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 The main challenge in MOSFET minituarization is to form an ultra-shallow 

source/drain (S/D) junction with high doping concentration gradient, which 

requires an intricate S/D and channel engineering. Junctionless MOSFET 

configuration is an alternative solution for this issue as the junction and 

doping gradients is totally eliminated. A process simulation has been 

developed to investigate the impact of junctionless configuration on the 

double-gate vertical MOSFET. The result proves that the performance of 

junctionless double-gate vertical MOSFETs (JLDGVM) are superior to the 

conventional junctioned double-gate vertical MOSFETs (JDGVM). The 

results reveal that the drain current (ID) of the n-JLVDGM and p-JLVDGM 

could be tremendously enhanced by 57% and 60% respectively as the 

junctionless configuration was applied to the double-gate vertical MOSFET. 

In addition, junctionless devices also exhibit larger ION/IOFF ratio and smaller 

subthreshold slope compared to the junction devices, implying that the 

junctionless devices have better power consumption and faster  

switching capability. 
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1. INTRODUCTION  

Aggressive scaling of conventional MOSFET leads to several short channel effect (SCE) as the 

channel length (Lch) is reduced. Multiple MOSFETs architectures have been introduced [1-5] to realize the 

Moore‟s law prediction in producing ultra-small transistors while maintaining excellent electrical 

performance. As the transistor size is continuously scaled down, the formation of extremely intricate 

junctions between source/drain and channel regions offers a real challenge to chip designers. But still, an 

ultrathin and narrow body configuration is believed to be a significant alternative for extreme MOSFET 

scaling. The double-gate vertical MOSFET is one the MOSFET configurations that offers the maximum 

control of the electrostatic field in the channel region by the two side gates. The reduction of Lch and pillar 

(body) thickness could further improve the controllability of both gates upon the electrostatic potential in 

the ultrathin channel [6]. As a result, the channel experiences lesser electrical interference between the 

source and drain region that subsequently leads to the improvement of on-state current (ION), leakage 

current (IOFF) and subthreshold slope (SS). The double-gate vertical MOSFET, though having better 

immunity to SCE, are yet far from perfect and encounter similar challenges like conventional bulk 

MOSFET. For instance, the requirement of new doping approaches, advanced source/drain and channel 

engineering are required to form ultrashallow source/drain (S/D) junctions with high doping gradient [7]. 
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Recently, a lot of junctionless [8-13] MOSFET configurations have been proposed to eliminate the 

adversity arisen from ultrashallow junction formation. The key feature of junctionless MOSFET 

configuration is to eliminate the presence of junction between the source/drain and channel region where 

both regions are doped with the same polarity dopant, either n-type or p-type material. The junctionless 

configuration absolutely neglects the adversity of having high doping gradient, hence considerably 

diminishing the complicated fabrication process. Therefore, the working principle of junctionless 

transistors is based on depletion-mode and it heavily relies on the geometrical design, process parameters 

and work function (WF) engineering. 

Numerous research groups are working on studying, analyzing and optimizing multiple types of 

junctionless transistor in order to improve the electrical performances as well as the fabrication cost. 

Colinge et al. (2009) [14] are the first researcher groups that discovered and studied the fundamental and 

physical properties in junctionless transistor. They found that the N+ and P+ silicon-on-insulator (SOI) 

based nanoribbon are less sensitive to thermal budget issue than conventional MOSFET since they 

contained no junction and no doping gradients [15]. The simple process fabrication with excellent 

subthreshold slope and drain induced barrier lowering (DIBL) are the main advantages of the junctionless 

device. Akram et al. (2014) [16] have investigated the impact of multiple parameter variations on the 

device characteristics in 20 nm p-type double-gate junctionless tunnel field transistor (p-DGJLTFET). It is 

observed that the optimized parameters along with the utilization of high-k dielectric material (TiO2) of 20 

nm gate length yields excellent device characteristics with ION~0.3 mA/µm, a low IOFF of ~30 fA/µm, a 

high ION/IOFF ratio of ~1x10
10

, a subthreshold slope (SS) point of ~49 mV/decade at a supply voltage of –1 

V and at room temperature. Lakshmi and Srinivasan (2015) [6] have studied the influence of process 

variations on unity cut-off frequency (ft) in both conventional and junctionless gate-all-around (GAA) 

transistors via TCAD simulation. The results show that the ft was more sensitive to gate length and S/D 

doping, less sensitive to gate oxide thickness, ovality and channel doping and least sensitive to gate work 

function (WF) variations. Riyadi et al. (2016) [17] have investigated the impact of gate material and 

process on subthreshold performance of junctionless FET (JLFET), by comparing four sets of gate material 

and process techniques. Based on the results, it was observed that the VTH value for all JLFET types heavily 

depended on the channel doping concentration as well as the WF. The SS value for JLFETs was generally 

lower than SOI based device, with the slope which was closed to ideal value of 60mV/decade. This is 

mainly due to the bulk transport mechanism in which the conducting channel is fully accupied by the 

majority carriers, in contrast to the surface conduction experienced in conventional MOSFET and SOI FET.  

