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The interaction between two inclined cracks subjected to remote tension lying in the upper half of bonded 

dissimilar materials is considered. The hypersingular integral equation for the problem is formulated 

using the complex variable function method with the crack opening displacement function as the 

unknown and the tractions along the crack as the right-hand term. The appropriate quadrature formulas 

are applied in solving the hypersingular integral equation for the unknown function. Numerical results 

showed that the nondimensional stress intensity factor depends on the position of the cracks and the 

elastic constants ratio. 
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I. INTRODUCTION 

 
 

A number of papers have been published to analyze the 

stability and safety of the materials which contains cracks in 

an infinite plane (Murakami et al., 1987, Chen, 1993), finite 

plane (Chen, 1987, Lai & Schijve, 1990), half plane (Chen et 

al., 2009; Elfakhakhre et al., 2017). For crack problems in 

bonded dissimilar materials, Fredholm integral equations 

with density distributions as undetermined functions were 

used to calculate the nondimensional stress intensity factor 

(SIF) (Chen, 1986). The nondimensional SIF for a circular 

arc crack problem embedded in one of two bonded dissimilar 

materials were solved using logarithmic singular integral 

equation (Chen & Hasebe, 1992). The nondimensional SIF of 

a perpendicular crack to the interface of bonded dissimilar 

materials were calculated by utilising the combinations of 

Chebyshev polynomials and collocation methods (Yang & 

Wang, 2018). The body force method with continuous 

distributions along cracks were used to find the 

nondimensional SIF of the crack problems in bonded 

dissimilar materials but excluded cracks at the interface 

(Isida & Noguchi, 1993). The combination of direct boundary 

integral method and displacement discontinuity method was 

used in solving the crack problems in bonded dissimilar 

materials (Long & Xu, 2016). The nondimensional SIF for 

two-dimensional interface cracks, three-dimensional penny-

shaped cracks and circumferential surface cracks in bonded 

dissimilar materials were calculated by using the 

proportional crack opening displacements (Lan et al., 2017). 

The nondimensional SIF was calculated for the collinear 

interface cracks in bonded dissimilar materials by combining 

the solution of the inner and outer collinear cracks (Itou, 

2016). The linear elastic fracture analysis for interface crack 

problems in bonded dissimilar materials was proposed by an 

extended finite element method (Wang & Waisman, 2017). 

The edge cracks, semi-infinite interface cracks and substrate 

cracks in bonded dissimilar materials were analyzed using 



ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26  
 

 

168  

the randomly oriented inclusions and networks (Birman, 

2018). 

The aim of this paper is to investigate the interaction 

between two cracks lie in the upper half of bonded dissimilar 

materials subjected to the remote stress from the x-axis 

direction, 𝜎𝑥 = 𝑝 for any 𝑝 ∈ ℝ by using the modified 

complex variable function method. 

 
II. PROBLEM FORMULATION 

 
 
Complex variable function method introduced by 

Muskhelishvili (1953) is used to formulate the hypersingular 

integral equations (HSIE) for the interaction between two 

cracks lie in the upper half of bonded dissimilar materials. 

The stress components ( ), ,x y xy   , the resultant force 

function ( ),f X Y  and the displacements ( ),u v  can be 

described by two complex potential functions ( )   and 

( )   as follows 

  ( ) ( )2 2 " 'y x xyi       − + = +
 

 (1) 

  ( ) ( ) ( )'f Y iX      = − + = + +  (2) 

  ( ) ( ) ( ) ( )2 'G u iv      + = − −  (3) 

where G is shear modulus of elasticity, 3 4v = −  for plane 

strain, ( ) ( )3 1v v = − +  for plane stress and v is 

Poisson’s ratio and a bar over a function denotes the 

conjugated value. A derivative in a specified direction of Eq. 

(2) denotes the traction along the crack segment , d  +  

with its normal and tangential components are N and T, 

respectively, as follows 
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 (4) 

where N iT+  depends on the positions of point x iy = +  

and the direction of the segment .d d   

Nik Long & Eshkuvatov (2009) expressed the complex 

potentials for a crack L in an infinite plane as follows 
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where ( )g   is COD function defined by 

 ( )
( )

( ) ( )( ) ( ) ( )( )
2

1

G
g u iv u iv

i
    


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( ) ( )( )u iv 
+

+  and ( ) ( )( )u iv 
−

+  denote the 

displacement at point   of the upper and lower crack faces, 

respectively. 

