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Abstract: In light of the overwhelming consumption of resources by the manufacturing sector,
this paper examined three key subsystems that are critical in greening the sector. Whereas the
extant literature has focused on technological development to reduce environmental damage, it has
not analyzed profoundly how manufacturing processes can be greened effectively. Hence, using
carefully gathered data of 299 respondents and structural equation modeling, this paper sought to
investigate the mediating effect of social, environmental, and technical subsystems on the relationship
between management support and sustainable manufacturing performance. The results show
that management support has a positive relationship with sustainable manufacturing performance
(p < 0.005), while social, environmental, and technical subsystems partially mediate this relationship.
Hence, efforts must be taken to encourage management of manufacturing firms to support sustainable
management performance, while at the same time supporting them to introduce innovative social,
environmental, and technical practices.

Keywords: management support; environment; technical work practices; socio-technical systems

1. Introduction

The manufacturing sector consumed 36% of global resources to be the most resource-consuming
sector in the world which, fortunately, has been falling thanks to technological advances. The
Organisation for Economic Co-operation and Development [1,2] argues that the manufacturing
system requires significant restructuring in order to achieve better environmental performance so that
resource consumption by the sector can be reduced further to 18–26% by 2020 [2]. Consequently, cleaner
production technologies will be required to reduce the resource consumption intensity of manufacturing.

While there is general agreement on the definition of sustainable development, there is little
consensus on the manufacturing practices that can be classified as sustainable [3]. A review of literature
on sustainable manufacturing reveals three major streams of sustainable manufacturing. The first
stream attributes sustainable manufacturing to strategic focus of organizations [4]. The second stream
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focuses on the effectiveness of technologies in strengthening sustainability [5]. The third stream
emphasizes environmental intelligence [6].

It is the growing recognition that manufacturing has been the biggest polluter as economies
undergo rapid growth and structural change that led to increasing focus on cleaning up the sector.
In this regard, researchers have paid constant attention. For example, Raja [7] investigated the link
between work practices and manufacturing performance. Similarly, Shah and Ward [8] examined
lean manufacturing practices, such as Just-in-time (JIT) and total quality management (TQM), and
linked these work practices to manufacturing performance. Soliman et al. [9] investigated how lean
manufacturing practices can influence the complex socio-technical systems. However, these works
possess some pitfalls. Firstly, while existing work practices have focused on lean manufacturing based
on the socio-technical systems principles of work design, the links between them and sustainable
manufacturing are not clear. Secondly, most of these studies used work practices mainly as technical
and social subsystems either neglecting wholly or emphasizing little environmental subsystems in
the work design process [9]. Greening has not been the central pillar in such studies. Thus, existing
studies on work practices have not captured sustainable manufacturing adequately. Also, as Geels [10]
had argued, recent transitions in the socio-technical systems to bring sustainability into manufacturing
processes are beyond conventional organizational boundaries. Consequently, there is a need to examine
recent developments on greening manufacturing processes, which will go a long way to check pollution
from the world’s most resource-consumption-intensive sector.

Hence, the aim of this paper is to examine the impact of management support on social subsystems,
environmental subsystems, and technical subsystems, on sustainable manufacturing performance.
The rest of the paper is organized as follows. Section 2 reviews the extant literature from where the
hypotheses are developed for testing. Section 3 presents the methodology and data. Section 4 discusses
results and analysis. Section 5 finishes with the conclusions.

2. Literature Review and Hypotheses Formulation

Sustainable manufacturing approach is multilevel manufacturing approach. These levels are
product, process, and system [11]. Manufacturing processes are outcomes of human interactions with
technology. Organizational systems that arise from human and technology integrations are usually
referred to as Socio-Technical Systems (STS) [12]. Under manufacturing processes, employees have
full information about their organizational, technical, social, and environmental characteristics and
objectives, which act as a motivation to confidently learn various skills so that they become experts in
doing multiple tasks [13]. The manufacturing systems are usually divided into three subsystems to
design best work practices to support efficient production [12].

