is water. The cost of PVT maintenance is inexpensive for air, but PVT systems 
that use water as the working fluid have more stable thermal performance. Liquid-type PVT systems 
are more common because the systems have higher thermal power than air, as well as the highest 
general efficiency [48]. Herrando et al., [49] constructed a PVT system that consists of a PV covered 
section of hybrid PVT water collectors : (a) PVT collector cross-section. (b) PVT layers consists of: 1. 
Tempered glass (high transmittance), 2. EVA encapsulating film, 3.c-Si PV cells, 4. EVA encapsulating 
film, 5. Adhesive plus back-sheet Tedlar, 6. Aluminum absorber plate plus solar collector and 7. 
Insulating layer as shown in Figure 20. The results show that for a completely covered collector and 
at a flow rate of 20 L/h, 51% of the total electricity demand and 36% of the total hot water demand 
over a year can be achieved by the hybrid PVT system. 
 

 
Fig. 20. Configuration of PVT hybrid system[49] 

 
The effects of reflectors on day and night performance of a finned passive PVT system were 

numerically studied by Ziapour [50].The cross-section of the PVT system using reflectors is shown 
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schematically in Figure 21. It consists of a glazed cover, a PV module, a flat-plate absorber, fins, an 
insulating box, a water storage tank, and two identical reflectors installed on the collector. The 
reflectors are two back insulating aluminum flat plates. The simulation results show that the 
reflectors reduced the night heat losses and increased the solar radiation rate on the absorber plate. 
The use of removable insulation reflectors saves extra thermal energy. 
 

 
   Fig. 21. Schematically presentation of the finned passive PVT system [50] 

    

  In a study, a hybrid PVT water collector was constructed by Liang et al., [51]. The collector 
consists of a liquid, as well as sheet-and-tube connected in series, as shown in Figure 22. The water 
tubes are made of copper. The results show that the electricity efficiency (ηel) increased from 15.46% 
to 15.75% and T decreased from 32.92 to 22.68 °C when the mass flow rate increased from 0.1 to 0.5 
kg/s. 
 

 
Fig. 22. Front view of sheet and tube hybrid photovoltaic 
thermal (PVT) water collectors [51] 

 
Khan et al., [52] constructed a hybrid PVT water collector for four types PCM, as shown in Figure 

23. Flat-plate collectors are the most investigated solar heating collectors because these collectors 
operate in mid and low temperature range, and small industries and domestic applications more 
commonly utilise this technology. It is also easier, in terms of design, to manufacture the collectors 
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and the resulting thermal efficiency is quite satisfactory. The results show that flat-plate solar air 
heaters with PCM have thermal efficiency of 22%–96%. 

 

 
Fig. 23. Categorized concepts of solar air heating collector designs with PCM [52] 

 
4. Beam Split PVT System (BSPVT) 

 
In beam-splitting PVT (BSPVT) systems, the incoming solar radiations are split into two 

components: the useful and the undesirable radiations for photo electricity. The most commonly 
used solar cell materials are unable to convert the entire terrestrial solar spectrum into electricity. A 
solar cell responds to photons having energy equal to the band gap of the solar cell material. The 
photons with higher or lower energy than the band gap of the solar cell material cause losses in the 
PV system. Thus, it is strongly desirable to filter the incoming solar radiations by any means and to 
allow only the useful part of the solar spectrum to fall on the solar cell. This will reduce the operating 
temperature of the solar cell and thereby improves its electrical efficiency. Theoretical designs of 
such different filters viz. band pass filters, band stop filters, and edge filters were documented by 
Alagarsamy et al., [53]. 

Appels et al., [54] invented a high-concentration spectrum splitting solar collector with a new 
practical implementation of spectrum splitting for solar cells. The device has a prism-like body with 
a smaller device that absorbs less photons and increases the efficiency, as shown in Figure 24. The 
practical optical efficiency of the device was calculated using available materials, in which the 
calculated practical optical efficiency was 66%. 