Modified complex potentials for the crack lie in bonded 

dissimilar materials are defined as 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

,p c

p c
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= +
 (6) 

where ( )1p   and ( )1p   are the principle parts and 

( )1c   and ( )1c   are complementary parts of the 

complex potentials at the upper plane. These complex 

potentials are defined as follows 
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 (7) 

where the principle parts of complex potentials are referred 

to an isotropic homogeneous materials or infinite plane and 

( ) ( )1 1p p   = . The complex potentials for the lower 

plane ( )2   and ( )2   are defined as follows 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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 (8) 

The bi-elastic constants 1  and 2  are defined as 

2 1 1 2 2 1
1 2

1 1 2 2 2 1

, .
G G G G

G G G G

 

 

− −
 =  =

+ +
 

The HSIE for a crack lies in the upper half of bonded 

dissimilar materials can be obtained by substituting Eq. (6) 

into (4) and applying Eqs. (5) and(7), then letting point  
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approaches 0  on the crack and changing d d   into 

00d d  , yields 
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where 

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )( )

( )

( ) ( )

( ) ( ) ( )

( )

( )

2

0 0
1 0 2 2

00 0

0

1 2 3

0 0

0 00 0 0
0

3 4
0

0 0

0
22 2

0
0 0

0
1 2 2 2

0
0 0 0

00

3

0

1
, 1

21

2 2 3 6

1 1

1 1 1

2

dd
A

d d

d

d

d

d

d

d

  
 

    

 

   

      

    



   



     

 

 

 
− 

= −
 

− −  


−


+  +


− −


− + − −

+ −
 − −





− + 
− −

 


+  + − 
− − − 


− 

+ 
−



d

d











 

 

( )
( )

( )
( )

( ) ( )

( )

( )

( )

( )
( )

( )

0
0 0

2 0 3
0 0

0

0
1 2 2

0
0 0

00
0

2 3
0

0 0

0

1 2 3

0 0

,

1 1
2

21

21
.

dd
A

d d

dd

d d

d

d

d

d

    
 

    



     

 

    

  

   

 −  − = +   −  − 


 

− +  + 
 − −

 
−  

− +  
 − −  

 
− 

+  + 
 − −
   

In Eq. (9), first integral on the right of the equation is 

hypersingular, others are regular. 

 

Figure 1. Superposition principle for the two cracks problem 

 

Superposition principle can be applied for solving two 

cracks 1L  and 2L  lie in the upper half of bonded dissimilar 

materials (Fig. 1(a)). Summation of an elastic bonded 

dissimilar materials with remote tension x p  =  (Fig. 

1(b)), crack problems with loading on the crack faces of 1L  

(Fig. 1(c)) and 2L  (Fig. 1(d)) yields the HSIE for the two 

cracks as follows 

 

( ) ( )( )
( )

( )

( ) ( )

( ) ( )
( )

( )

( ) ( )

( ) ( )

0 0 2

0

1 0

2 0 2

0

1 0

2 0

1

1
,

2

1 1
,

2

1
,

2

1
,

2

j

j

j k

k

k

j j j

j j
j

L
j j

j j j j j

L

k k k

j j j j j

L L
k j

k j k k k

L

k j k k k

L

g d
N iT

A g d

g d
A g d

A g d

A g d

 
 

  

   


 
   

   

   


   


+ =
−

+

+ +
−

+

+





 





 (10) 

where ( ), 1,2k j k j=  . In Eq. (10), the first three 

integrals on the right hand side represent the traction 

influence on crack 1L  caused by COD ( )1 1g   on crack 1L . 

The next three integrals represent the traction influence on 

crack 1L  caused by COD ( )2 2g   on crack 2L . 

If 2 0G = , then 1 2 1 =  = − , Eqns. (9) and (10) reduce 

to the HSIE for a single and multiple cracks in a half plane 

elasticity, respectively (Chen et al., 2009). If 1 2G G= , then 

1 2 0 =  = Eqns. (9) and (10) reduce to the HSIE for a 
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single and multiple cracks in an infinite plane, respectively 

(Nik Long & Eshkuvatov, 2009). 

In order to solve the HSIEs (9) and (10), we map the 

function ( )j jg  on a real axiss with an interval 2a as 

follows 

  ( ) ( )2 2 , 1,2.
j j

j j j j j j
t s

g a s H s j
=

= − =  (11) 

The following quadrature formulas are used to find the 

numerical solutions of HSIEs (10) and (11)  
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where ( ) ( ) ( )1 2 ,j j j j j jH s H s iH s M += +  , 
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Here ( )nU t  is a Chebyshev polynomial of the second kind, 

defined by 
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III. NUMERICAL RESULTS 
 

The stress intensity factor (SIF) at the tips jA  and jB  of 

crack jL  are defined as 
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where 1,2j = . 