The first subsystem arises from workers’ social interactions and is called the social subsystem.
The first subsystem consists of the way workers interact with other workers, and deals with employee
empowerment and participation in the manufacturing process within and between groups [14].
Employee empowerment and participation refer to the degree to which workers are involved in
decision making [15].The second subsystem involves the interactions of workers with their technical
elements and is called the technical subsystem. The second subsystem consists of workers’ interaction
with technology (e.g., machinery, equipment, and manuals). This is the technical subsystem that focuses
on the effective use of tools, techniques, procedures, and other forms of technology to acquire inputs and
transform them into outputs [16]. Technical work practices in such systems are geared towards effective
utilization of technology to produce desired quality of output with zero defects and minimal waste.
The third subsystem deals with interactions of workers with environmental elements and is called
the environmental subsystem [17]. The third layer consists of workers’ interactions in manufacturing
processes that embody greening practices so that work practices are not only environmentally safe and
accident-free, but the output is also environmentally safe to be consumed by buyers. Some aspects of
this is covered by ISO 14000 practices, which has resulted in the evolution of environment-friendly work
practices to achieve efficient manufacturing processes that emphasize the reduction of environmentally
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damaging inputs and practices and provide eco-efficient products [18]. Shahbazi et al. [19] provided
a comparison of the effectiveness of the different environmental management practices used in the
manufacturing industry. Their findings indicated the choice of the right tool for effective usage of
resources is largely dependent on the situation in which the tool is being used. De Giovanni [20]
called for a broader scope of environmental management practices that can be categorized into internal
environmental management practices and external environmental management practices. The smooth
integration of the three subsystems provides the basis for the development of work design practices
that are both efficient and sustainable, which is reflected in recent advancements in sustainable
manufacturing practices [14,21].

The work design in manufacturing identified a broader range of work practices under social,
technical, and environmental subsystems [16]. However, the effectiveness of these work practices
is dependent on management support at all levels of the manufacturing process [22], which is the
essential part of the theoretical model of this study. There is already some evidence of the positive
impact of management support on social interventions among the employees [23]. Management can
play an important role by empowering employees to enhance belief and confidence among employees
in pursuing sustainable manufacturing practices [24]. Raja [7] and Maynard et al. [25] confirmed that
management support is vital for pursuing the social element in manufacturing processes effectively.
The relationship between management support and financial performance has already been established,
but it is still unexplored whether there is any relationship between the top management support and the
social and environmental aspect of the manufacturing performance. Thus, little is known about whether
management support has any influence on the social, environmental, and economic performance.
The relationship between management support and sustainable manufacturing performance remains
unexplored. Following the above problematization, we develop the following hypothesis for testing:

Hypothesis 1: Management support has a positive relationship with sustainable manufacturing performance.

Social subsystems comprise employee empowerment and participation. Seibert et al. [26] examined
individual team-level psychological empowerment by using meta-analysis of 22 team-based studies to
test the antecedents and precedents of social work practices. Their results indicated that social work
practices supported by management are more effective than those not supported by management.
In addition, Maynard et al. [25] found a mediating effect of social subsystems on the relationship
between management support and sustainable manufacturing performance using 79 independent
samples from 75 studies. Separate analyses were also carried out on the moderating relationships
between employee participation and empowerment as key mediators. However, as argued by Qureshi
et al. [27], there is still little empirical work on the mediation effects of social work practices on the
relationship between management support and sustainable manufacturing performance. Hence,
we formulate the following hypothesis:

Hypothesis 2: Social subsystems mediate the relationship between management support and sustainable
manufacturing performance.

Earlier studies have often depicted a positive association between organizational factors and
environmental performance pointing to the positive impact of organizational factors, such as
management support, employee participation, and employee empowerment linkages [28]. Rasli et al. [29]
went further to show that the mediation takes place between environment management processes
and environmental performance. Their findings show that each of the organizational factors result in
positive process conditions, such as supporting change initiatives and friendly environment culture and
ensuring that staff are committed to meeting environmental objectives.

Daily et al. [30] went further to argue that top management support is critical in the introduction of
cutting-edge environmental processes particularly in adequate resource provision and communication
of authority in these initiatives, which was supported by the researchers [3,31,32]. These enhancements
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may be mirrored in explicit activities, such as environmental strategy formulation and implementation,
environmental risk management, and/or specific management initiatives required by implementation
(e.g., recycling activities). Additionally, top management may lobby for resource allocation from
shareholders to make improvements to the processes of environmental management to raise staff

alertness over environmental matters, encourage a friendly environment culture, and inspire improved
performance. Enhancements in environmental management processes can enable improvements in
environmental performance [15]. Also, it is claimed that the impact of management support to initiate
sustainable organization on sustainable performance is mediated by the efficiency of environmental
management processes.