Archana et al. (2017) [18] have derived the analytical modeling of junctionless surrounding gate 

MOSFET based on existing model. Based on the derived model, multiple characteristics and behavior of 

the device such as surface potential, VTH, SS were plotted against channel length, radius and doping 

concentration. The result revealed that the VTH rolls off as the channel doping concentration was increased. 

In addition, the variation of VTH and SS were explicitly noticed when the channel length was scaled down 

below 20 nm. This clearly indicates that the junctionless device is significantly related to process and 

geometrical parameters as it shrinks into nano scale regime. The study of structural and geometrical 

variability on the performance jumctionless transistors have also been conducted recently by khorramrouz 

et al. (2018) and Ambika and Srinivasan et al. (2018) [19, 20]. Based on their observation, the structural 

and geometrical parameters such as thickness of silicon, thickness of insulator, channel length and etc. did 

contribute significant changes in the electrostatic and analog performance of the devices. Carrillo-Nunez et 

al. (2018) in their report [21] have investigated the effect of channel length variation on the junctionless 

silicon nanowire transistor. Based on the results, the reduction of the channel length slightly deteriorated 

the device performance in term of on-state and off-state current due to weakened electrostatic control. The 

variation of structural and geometrical parameters does not only affect the DC performance but also 

defining the RF characteristics of the junctionless device [22-25]. Based on the aforementioned literatures, 

junctionless configuration is definitely one of the alternative device configurations that allow the continuity 

of transistor scaling with minimal degradation of electrical performances. Several focal research areas can 

be drawn from the previous literatures such as the impact of geometrical design, process variations and 

high-k/metal-gate application on the transistor performance [26-30]. This paper will focus on the 

performance analysis of ultrathin Junctionless Double Gate Vertical MOSFETs (JLDGVM) by comparing 

their electrical characteristics with the Junctioned Double Gate Vertical MOSFETs (JDGVM). 

 

 

2. METHODOLOGY 
This section will describe about numerical models used to attain simulation solutions via Silvaco 

TCAD tools. Then, the 2D process simulation for ultra-thin JLDGVMs is conducted via Athena module as 

the process flow of the device is presented in Figure 1. The process simulation consists of the ultrathin 
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pillar formation, the high-k metal-gate (HKMG) deposition, source/drain implantation and metallization. 

The device simulation is finally employed via Atlas module in order to extract the ID-VG characteristics. 

 

 

 
 

Figure 1. Simulated process flow for ultrathin JLDGVM design 

 

 

2.1. Numerical models 

The transport model is based on drift-disfussion model since it is suitable for designing the device 

with low power density specification. The drift-diffusion model is basically employed for carrier transport 

in semiconductors and is defined by the basic semiconductor equations. Current density for electrons and 

hole is given by (1) and (2): 

 

nnnnn qDqnJ          (1) 

 

ppppp qDqpJ          (2) 

 

The µn and µp stand for the electron and hole mobilities, where as ᴪn and ᴪp stand for the electron 

and hole quasi-Fermi potentials respectively. The q and D are used to indicate the absolute value of the 

electronic charge and diffusion coefficient correspondingly. The three main equations for carrier transport 

in the semiconductor devices are known as Poisson equation, the electron and hole continuity equations. 