 

 
Figure 2. Two inclined cracks in the upper half of bonded 

dissimilar materials 

 

Table 1. SIF for two inclined cracks when 1 2 90o = =  

G2/G1 SIF 
R/h 

0.1 0.3 0.5 0.7 0.9 

0.0 

F1A1
a 1.0042 1.0411 1.1320 1.3345 1.9925 

F1A1
b 1.0042 1.0411 1.1320 1.3345 1.9925 

F1A2
a 1.0040 1.0380 1.1160 1.2811 1.8144 

F1A2
b 1.0041 1.0380 1.1160 1.2811 1.8145 

F1B1
a 1.0019 1.0209 1.0727 1.2043 1.7106 

F1B1
b 1.0017 1.0209 1.0729 1.2042 1.7107 

F1B2
a 1.0017 1.0160 1.0455 1.0992 1.2200 

F1B2
b 1.0016 1.0160 1.0457 1.0991 1.2200 

1.0 

F1A1
a 1.0011 1.0101 1.0280 1.0579 1.1174 

F1A1
c 1.0012 1.0102 1.0280 1.0579 1.1174 

F1A2
a 1.0013 1.0138 1.0479 1.1332 1.4538 

F1A2
c 1.0013 1.0138 1.0480 1.1333 1.4539 

a Present study 

b Elfakhakhre et al. (2017) 

c Murakami et al. (1987) 
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The nondimensional SIF for two inclined cracks lies in the 

upper half of bonded dissimilar materials with

1 2 90o = =  and R h varies are presented in Table 1. 

Our results agree well with those of Elfakhakhre et al. (2017) 

for 2 1 0.0G G = . For 2 1 1.0G G = , our results are in good 

agreement with those of Murakami et al. (1987). For 

2 1 1.0G G = , the nondimensional SIF at crack tips 1A  and 

2A  are equal to SIF at tips 2B  and 1B , respectively.  

Fig. 3 shows the nondimensional SIF against R h  for 

different values of 2 1G G . It is found that as the ratio 

2 1G G  increases, the nondimensional SIF decreases. At 

cracks tips 2A , 1B  and 2B  the nondimensional SIF 

increases as R h  increases whereas at crack tip 1A  

nondimensional SIF increases for 2 1 1.0G G   and 

decreases for 2 1 1.0G G  .  

Table 2 shows the nondimensional SIF for two inclined 

cracks lie in the upper half of bonded dissimilar materials for 

different values of 1 , 2 90o =  and 0.9R h = . Our 

results are comparable with those of Chen (1993) for 

2 1 1.0G G = . For the different values of 2 1G G , the 

nondimensional SIF against 1  are presented in Fig. 4. It is 

found that as the angle 1  increases the nondimensional SIF 

increases. However, the nondimensional SIF decreases as 

the ratio 2 1G G  increases at all crack’s tips. 

 

 

 

 

 

 

 

(a) SIF at the crack tip 1A  

 

(b) SIF at the crack tip 2A  

 

(c) SIF at the crack tip 1B  

 

(d) SIF at the crack tip 2B  

Figure 3. SIF for two inclined cracks when 1 2 90o = =  
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(a) SIF at the crack tip 1A  

 

(b) SIF at the crack tip 2A  

 

(c) SIF at the crack tip 1B  

 

(d) SIF at the crack tip 2B  

Figure 4. SIF for two inclined cracks when 1  is changing, 

2 90o =  and 0.9R h =  

Table 2. SIF for two inclined cracks for 2 1 1.0G G = , 

2 90o = , 0.9R h = and different value of 1  

SIF 
1  

00 300 600 900 

F1A1
a 0.0305 0.3086 0.8566 1.1174 

F1A1
b 0.0305 0.3086 0.8566 1.1174 

F1A2
a 0.0305 0.3101 1.0252 1.4538 

F1A2
b 0.0305 0.3101 1.0252 1.4539 

F1B1
a 1.0070 1.0756 1.2932 1.4538 

F1B1
b 1.0071 1.0757 1.2933 1.4539 

F1B2
a 1.0040 1.0310 1.0938 1.1174 

F1B2
b 1.0040 1.0310 1.0939 1.1174 

a Present study 

b Chen (1993) 

 

IV. CONCLUSION 
 
 

In this paper the modified complex variable function method 

were used to formulate the hypersingular integral equations 

for two inclined cracks lie in the upper half of bonded 

dissimilar materials with different elastic constants 1G  and 

2.G  Numerical results showed the behavior of the 

nondimensional SIF at the cracks tips. For 2 0G =  and 

1 2G G=  the nondimensional SIF at all crack tips are equal 

to the SIF at cracks tips in half plane and infinite plane 

elasticity problems, respectively. The nondimensional SIF 

increases for 2 1 1.0G G   and decreases for 2 1 1.0G G   

as the distance between the cracks and the boundary 

decreases at crack tip 1A . However, for the constant distance 

between the cracks and the boundary, the nondimensional 

SIF at all cracks tips decreases as the elastic constant ratio 

2 1G G  increases. 
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