Thus, it can be argued that environmental practices imposed by top management are more
effective than those imposed by lower levels of management. Employees through the line of
command usually take interest in developing sustainable organizational culture if top management is
strongly committed to environment-friendly and eco-social efficiency strategies [33]. These firm-level
internal environmental management practices are attributed to committed management. In contrast,
environmental management initiatives imposed by governmental policies, which are externally driven,
are generally successful only with internal commitment by management [20]. However, firm-level
surveys generally do not distinguish top management participation from overall management practices
as questionnaires are typically answered by lower management staff. On the other hand, it is still under
discussion whether the internal or external environmental practices are effective to enhance sustainable
manufacturing performance through management support. Hence, we test the following hypothesis:

Hypothesis 3: Environmental subsystems mediate the relationship between management support and sustainable
manufacturing performance.

Technical work practices in the socio-technical systems approach consist of five work practices:
viz., TQM, Total Preventive Maintenance (TPM), JIT, Materials Resource Planning (MRP), and Kaizen
(continuous improvement) practices [34]. Technical work practices in JIT manufacturing refer to workers’
interactions with technology to produce efficiently products through processes, eliminating defects and
surplus inventories to meet specified targets. [35] had argued that the top management commitment
and support is indispensable for the successful execution of TQM in organizations. Reducing variability
in processes is key to successful TQM that ultimately enhances firm profitability [36]. It is in this context
that [37] reported the mediating role of technical work practices, such as TQM. However, existing
works have hardly broached the mediating role of technical work practices in the relationship between
management support and sustainable manufacturing performance. Thus, we hypothesize that:

Hypothesis 4: Technical subsystems mediate the relationship between management support and sustainable
manufacturing performance.

Over the years, manufacturing processes have been improved to be more supportive of society
and promote optimization of resources to produce socially acceptable products that also reduce
environmental degradation [38]. For example, Kaku [39] studied how satellite remote sensing can
support disaster management that leads to sustainable development goals. Sustainable industrial
strategies and cross-functional factory demonstration of important work practices are key to the
development of sustainable manufacturing systems. Different approaches have been established to
accompany design with a decrease in resource use, eco-efficiency, environmental damage control,
and simulation tools motivated by gradually restricting energy laws and volunteer green rating
systems. These studies were focused on economic performance in the manufacturing process. The
environmental factor remained neglected in these studies. Other researchers placed an emphasis on
green practices with a focus on environmental sustainability [40]. The concept is also considered
as an extension of the lean manufacturing. Recent shifts in the manufacturing processes somehow
have rejected the concept of focusing only on the environment and defined the three pillars model of
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sustainability (i.e., Economy, Society, and Environment) [20]. The role of top management support is
obvious in implementing strategies effectively at all levels of the organization. In order to achieve
the goal of sustainable manufacturing, it is important to understand the interaction of workers with
technology to redesign work practices. Figure 1 presents the conceptual framework of an integrated
sustainable manufacturing performance with work design practices. This framework helps unfold
the relationship between management support and work practices, and sustainable manufacturing
performance. Moreover, management support is the essential pillar for the successful implementation
of any strategic plans.
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3. Material and Methods

Given the cross-sectional nature of the survey and the availability of a sufficiently large data set
with a wide range of variables, we deployed Structural Equation Modeling as the prime instrument
in the study. In this section, we explain the instruments, the sampling procedure deployed, and the
data collected.

3.1. Instruments

We adapted scales from different researchers to develop our analytical instrument. The reliability
of each scale was measured through the reliability test on pilot data collected from 45 respondents.
Cronbach’s alpha test was used to measure reliability. A value for alpha above 0.70 was considered
reliable [41]. The scale of sustainable manufacturing performance was adapted from de Giovanni [20],
who considered the construct as a second-order reflective construct based on the three dimensions of
social performance, environmental performance, and economic performance, which is also known as
triple bottom line (TBL). De Giovanni [20] measured environmental performance using three items
and its reported reliability at 0.868. We used five items to measure environmental performance. Three
of them were adapted from [20], while the remaining two items were self-developed. The reliability of
social performance based on the five items was 0.917.

Finally, economic performance was also measured using five items. Three of them were adapted
while the remaining two were self-developed with a reliability of 0.96. Employee empowerment scale
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was adapted from Menon [42]. Employee empowerment is a process in which competent, committed,
and self-motivated individuals are offered the space to expend high levels of effort, resourcefulness,
and persistence in their work practices. Employee participation scale was adapted from Riordan
et al. [43]. Employee participation is a process in which information flow in decision making flows both
from bottom to top and top to bottom, while employees have access to information and competency
development for accomplishing tasks. The original scale consists of 18 items.