Imenes and Mills [55] published a paper in 2004 and reviewed the application of spectral beam 
splitting approach in PV applications. The scheme in Figure 25 represents an overview of the 
development of solar concentric beam splitting technology. 

Mojiri et al., [56] presented a comprehensive review of the application of beam splitting in solar 
technology. Cost is the main obstacle in applying these systems for real applications. Many 
researchers are currently focusing on the development of a PVT system using selective liquids for 
spectral filtration and heat absorption. Selective liquid spectrum filters are an economical alternative 
to existing filters. Recent research on the use of liquids as spectral filters is discussed in the following 
text. Huang et al., [57] examined the performance of heterogeneous solar cells (organic solar cells, 
P3HT: PCBM) for PVT applications using spectral filtration techniques. The theoretical form of this 
investigation as shown in Figure 26. Researchers argue that the use of low bandgap polymers can 
improve this figure by up to 40%. 
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Fig. 24. Device  splitting solar collector [54] 

 

 
Fig. 25. An outline of the development of solar 
concentrating beam splitting systems[55] 

 
 

 
Fig. 26. Ray diagram in the 
tube with and without silicone 
oil [57] 

 
Rosa-Clot et al., [58] used water as a spectrophotometer for BSPVT. As shown in Figure 27, in one 

unit of the plate, a 25mm water layer is maintained on the PV module using a polycarbonate glass 
case. 
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(a) (b) 

Fig. 27. TESPI system (a) packed unit (b) various layer [58] 

 
Concentrating PVT system is described by Jiang et al., [59], which contains a concentrator, a 

spectral beam splitting filter, an evacuated collector tube, and solar cell components, as shown in 
Figure 28. A non-dimensional optical model with the focal length of the concentrator as the 
characteristic length was developed to analyses the properties of the concentrating system using a 
beam splitting filter. It is shown that by using the filter, the heat load of the cell can be reduced by 
20.7%, up to 10.5% of the total incident solar energy can be recovered by the receiver, and the overall 
optical efficiency in theory is approximately 0.764. 

 

 
Fig. 28. Schematic diagram of the concentrating beam splitting solar system [59] 

 
Several researchers for liquid-based BSPVT systems have reported different theoretical 

arguments. However, there is no trading system yet. Figure 29 presents another idea of a BSPVT 
system using a liquid spectrum filter studied by Joshi and Double [60]. Liquid-based BSPVT systems 
have not been commercialized yet. Focused research is required to bring BSPVT systems into reality. 
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Fig. 29. Single laminated BSPVT system with liquid spectrum filters [60] 

 
5.Development of Design of Flat Plate Water Collector in PVT System 

 
Ibrahim et al., [61] constructed a hybrid PVT water collector with absorbers in the shape of round 

and rectangular hollow tubes placed precisely under a PV cell with a metallic bond, as shown in Figure 
30. This would assure a zero gap or no gaps among the tubes and the cell, where heat transfer can 
be achieved accurately. The discussion of the results shows that the electric output of the hybrid PVT 
collector is significantly higher than that of a thermoelectric collector. 

 

 
Fig. 30. Construction of the photovoltaic-hybrid collector PVT [61] 

 
Many studies have also focused on different types of absorption designs, such as the study by 

Ibrahim et al., [62] The performance of PVT-based water collectors is determined by different 
combinations of absorption collectors, as shown in Figure 31. The results are shown in Figure 32 and 
33 for the thermal and cell efficiencies of various absorber collectors, respectively. 
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Fig. 31. (a)Direct flow design,(b)serpentine flow design,(c)parallel–serpentine flow 
design,(d)modified serpentine–parallel flow design,(e)oscillatory flow design,(f) spiral flow 
design,(g)web flow design [62] 
 

 
Fig. 32. Thermal efficiency of various absorber collectors [62] 
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Fig. 33. Cell efficiency of various absorber collectors [62] 

 

Two PVT collectors were designed and fabricated by Ibrahim et al., [63] . The first designed 
collector has spiral flow and the second designed collector is a single-pass rectangular tunnel 
absorber, as shown in Figure 34 and 35, respectively. The results show that the spiral flow design is 
the best design with the highest thermal and cell efficiencies. 