The poisson equation is denoted as: 

 

  trapAD NpnN
q




  2
      (3) 

 

where ε is the electrical permittivity, n and p are the electron and hole densities, ND is the donor ion 

concentration, NA is the acceptor ion concentration, and ρtrap the charge density contributed by traps and 

fixed charges. Continuity equations for electron and hole are denoted as:  
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where R represents the net recombination rate for electrons and holes. Modeling the carrier mobilities of the 

JLDGVM are subjected to surface scaterring extreme carrier-carrier scattering, and quantum mechanical 

size quantization effects. These effects need to be taken into account in order to execute the device 

simulation. Lombardi CVT model is opted to be employed in ATLAS module for accurate simulation of 

non-planar MOSFET like JLDGVM. In this model, the mobility parts consist of the transverse field, doping 

dependent and temperature dependent which are given by three combined components as follows: 

 

 (6) 
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where µAC, µb and µsr are the surface mobility limited by scattering with acoustic phonons, mobility limited 

by scattering the optical intervalley phonons and mobility limited by surface roughness respectively. The 

surface mobility of electron and hole are formulated by: 
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where BN.CVT, CN.CVT, DN.CVT, EN.CVT, TAUN are the default electron mobility parameters and 

BP.CVT, CP.CVT, DP.CVT, EP.CVT, TAUP are the default hole mobility parameters, which are preset by 

the Silvaco Atlas. The symbol TL, E┴ and N stand for the temperature, perpendicular component of electric 

field and total doping concentration, respectively.  

The mobility model is combined with SRH (Shockley-Read-Hall Recombination) with fixed 

carrier lifetimes models. This recombination model is opted in order to take the phonon transitions effect 

into account due to the presence of a trap (or defect) within the forbidden gap of the devices. The numerical 

model of SRH recombination is shown as follows: 
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where ETRAP, TL, nie, are the difference between trap energy level and the intrinsic Fermi level, intrinsic 

carrier concentration and lattice temperature in Kelvin, respectively. Meanwhile, TAUN0 and TAUP0 are 

the electron and hole lifetimes which are user definable in the material statement in Atlas module. This 

model will be activated as the SRH parameter of the model statements are defined in Atlas module. 

 

2.2. Device simulation 

The schematic structure of JLDGVM and JDGVM are illustrated in Figure 2. The structures of 

these devices are based on the ultrathin silicon pillar/body in order to operate in fully depleted mode. Both 

devices are designed based on the similar geometrical parameters in which the channel length (Lch), pillar 

thickness (Lp) and hafnium dioxide (HfO2) thickness are set to 11 nm, 9 nm and 3 nm respectively. All the 

detailed geometrical and process parameters ulitized for both devices are summarized in Table 1. In term of 

process parameters, the silicon substrate of n-channel JLDGVM is heavily doped with concentration of 

1x10
18

 cm
-3

 of n-type dopant (Arsenic). On the other hand, the silicon substrate is heavily doped with the 

concentration of 1x10
18

 cm
-3

 of p-type dopant (boron) for p-channel JLVDGM. In constrast, JDGVM design 

utilizes the opposite dopant type where the silicon substrate is doped with the concentration of 1 x 10
14

 cm
-3

 

of p-type dopant (boron) for n-channel device and with the concentration of 1 x 10
14

 cm
-3

 of n-type dopant 

(arsenic) for p-channel device. This is because the working principle of n-channel JDGVM and  

p-channel JDGVM are based on N-P-N (Inversion-mode) and P-N-P (Accumulation-mode) respectively.  

 

 

Table 1. Parameters used in the simulated devices 

Parameter Units 
JLDGVM JDGVM 

n-type p-type n-type p-type 

Channel Length, Lch nm 11 11 11 11 
Pillar Thickness, Lp nm 9 9 9 9 

High-k material thickness, Thigh-k nm 3 3 3 3 

Channel doping, Nch cm-3 1.0E18 1.0E18 1.0E14 1.0E14 
S/D doping, Nsd cm-3 1.0E18 1.0E20 1.0E18 1.0E14 

Metal work-function, WF eV 4.5 4.7 4.5 4.7 

 

 

The source and drain regions of the JLDGVM are heavily doped with the same type of dopant used 

in the channel region where 1x10
18

 cm
-3

 concentration of n-type dopant (Arsenic) and 1x10
20

 cm
-3
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concentration of p-type dopant (boron) are implanted for n-channel JLDGVM and p-channel JLDGVM, 

respectively. This is important in order to form the junctionless configurations that require an N+–N+–N+ 

(n-channel) and a P+–P+–P+ (p-channel) doped structure for the source, channel and drain region. The S/D 

doping for JDGVM is in contrast with the JLVDGM where 1 x 10
18

 cm
-3

 concentration of n-type dopant 

(Arsenic) and 1 x 10
14

 cm
-3

 concentration of p-type dopant (boron) are employed for n channel JDGVM and 

p channel JDGVM, accordingly. The physical high-k dielectric thickness (Thigh-k) of 3 nm is considered for 

both JLDGVM and JDGVM devices in order to keep the equivalent oxide thickness (EOT) intact. The HfO2 

is a dielectric material applied for both devices as it has permitivity 4–6 times higher than that of  

silicon dioxide. 