3.2. Sampling and Data Collection

Environmental management refers to manufacturing practices adapted to conserve natural
resources and to strengthen the ecosystem [20]. This second-order reflective construct was measured
on the basis of dimensions of internal environmental management and external environmental
management. The scale consists of five items on each dimension of environmental management. The
scale for technical work practices was adapted from Raja [7]. The original scale consisted of 22 items
to measure 11 technical work practices. However, we operationalized it as a second-order reflective
construct using TQM, TPM, and JIT work practices. TQM was measured using four items, while TPM
and JIT were measured using three items each. Management support refers to a set of managerial
practices that enable the execution of top management directives by resource provision and delivering
them to employees effectively to fulfil their responsibilities [44]. We operationalized management
support as a first-order construct and measured it using four items related to the perceived help and
support provided by floor supervisors to production teams on a scale adapted from Menguc et al. [45].

Measurement items were purified and pretested through several rounds of item sorting. Q-sort
offers a powerful, theoretically grounded, and quantitative tool for examining opinions and attitudes
of respondents about a set of questions to identity validity of the scale [46]. Based on the Q-sort
exercises with 30 randomly selected managers at large manufacturers of Malaysia using the Google
form application, many items in the initial questionnaire were revised for easier readability and better
coverage of the construct content. A separate research questionnaire was used for Q-sorting. The
respondents were asked to read the statement of the question and link it with the most appropriate
construct. The items that were entered into the pretesting process are listed in Table 1. Each round of
item Q-sorting produced independent samples of judgment-based, nominal data used to assess the
inter-rater reliability of the measurement items. For each construct, the item placement ratios from the
final item sorting analysis are presented in Table 1. There is no general agreement on the acceptable
value of the Q-sorting procedure. However, several studies have considered scores greater than 0.65 to
be acceptable. Results indicated that the minimum required hit rate was achieved during the pretesting
of the questionnaire (refer to Table 1).

The sampling frame was drawn from the ‘Directory of Federation of Malaysian Manufacturers’
(FMM Directory, 2014) [47], which carries all manufacturers in Malaysia registered with the Federation
of Malaysian Manufacturers (FMM). Some initial information about the firms, such as number
of employees, annual sales, websites, countries to where firms export their products, and firms’
locations, are accessible through this directory. Respondents included floor, manufacturing, and
production supervisors with team leaders. We used Krejcie and Morgan [48] criteria for calculating our
sample size from the population of managerial employees from 8626 manufacturing plants. We used
multistage sampling procedure to collect data from a sample of 384. In the first stage, we identified the
manufacturing industries with ISO 14001 certification. We identified 492 large manufacturing industries
having ISO 14001 certification. The second stage was to identify samples of 40 large manufacturing
industries using systematic sampling technique. According to FMM [47], 153,013 managerial-level
employees are working in large manufacturing firms in Malaysia. Respondents in our sample size
came to 384 [49]. Figure 2 explains the multistage sampling procedure carried out for the current study.
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We used Structural Equation Modeling (SEM) using AMOS 21.0 software for SEM. The data
analysis section is categorized into three section. Initial data analysis was carried out to test the
validity and reliability of the indicators used in the current study through descriptive analysis and
missing value treatment. Also, Exploratory Factor Analysis (EFA) was carried out to test the validity of
multidimensional constructs. Later on, the measurement model was tested. This was the first stage of
the SEM, where we tested reliability and validity of the indicators using convergent and discriminant
validity. This is the precondition to test the final hypothesis presented in Section 2. The final stage
was to test the hypothesis using p-value <0.05 criteria and results are highlighted in the Results and
Analysis section.
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Table 1. Q-sorting Results.