Three PVT water collectors were designed and compared in terms of thermal performance before 
fabricating into prototypes by Sopian et al., [64]. The designed collectors have direct, parallel, and 
split flow, as shown in Figure 36, 37, and 38, respectively. The results show that the split flow design 
of PVT collector has better performance compared to direct and parallel flow. 

 
 

 
Fig. 34. The design of spiral flow absorber collectors [63] 
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Fig. 35. The design single pass rectangular tunnel absorber collectors [63] 

  
 

 
Fig. 36. Schematic  of Direct flow PVT [64] 

 

 
Fig. 37. 3D view of Parallel flow PVT [64] 
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Fig. 38. 3D view of Split flow PVT [64] 

 
A liquid-based PVT thermal collector is usually designed with a metal plate and a fluid channel 

absorber fitted to the back surface of a PV panel, as shown in Figure 39. The fluid passes through the 
parallel- and series-connected pipes to effectively transfer heat between the working liquid to the 
PV unit for reducing the temperature of the PV unit [65]. The test results indicated that the daily 
thermal efficiency could reach approximately 40% when the initial water temperature in the system 
is similar to the daily mean ambient temperature. 

 
Fig. 39. System hybrid PVT water collector [65] 

An accurate dynamic model was developed to investigate the performance of individual glass 
panels and pipe collectors. The front view of the water-heating PVT collector is shown in Figure 40. 
The study highlights the importance of establishing good thermal conductivity between absorption 
panels, water pipes, and solar cells [14].The results show that, the electricity efficiency (𝜂𝑒𝑙) increases 
from 8.3 % to 8.9 %. 

Modelling, validation, and simulation of the model by Ibrahim [66] are presented using 
theoretical data and comparative study of seven different absorber tubes, as shown in Figure 31. 
Simulation was performed to determine the best design that provides high total efficiency. The 
simulation results show that the best design is the spiral flow design with the highest thermal 
efficiency of 50.12%, with the corresponding cell efficiency of 14.98%. The variations of thermal and 
cell efficiencies for seven different absorber tubes for PVT collectors are shown in Figures 41 and 42, 
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respectively. Modelling and validation of the model configurations of a serpentine absorber collector 
were carried out by Rosli et al., [64] to determine the highest thermal efficiency of PVT. 

 

 
Fig. 40. Front view of PVT water collector [14] 

 

 
Fig. 41. Variation of thermal efficiency of various PVT water collectors [66] 

 

 
Fig. 42. Variation of cell efficiency of various PVT water collectors [66] 
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Modelling and validation of the model configurations of a serpentine absorber collector were 
carried out by Rosli et al., [67] to determine the highest thermal efficiency of PVT. The simulation 
was performed for four configurations of the serpentine tube. The results show that the best design 
achieved 50% of thermal efficiency at zero reduced temperature, as shown in Figure 43. 
 

 
Fig. 43. Thermal efficiency of the PVT[67] 

 
Fudholi et al., [68] evaluated the electrical and thermal performance of three designs of PVT 

water collectors, as shown in Figure 44. The results show that the thermal efficiencies for the web 
flow absorber, the direct flow absorber, and the spiral flow absorber are 48.07%, 54.13%, and 
68.42%, respectively. Meanwhile, the PV efficiencies for the web flow absorber, the direct flow 
absorber, and the spiral flow absorber are 12.37%, 12.69%, and 13.81%, respectively. 