 

 

 

 
 

Figure 2. 2D structure of double-gate vertical MOSFETs, (a) n-JLDGVM (Junctionless), (b) n-JDGVM 

(Inversion-mode), (c) p-JLDGVM (Junctionless), (d) p-JDGVM (Accumulation mode) 

 
 

Having a larger dielectric constant would enable thicker insulator to be used for leakage reduction 

while retaining fast reaction of the device. The presence of two metal gates (tungsten silicide) that wrap the 

ultrathin pillar would help in producing an accelerating force to drive the charge carrier into the channel, 

thus improving the on-current (ION) as well as suppressing the SCE. For both type of devices, the metal 

work functions of n-type and p-type device are taken as WF=4.5 eV and WF=4.7 eV, respectively. The 

doping profile across the JLDGVM device is shown in Figure 3 where the net doping for silicon, hafnium 

dioxide, tungsten silicide and aluminum has been clearly displayed. 

The ATLAS module provides specific characteristics such as the ID-VG curve that enable the 

extraction of critical device characteristics such as threshold voltage (VTH), drive current (ION), off-leakage 

current (IOFF), ION/IOFF ratio and subthreshold slope (SS). The device simulation condition [31] as shown in 

Table 2 is used to generate ID-VG transfer characteristics for DC characteristics extraction. All the 

investigated characteristics are extracted and computed from the generated ID-VG transfer characteristics. In 

the next section, the simulation results for JLDGVM and JDGVM devices were then analyzed, compared 

and further discussed. 
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Figure 3. Contour Mode of n-JLDGVM layout 

 

 

Table 2. Device simulation condition  

Electrical Characteristics Drain Voltage, VD (V) 
Gate Voltage, VG (V) 

VInitial VStep VFinal 

Threshold Voltage (VTH) 1.0 0 0.1 2.0 
On-state Current (ION) 1.0 0 0.1 2.0 

Off-state Current (IOFF) 1.0 0 0.1 2.0 

Subthreshold Slope (SS) 1.0 0 0.1 2.0 

 

 

3. RESULTS AND ANALYSIS 

In this section, all the simulation results and its discussion are briefly described for both JLDGVM 

and JDGVM devices. In order to study and analyze the performance of JLDGVM and JDGVM devices, the 

VTH values of both devices were tuned at 0.25 V. In other words, all the investigated characteristics were 

normalized to the fixed VTH value for unbiased performance evaluation. The variation of ID-VG transfer 

characteristics of both JLDGVM and JDGVM devices, shifting the curves to the positive x-axis for  

n-channel and to the negative x-axis for p-channel is depicted in Figure 4.  
 

 

 
 

Figure 4. ID-VG transfer characteristics of both JLDGVM and JDGVM 
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Based on the graph, it is clearly shown that the ID of both n- and p-channel JLDGVM were 

significantly larger than JDGVM. The ID of the n-JLDGVM and p-JLDGVM could be tremendously 

enhanced by 57% and 60% respectively as the junctionless configuration was applied to the double-gate 

vertical MOSFET. Such occurrence is majorly due to the electric field perpendicular to the flow of current 

in the junctionless configuration is significantly less than in the junctioned configuration. In junctioned 

configuration, the carriers propagating from source to drain experience much higher phonon scattering due 

to high electric field which subsequently lead to mobility degradation. Since the electrons/holes mobility in 

the channel region is significantly associated with this electric field, a much lower electric field featured in 

the JLDGVM could contribute a significant rise in drain current which is desirable for nanometer-scale 

complementary metal-oxide semiconductor applications. 

Figure 5 depicts the semilog ID-VG transfer characteristics for both JLDGVM and JDGVM. The 

value of ION, IOFF and SS of both devices can be extracted from the graph. It is shown that the ION 

magnitudes for the n- and p-channel JLDGVMs are approximately 50% higher than the JDGVMs. The 

majority carriers in the JDGVM‟s channel are heavily scattered due high electric field, whereas, the 

JLDGVMs experience much lower electric field that significantly increases the electrons/holes volume in 

the channel, subsequently leading to higher ION. In term of off-current (IOFF), the n- and p-channel 

JLDGVMs exhibit approximately 20% and 75% smaller IOFF than the JDGVMs. This implies the presence 

of junction in JDGVMs did cause larger effect of band-to-band-tunneling, leading to a significant leakage 

in the OFF state condition.  