Construct Item Hit Rate Construct Item Hit Rate

Sustainable Manufacturing
Performance

SMP15 0.89

Total Quality Management

TQM1 0.71
SMP14 0.81 TQM2 0.87
SPM13 0.83 TQM3 0.79
SMP12 0.71 TQM4 0.89

SPM11 0.79

Internal Environmental
Management

IEM1 0.81
SPM10 0.84 IEM2 0.83
SMP9 0.91 IEM3 0.71
SPM8 0.91 IEM4 0.79
SMP7 0.89 IEM5 0.84

SMP6 0.83

External Environmental
Management

EEM1 0. 91
SPM5 0.88 EEM2 0.91
SPM4 0.86 EEM3 0.89
SPM3 0.82 EEM4 0.83
SMP2 0.71 EEM5 0.88

SPM1 0.87

Employee Participation

EP1 0.86

Management Support

MS4 0.79 EP2 0.82
MS3 0.89 EP3 0.71
MS2 0.81 EP4 0.87
MS1 0.83 EP5 0.79

Total Productive
Maintenance

TI4 0.71 EP6 0.89

TPM1 0.88

Employee Empowerment

EE1 0.81
TPM2 0.86 EE2 0.83
TPM3 0.82 EE3 0.71

Just in Time
JIT3 0.91 EE4 0.79
JIT3 0.89 EE5 0.84
JIT1 0.83 EE6 0.91

4. Results and Analysis

Out of 384 questionnaires distributed, 310 were returned with the relevant questions answered
at a response rate of 80.7%, which met the response rate of 60–80% of response rate validity so that
it would not lead to incorrect generalizations of the population (Fincham, 2008). Since the response
rate exceeded 80%, it met the generalizability criterion. During the initial screening of the data,
11 questionnaires were removed from the data collected due to outliers as their response might have
biased the results [50]. The remaining 299 were a sufficient sampling size for data analysis using SEM
as noted by Hair et al. [50].

Table 2 indicates that the maximum respondents of 66 (22.1%) were from plant sizes of
200–249 employees. The second highest was 57 (19.1%) from plant sizes of 150–199 employees, followed
by 49 (16.4%) and 37 (12.4%) respondents from plant sizes of 300–349 and 350–399, respectively. Most
plants (160) were in the age group of 8−15 (53.6%). Also, most plants (107) were engaged in assembly
line (35.8%) and batch process (35.8%) type of manufacturing, followed by continuous process plants (76;
25.4%). The lack of a sharp skew in both the size distribution of plants and the type of manufacturing
involved complements further the generalizability of the results.

Exploratory Factor Analysis (EFA) was carried out to validate the dimensions of the social, technical,
and environmental subsystems and sustainable manufacturing performance. The Kaiser–Meyer–Olkin
(KMO) and Bartlett’s tests were used to verify if the data was adequate for factor analysis. Table 2
shows the results of principal component analysis and KMO that indicates the suitability of data for
dimension reduction analysis. KMO measures sampling adequacy, which indicates the proportion of
variance in latent constructs that might be caused by underlying factors. The KMO value for work
practices in the social subsystem was 0.92, environmental subsystem was 0.94, technical work practice
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was 0.87, and sustainable manufacturing performance was 0.83. These results indicate that the data
was suitable for factor analysis.

Table 2. Frequency Distribution of Industry Characteristics.

Plant Size Frequency %

(No. of Employees)
0–49 7 2.34%

50–99 12 4.01%
100–149 24 8.03%
150–199 57 19.06%
200–249 66 22.07%
300–349 49 16.39%
350–399 37 12.37%
400–449 21 7.02%
450–499 15 5.02%

500+ 11 3.68%

Total 299 100.00%

Age of the Plant
0–3 21 7.02%
4–7 77 25.75%

8–11 91 30.43%
12–15 69 23.08%
16–19 26 8.70%
20+ 15 5.02%

Total 299 100.00%

Type of Production Process
Job Shop Process 9 3.01%

Assembly Line Process 107 35.79%
Continuous Flow Process 76 25.42%

Batch Shop Process 107 35.79%

Total 299 100.00%

Table 3 presents the results of principal component analysis (PCA). The latent construct of
work practices in the social subsystems were factorized into two components. The first and second
components of social subsystems indicated 36.4% and 32.2% of common variance, respectively, with
a cumulative variance of 68.6%. The first and second components of work practices in the environmental
subsystems showed a common variation of 43.7% and 31.3%, respectively, so that its cumulative
common variation came to 75.0%. The third section consisted of technical subsystems with three
components: the common variations of TQM, TPM, and JIT were 38.6%, 18.1%, and 10.1%, respectively,
with a cumulative common variation of 67.6%. The three components of sustainable manufacturing
performance had common variations of 21.6%, 16.6%, and 16.0%, respectively, with a cumulative
common variation of 54.2%.

Table 4 shows the rotated component matrix. Rotated component matrix refers to the matrix of
factors that are loaded for each variable into each other. The rotation of varimax was done using the
Kaiser normalization index and the extraction was done by principal component extraction. The rotated
component matrix shows the two components extracted from the multidimensional scale of social
subsystems that comprised 12 questions (items). Each dimension consists of multiple items. The first
component consists of six items related to employee participation with factor loadings ranging from
0.608 to 0.786. The second component, classified as employee empowerment, consists of six items
with factor loadings ranging from 0.594 to 0.726. The next factor consists of environmental work
practices with two components (i.e., internal environmental management and external environmental
management), each of which consists of five items with factor loadings above 0.50. The subsequent
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three components represent technical work practices named TQM based on four items, JIT based
on three items, and TPM based on three items, each having factor loadings of above 0.50. The last
three components consist of the components of sustainable manufacturing performance (i.e., social
performance, environmental performance, and economic performance) having factor loadings above
0.50. Item SMP6 shows a factor loading value of 0.432. However, we removed the item during
confirmatory factor analysis.