 
Fig.  44. (a) Web flow absorber (b) direct flow absorber and (c) spiral flow absorber [68] 

 
Aste et al., [69] analysed the performance of flat-plate PVT water collectors with the most 

commonly used thermal absorbers. The thermal absorber designs can be classified into three groups: 
sheet-and-tube (A), roll-bond (B), and box channel (C) absorbers, as shown in Figure 45. The most 
commonly manufactured absorber is the sheet-and-tube type. 
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(a) (b) 

 

 
(c) 

Fig. 45. Thermal absorber classification (a)sheet and tube,(b) roll bond and (c) box channel 
[69] 

 
Analytical calculation for heat removal factor (FR) on each design of PVT water collectors for four 

different designs was conducted by Rosli [70] . The designs consist of a square tube with 20 mm 
diameter (A), a round tube with 15 mm diameter (B), a rectangular hydraulic tube with 18.7 mm 
diameter (C), and a round tube with 20 mm diameter (D), as shown in Figure 46. The results show 
that design D has the highest heat removal factor, followed by designs B, C, and A. 
 

 
Fig. 46. Serpentine collector absorber of a PVT system:(from left),(A) square tube with 20 
mm diameter,(B) round tube with 15 mm diameter,(C) rectangle tube hydraulic with 18.7 
mm diameter,(D) round tube with 20 mm diameter [70] 

 
A study on the performance of PVT with rectangular tube absorber design placed under the PV 

was carried out by Shamani  [71] ,as shown in Figure 47. The PV efficiency is between 10.35% and 
11.5%, whereas the thermal efficiency is between 43.7% and 54.3%. 
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Fig. 47. The rectangular tube absorber collector of a PVT system [71] 

 
 A comprehensive numerical model for three-dimensional (3D) computational fluid dynamics 

(CFD) was developed by Said et al.,  [72]. Using Fluent 14.5. The proposed study was performed to 
evaluate the performance of a cell with serpentine and helical flow channels, as described in Figures 
48 (a) and (b). The model was verified using one of the experimental results available in previous 
studies. The results show a good agreement for the comparison between the numerical model and 
the reported experimental data. Furthermore, the pressure distribution for the serpentine channel 
design is higher than the pressure distribution for the helical channel design due to higher velocity 
distribution values at the helical channel. 
 

  
(a) (b) 

Fig. 48. (a) Serpentine, (b)Helical water Absorber design for PVT Collector [72] 

 
The 3D dimension of the hybrid PVT water collector in the CFD program was performed by 

Shamani [73]. The simultaneous use of new ellipse design of absorber as shown in Figure 49. The 
results shown that new ellipse absorber collector generates a combined PVT efficiency of 74.3% with 
electrical efficiency of 13.78%. 
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Fig. 49. New Ellipse Absorber Design for PVT Collector[73] 

 
Three different absorber tubes were designed by Rosli [74] , which are serpentine, U-flow, and 

spiral designs, as shown in Figures 50, 51, and 52, respectively. The results show that the spiral 
absorber achieved 47.2 °C temperature difference, and followed by the U-flow and serpentine 
absorbers with temperature difference of 46.51 and 45.74 °C, respectively. In addition, the spiral 
absorber has the highest thermal efficiency of 19.74% at 0.0005 kg/s, followed by the U-flow and 
serpentine absorbers with thermal efficiency of 19.45% and 19.13%, respectively. At 0.005 kg/s, the 
spiral absorber has the highest thermal efficiency (22.96%), followed by the serpentine and U-flow 
absorbers (22.62% and 21.02%, respectively). 

 

 
Fig. 50. Serpentine water absorber design [74] 

 

 
Fig. 51. U-flow water absorber design [74] 
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Fig. 52. Spiral water absorber design [74] 

 
Modelling, validation, and simulation of a model were carried out by Sachit [75] using theoretical 

data by utilising MATLAB programme and conducted a comparative study between two different 
absorber tubes: a new design (serpin-direct) and serpentine flow design, as shown in Figures 53 and 
54, respectively. The results indicate that the serpin-direct PVT design achieved 53% and 14.3% of 
thermal and electrical efficiencies, respectively, at optimum conditions of 900 W/m2 of solar 
radiation and 0.06 kg/s of mass flow rate. 