 

 

 
 

Figure 5. Semilog ID-VG transfer characteristics of both JLDGVM and JDGVM 

 

 

The ION/IOFF ratio is an important figure of merit for having high performance (more ION) and low 

leakage (less IOFF) for the CMOS transistors. Figure 6 depicts the bar graph, indicating the level of ION/IOFF 

ratio between JLDGVM and JDGVM for both types of channel.  

Based on the bar graph, the n-channel and p-channel JLDGVM devices exhibit approximately 

44% and 90% higher ION/IOFF ratio over the n-channel and p-channel JDGVM devices respectively. This 

implies that the JLDGVM devices feature a better power consumption than the JDGVM devices as the 

devices could switch instantly from „OFF‟ to „ON‟ or vice versa at a minimum rate of required gate 

voltage. The increasing rate of drain current below the threshold limit is defined by a characteristic called 

the subthreshold slope (SS), which is mathematically derived from the semilog ID-VG transfer 

characteristics as: 

 

))(log( D

G

Id

dV
SS   (10) 

 

where the logarithm is in base 10, VG is the gate voltage  and ID is the drain current. Figure 7 shows the bar 

graph, indicating the SS values between JLDGVM and JDGVM for both types of channel. 
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Figure 6. Bar Graph of the ION/IOFF ratio for 

JLDGVM and JDGVM devices 

Figure 7. Bar Graph of the ION/IOFF ratio for 

JLDGVM and JDGVM devices 

 

 

The SS magnitude is commonly monitored to determine the scalablity limit of the device in which 

the changing rate of required gate voltage to increase the drain current by one decade is measured. Based on 

Figure 7, the n-channel and p-channel JLDGVM devices exhibit approximately 9.8% and 1.5% lower SS 

value than the n-channel and p-channel JDGVM devices respectively. The smaller SS indicates that the 

device has lower power consumption as it only requires minimum changes in VG to increase one decade of 

ID. Hence, the device with smaller SS (JLDGVM) would reach saturation mode much faster than the device 

with larger SS (JDGVM). For instance, the SS value for n-channel JLDGVM is 68.4 mV/decade, implying 

that a 68.4 mV increase of VG would contributes approximately a tenfold increase in the ID as shown in 

Figure 5. Therefore, in order to switch the current from its off-state (1.34E-12 A/µm) to the on state 

(ID=7.9E-9 A/µm at threshold), a swing in VG of 

 

V
AE

AE
mV 258.0

1234.1

99.7
log4.68 




  

 

is required. Similar to n-channel JDGVM, the SS value is measured at 75.8 mV/decade, thereby switching 

the current from from its off-state (1.68E-12 A/µm) to the on state (ID=2.7 E-7 A/µm at threshold) requires 

a swing in VG of  

 

V
AE

AE
mV 395.0

1268.1

77.2
log8.75 




  

 

is required. This implies that the n-channel JLDGVM can be turned on from its off-state much faster than 

the n-channel JDGVM.  

In practice, the gate control over the channel region might not perfect due to electrostatic coupling 

between the gate and the ultrathin channel. This issue is mainly aroused due to the geometry-related 

process parameters such as channel length (Lch) and pillar thickness (Tp), which, on the other hand, 

significantly deteriorate the performance of JLDGVMs. Since controlling process variations become the 

crucial factor in deciding the JLDGVM‟s performances, several optimization approaches [32-34] can be 

conveniently employed for further improvement.  

 

 

4. CONCLUSION 

In summary, the DC behaviours and performances of junctionless double-gate vertical MOSFETs 

(JLDGVMs) are compared with the junction double-gate vertical MOSFETs (JDGVMs). The performance 

evaluation of JLDGVMs and JDGVMs are made in term of on-state current, off-state current, ION/IOFF ratio 

and subthreshold slope. Junctionless devices are observed to experience less short-channel effects than the 

junction devices. Comparison of ID-VG transfer characteristics are made between junctionless devices and 

junction devices, and the benefits of bulk transport in junctionless devices are clearly portrayed via the 

tremendous improvement of the drain current as the gate voltage is increased. Junctionless devices also 

have larger ION/IOFF ratio and smaller subthreshold slope compared to the junction devices, implying that 
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the junctionless devices have better power consumption and faster switching capability. For future work, 

the impact of process parameters towards AC behavior of the JLDGVMs will be futher investigated. In 

addition, optimization approaches could be deployed for further enhancing the device performances. 
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