Table 3. Principal Component Analysis and KMO, Malaysian Sample, 2014.

Constructs Factor Common
Variation

Cumulative
Variation KMO Chi-Square Degrees of

Freedom p-Value

Social Work
Practices

EP 36.4 36.4
0.92 2712.56 66 0.000EE 32.2 68.6

Environmental
Work Practices

IEM 43.767 43.767
0.94 2490.66 45 0.000EEM 31.302 75.069

Technical Work
Practices

TQM 38.64 38.64
0.866 1347.72 45 0.000TPM 18.11 56.75

JIT 10.865 67.615

Sustainable
Manufacturing

Performance

SP 21.64 21.64
0.829 1401.62 105 0.000ENP 16.561 38.201

ECP 15.98 54.181

KMO, Kaiser–Meyer–Olkin; EP, Employee participation; EE, Employee empowerment; IEM, Internal Environmental
Management; EEM, External Environmental Management; TQM, Total Quality Management; TPM, Total Productive
Maintenance; JIT, Just in Time; SP, Social Performance; ENP, Environmental Performance; ECP, Economic Performance.
Source: Authors Computation.

Table 4. Rotated component matrix.

Items
Component

EP EE IEE EEM TQM TPM JIT SP EP EcP

EE1 0.689
EE2 0.793
EE3 0.826
EE4 0.721
EE5 0.594
EE6 0.620
EP1 0.763
EP2 0.774
EP3 0.786
EP4 0.750
EP5 0.608
EP6 0.704

EEM1 0.566
EEM2 0.889
EEM3 0.591
EEM4 0.735
EEM5 0.723
IEM1 0.827
IEM2 0.803
IEM3 0.821
IEM4 0.754
IEM5 0.509
TQM1 0.852
TQM2 0.873
TQM3 0.851
TQM4 0.756
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Table 4. Cont.

Items
Component

EP EE IEE EEM TQM TPM JIT SP EP EcP

TPM1 0.772
TPM2 0.568
TPM3 0.606
JIT1 0.827
JIT2 0.88
JIT3 0.77
EP1 0.599
EP2 0.519
EP3 0.633
EP4 0.784
EP5 0.783
SP1 0.432
SP2 0.602
SP3 0.525
SP4 0.715
SP5 0.665

EcP1 0.692
EcP2 0.596
EcP3 0.688
EcP4 0.812
EcP5 0.697

4.1. Convergent Validity

The analysis was carried out in two stages. Firstly, the measurement model was tested to ensure
the reflective items measured the construct accurately. The confirmatory factor analysis (CFA) was
performed on all constructs. Subsequently, the measurement model was tested independently. The
constructs of social subsystems, technical subsystems, environmental subsystems, and sustainable
manufacturing performance were captured through several dimensions. This was followed by
a second-order measurement analysis. In Structural Equation Modeling (SEM), model fitness has to be
assessed through incremental fit indices, absolute fit indices, and parsimony fit indices [51]. Absolute
fit indices contain chi-square value, root mean square error of approximation (RMSEA), root mean
square residual (RMR), goodness-of-fit (GFI), and the adjusted goodness-of-fit (AGFI). Incremental
fit indices are based on normed fit index (NFI) and comparative fit index (CFI), while parsimony fit
indices are based on parsimony goodness-of-fit index (PGFI) [52].

The initial results show minor issues in model fit and factor loadings of the items. Initial values
were χ2 = 3455.974, DF = 1385, GFI = 0.678, AGFI =.0.642, Tucker-Lewis Index (TLI) = 0.793, CFI =

0.807. The values for RMR = 0.054 and RMSEA = 0.071 were within acceptable range as shown in
Table 2. This indicates the requirement of the adjustments in the model in order to achieve goodness of
fit. The items TPM2, JIT2, MS3, EP4, EP5, SP4, SP5, EcP4, and EcP5 with low factor loadings (factor
loadings <0.50) were removed from the model [50]. The modification indices were subsequently
treated to achieve model fitness. Error terms e1 and e2, e9 and e10, e33 and e34, e44 and e45 were
correlated as they had the highest modification indices values. After adjustments in the measurement
model, the final values for χ2 = 1778.570, DF = 900, CMIN/DF = 1.976, GFI = 0.901, AGFI = 0.845, TLI =

0.984, CFI = 0.974, RMR = 0.034, and RMSEA = 0.049 resulted in a good model fit [50]. Figure 3 shows
the final measurement model used in this study.
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Table 5 illustrates the average variance extraction of each construct with all the constructs having
more than 0.50 of average variance extraction showing sufficient amount of convergent validity. The
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average variation of the extractions range was 0.529–0.720. All the constructs had satisfactory reliability
as they ranged from 0.709 to 0.923. Hence, this study passed the convergent validity of constructs.