 

     
Fig. 53. Serpin- Direct Design of PVT [75] 

            

 
Fig. 54. Serpentine Flow Design of PVT [75] 
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Two hybrid PVT designs were investigated by Al-Musawi  [76] . The first system is a PV unit with 
copper sheet and tubes (serpentine tube) as the thermal collector (PVT module), as shown in Figure 
54(a). The second system is a pure traditional unit without an external cooling system (PV module), 
as shown in Figure 55(b). The results show that for the first system, the electrical and thermal 
efficiencies are 10% and 25%, respectively. 

 

 
Fig. 55. (a) Serpentine Flow Design of PVT (b) Construction of PV module [76] 

 
Jia et al., [77] compared different thermal absorbers for liquid PVT systems, as shown in Table 

3. 
 

Table 3 
Comparison of different types of liquid PVT systems 

Thermal absorber Advantages Disadvantages Performance optimization 

Sheet –and- tube PVT 
collector 

Advanced and mature 
technology 

Weak electrical efficiency suitable number of top 
covers 

Channel - PVT collector Higher- thermal efficiency 1. The structure is heavy but 
fragile 
2. Limited choices for 
working fluid 

Use transparent PV panels 
and reduce costs of 
transparent material 

Free flow- PVT collector 1. Low reflection and cost 
of materials 
2. The structure of the 
machine is better 

1. Instability at rise 
temperatures 
2. big heat loss due to 
evaporation 

suitable working fluid 

Two–absorber-PVT 
collector 

1.best mechanical 
construction 
2. Higher thermal 
efficiency 

Heavy but crisp 
construction 

Add a transparent buffer 
layer between the primary 
and secondary channels 

 
Nine different designs were evaluated by Zondag et al., [39] . The results show that the sheet-

and-tube design with zero cover is the best design to improve electrical efficiency. The thermal 
efficiency for the uncovered collector is 52%, whereas the thermal efficiency of the single-cover 
sheet-and-tube design is 58%. Meanwhile, the design with the channel above PV typically has 65% 
thermal efficiency, as shown in Figures 56 and 57, respectively. 
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Fig. 56. Variation of Electrical efficiency for various PVT water systems [39] 

 

 
Fig. 57. Variation of Thermal efficiency for various PVT water system [39] 

 

4. Conclusions 
 

A number of experimental, theoretical, and review articles covering various aspects of research 
and development of PVT systems have been published in the literature for decades. Figure 4 shows 
the general category of this hybrid PVT system in current research. This work provides a 
comprehensive review on the development of PVT systems. The performance of PVT-based water 
collectors is determined based on different combinations of absorption collectors compared to other 
types of energy. From the literature, a number of absorber design elements have been developed, 
and analytically and experimentally evaluated to help improve PVT system performance, in which the 
sheet-and-tube absorber plate is commonly used due to its manufacturing simplicity. From the 
perspective of absorber design, two main elements, namely (1) water flow tube and channel 
configuration and (2) glazing in covered or uncovered modes, have been developed. Certain types of 
spiral absorber design have also achieved the highest known performance as reported in the 
literature, although the manufacturing cost has not been elaborated. The thermal efficiency of 
unglazed PVT collectors is low due to loss of heat from the top surface, but this type of collector 
achieved a good electrical efficiency. The above-mentioned discussions prove that absorber design, 
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particularly its thermal and electrical efficiencies, is an important factor for PVT system performance. 
PVT technology can be improved through 

i. Precise mathematical models. 
ii. Research and development of novel materials. 

iii. Improvement of the stability of a PVT system. 
iv. The design of a subsidised energy storage system.  

PVT technology combines the advantages of individual devices into a single system that provides 
water and electricity simultaneously and improves the efficiency of PV cells with heat removal. The 
market potential is expected to greatly increase in the effort to deal with future environmental 
problems. 
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