Table 5. Convergent validity.

Construct Items Factor Loading Composite
Reliability

Average Variance
Extraction

Employee Empowerment

EE6 0.783

0.908 0.621

EE5 0.747
EE4 0.806
EE3 0.835
EE2 0.792
EE1 0.762

Employee Participation

EP6 0.791

0.905 0.614

EP5 0.723
EP4 0.782
EP3 0.833
EP2 0.797
EP1 0.770

External Environmental
Management

EEM5 0.765

0.900 0.643
EEM4 0.804
EEM3 0.864
EEM2 0.773
EEM1 0.799

Internal Environmental
Management

IEM5 0.765

0.923 0.706
IEM4 0.872
IEM3 0.871
IEM2 0.857
IEM1 0.832

Total Quality Management

TQM4 0.727

0.911 0.720
TQM3 0.871
TQM2 0.904
TQM1 0.881

Total Preventive
Maintenance

TPM3 0.541
0.718 0.555TPM1 0.786

Just in Time JIT1 0.724
0.792 0.529JIT3 0.731

Management Support
MS1 0.557

0.739 0.572MS2 0.655
MS4 0.614

Sustainable Manufacturing
Performance

SPM1 0.731

0.835 0.589

SPM3 0.654
SPM4 0.586
SPM5 0.644
SPM8 0.556
SPM10 0.537
SPM11 0.646
SPM13 0.614

4.2. Discriminant Validity

Discriminant validity refers to discrimination between the constructs, which measures the level to
which alike constructs have discrete values. It depicts the level by which constructs under study are
dissimilar [50]. Discriminant validity violation occurs in cases where correlation among exogenous
constructs exceeds 0.85 and when the value of the square root of Average Variance Extraction (AVE) is
greater than interconstruct correlations. Table 6 displays the interconstruct correlations obtained from
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AMOS output, which represents the correlations between variables and diagonals showing the square
root of AVE. It can be seen that the square root of AVE is greater than the correlations, which means
that the signaled constructs are significantly different from each other in nature.

Table 6. Discriminant Validity.

Constructs MS EE EP EEM IEM TQM TPM JIT SMP

MS 0.756 *
EE 0.548 0.788 *
EP 0.546 0.519 0.783 *

EEM 0.533 0.544 0.428 0.802 *
IEM 0.588 0.521 0.563 0.657 0.840 *
TQM 0.601 0.592 0.353 0.610 0.507 0.849 *
TPM 0.481 0.514 0.595 0.568 0.495 0.677 0.745 *
JIT −0.534 −0.534 −0.526 −0.49 −0.485 −0.447 −0.396 0.728 *

SMP 0.558 0.525 0.585 0.621 0.662 0.601 0.524 −0.553 0.767 *

* Square root of AVE. Source: Authors computation.

4.3. Hypothesis Testing

Having validated the measurement model, we then proceeded to test our hypotheses using SEM.
The fitness indices for the structural model indicated good fit [50]: the values were χ2 = 1526.076, CFI
= 0.972, CMIN/DF = 1.732, TLI = 0.982, GFI = 0.915, AGFI = 0.875, RMSEA = 0.062, and RMR = 0.044.
Figure 4 shows the structural model results. We used the Preacher and Hayes [52] method for testing
the mediation effect using bootstrapping technique. We also calculated the full and partial mediation
by using a two-step approach. First, the direct relationships were estimated with and without the
mediator in the model. H1 of the study states that management support has a positive relationship
with sustainable manufacturing performance. The results indicate that the path coefficient between
management support and sustainable manufacturing was 0.84 with a t value of 7.31, which is highly
significant. Hence, hypothesis 1 can be accepted.
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Hypothesis 2 of the study states that work practices under social subsystems mediate the
relationship between management support and sustainable manufacturing performance. Figure 4
shows that the direct result without introducing the social subsystems in the model was 0.84 with a
t value of 7.31, which is highly significant. Once social subsystems were included in the model, the
path coefficient between management support and sustainable manufacturing fell slightly to 0.75 with
t value of 2.11, which was still significant. The results show a significant direct impact of management
support on sustainable management practice, as well as a significant direct effect with social subsystems
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as mediator on this relationship. Table 7 shows the indirect path coefficient for management support
through social subsystems to sustainable manufacturing performance, which is 0.092. Bootstrapping
analysis with 1000 iterations was performed to get p-values of the indirect paths. p-value of the indirect
path was 0.008, which is lower than the 0.05 so that hypothesis 2 is accepted. However, since the direct
effects of management support on sustainable manufacturing performance are also significant, the
mediation is partial as suggested by Baron and Kenny [21].

Table 7. Mediation Analysis (Indirect Effects).

Hypotheses Direct without
Mediator Significance Direct with

Mediator Sig Indirect
Effect

p-Value
(Bootstrap) Mediation

MS→SS→SMP 0.84 7.31 (0.000) 0.75 2.11 (0.09) 0.0918 0.008 Partial

MS→ES→SMP 0.84 7.31 (0.000) 0.67 2.369
(0.018) 0.139 0.001 Partial

MS→TS→SMP 0.84 7.31 (0.000) 0.75 6.64 (0.102) 0.087 0.021 Partial

Source: Authors computation.

Figure 5 shows the path coefficient of 0.70 between management support and sustainable
manufacturing after including environmental subsystems, which is highly significant. Thus,
management support shows a significant direct impact on sustainable manufacturing performance.
Table 6 shows the indirect path coefficient of 0.139 for management support through environmental
subsystems to sustainable manufacturing performance. Bootstrapping analysis with 1000 iterations
was performed to get p-values of the indirect path, which is lower than 0.05. Hypothesis 3 is
accepted. Thus, environmental subsystems mediate the association between management support and
sustainable manufacturing performance. Since the direct effects of management support on sustainable
manufacturing performance are also significant, the mediation is partial as suggested by Baron and
Kenny [21]. Table 7 presents the mediation results.
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Figure 5. Hypothesis testing: Environmental subsystems.

Figure 6 shows the path coefficient of 0.75 between management support and sustainable
manufacturing after including technical subsystems, which is statistically highly significant. Hence,
management support shows a significant direct impact on sustainable manufacturing performance.
Indirect path coefficient of 0.087 through technical subsystems is also highly significant so that
hypothesis is accepted. Technical subsystems mediate the association between management support
and sustainable manufacturing performance. As shown in Table 7, since the direct effects of management
support on sustainable manufacturing performance are also significant upon calculation with mediator,
the mediation is partial as suggested by Baron and Kenny [21].
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5. Conclusions

We conclude that management support is crucial to engender the conditions to galvanize the social,
environmental, and technical subsystems to stimulate improvements in sustainable manufacturing
performance. The results are also palatable for consideration by competitive firms seeking to sustain
their profitability as the three subsystems do not compromise on growth and performance. High levels
of management support help employees in manufacturing plants to enjoy high levels of empowerment
and participation to pursue sustainable manufacturing initiatives. In addition, evidence shows that
cutting-edge environmental practices are important to raise manufacturing performance sustainability.
However, the level of environmental management practices usage is dependent on the management
support and facilitation. The results show that environmental practices mediate the relationship
between management support and sustainable manufacturing practices. Similarly, technical work
practices, such as TQM, TPM, and JIT, mediate the relationship between management support and
sustainable manufacturing performance.

The results also highlight the mediating effect of social, environmental, and technical work practices
on the relationship between management support and sustainable manufacturing performance. Hence,
efforts must be taken to encourage managements of manufacturing firms to support sustainable
management performance, while at the same time supporting them to introduce cutting-edge social,
environmental, and technical practices. Following the election of the new government on May 2018,
the Energy, Science, Technology, Environment and Climate Change Ministry has taken a strong policy
line to green the environment on all fronts. In addition to efforts to reduce carbon emission by 20% by
2025 from 2005 levels, the Ministry has also begun efforts to lower plastics use and increase energy
supply through increasing the supply of renewable energy [51]. It should extend such initiatives to
green processes and materials used in the economy in general and manufacturing in particular. Given
that the environment is a global common, such initiatives should be promoted regionally and globally
across countries.

6. Future Agenda

The findings of this paper exposed possibilities for researchers to address multiple issues related
to sustainable manufacturing performance. First, it is important to investigate the impact of internal
and external environmental management practices on each aspect of sustainable manufacturing
performance (i.e., social, environmental, and economic) in the long run. Secondly, it is important
to study the concepts of rewards-driven systems and maintenance scheduling in order to increase
the degree of system adaptabilities with sustainable manufacturing. Finally, the study focused on
large manufacturers. Recent trends indicate that small and medium-sized enterprises (SMEs) are
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considerably contributing to the country’s economy, thus it is recommended to study SMEs as unit of
analysis for future researchers.
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