
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-8S, June 2019

327

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: H10550688S19/19©BEIESP

Abstract: The focus of network security is to provide the

secure, effective and private communication between the sender

and the receiver. To achieve the aim of high security of sending

information, the improvement in cryptography is needed to make

sure the protection of the information against unauthorized

users. Symmetric-key cryptography satisfies the constraint of

resources in computational complexity performances, but it

offers weak security since it is not resilient against physical

compromise. One of the way to overcome the issue is by providing

a cryptographic key that is strong, hard to break and almost

unpredictable by the intruder. As the advancement of technology

in Artificial Intelligence (AI), Genetic Algorithm (GA) is

implemented to generate the best-fit key in symmetric-key

cryptography. Due to natural selection of GA process, the

generated key is found to be the most random and non-repeating

as possible. Moreover, the fitness test shows the average fitness

value of a generated key increases when the key length increases.

Index Terms: Best-fit Key, Genetic Algorithm, Randomness,

Symmetric-key

I. INTRODUCTION

Technology advancement is changing by leaps. Internet and

technology rules our lives. Solving problems as easy as by

browsing and clicking the solution in the internet via smart

devices and laptops. Unfortunately, valid users as well as

others can access the personal and private information

without proper and strong security measurement. This gives

the opportunity to the unauthorized user to steal the data or

information for misuse.

Today, platform such as online banking, e-commerce and

online shopping critically apply cryptography to provide the

confidentiality of the user’s information [1]. There are two

processes involved in cryptography, which are encryption

and decryption. For both processes, they use keys, either

private key or public key [2]. Symmetric key cryptography

involves only one key for encryption and decryption

process, while, asymmetric key requires two keys, a public

key for encryption and a private key for decryption process

[3].

Revised Manuscript Received on May 22, 2019.
Afiqah Zahirah Zakaria, Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Sofia Najwa Ramli, Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Chuah Chai Wen, Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Cik Feresa Mohd Foozy, Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

P. Siva Shamala Palaniappan, Faculty of Computer Science and

Information Technology, Universiti Tun Hussein Onn Malaysia, Johor,

Malaysia

Nur Fadzilah Othman, Faculty of Information and Communication

Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

Key is a root of cryptography process. It is a required

parameter to make the transmitted information

undecipherable. It specifies the particular transformation of

the given plaintext into a cipher and vice versa [4]. For this

reason, the key represents a shared secret between two or

more parties that can be used to maintain private

information [3]. Thus, it shows that symmetric key has its

own weaknesses where it needs a secure channel to

exchange the secret key. Due to it is a sharing key, the

sender has to ensure that the exchanged remains in secret

way. Besides, it has a problem that the origin and

authenticity of message cannot be guaranteed especially

when there is a dispute. This is because the sender and

receiver use the same key, so it quite difficult to verify the

message came from a particular user [5].

Despite the fact of the disadvantages of symmetric key, it

also has its own good side. The benefit of symmetric key is

the type of encryption is easy to carry out. The senders just

need to specify and share the secret key, then, the process of

encryption and decryption messages can be begin. Other

than that, the use of symmetric key prevents widespread

message security compromise [6]. For every communication

with every different party, a different secret key is used. If a

key is compromised, only the messages between a particular

pair of sender and receiver are affected. The others

communications are still secure.

Therefore, the key particularly in symmetric cryptography

needs to be random and unique so that it is hard to break by

unauthorized user [3]. Consequently, the best-fit key is

needed to ensure the technique to protect information are

implemented effectively. Previously, researchers introduced

several types of cryptography techniques such as Advanced

Encryption Standard (AES) and Data Encryption Standard

(DES) for symmetric key and Rivest, Shamir and Adleman

(RSA) algorithm, Diffee-Hellman Key Exchange and

Elgamal Cryptography for asymmetric key [4]. However,

the growth of Artificial Intelligence (AI) inspires the

researchers to propose several approaches in improving

cryptography techniques. This study presents Genetic

Algorithm as an approach to provide the best-fit key for

encryption and decryption, and thus make the information

harder to be deprived by any unauthorized users [3].

This paper is organized into five sections. Section 1

provides brief introduction on symmetric-key cryptography

and highlights several security issues. Section II discusses

related work on generating the key and Section III illustrates

the process of GA to find the fittest key for symmetric

cryptography.

Enhancing the Randomness of Symmetric Key

using Genetic Algorithm

Afiqah Zahirah Zakaria, Sofia Najwa Ramli, Chuah Chai Wen, Cik Feresa Mohd Foozy,

P. Siva Shamala Palaniappan, Nur Fadzilah Othman

Enhancing the Randomness of Symmetric Key using Genetic Algorithm

328

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: H10550688S19/19©BEIESP

Section IV presents the result and analysis of the result.

Finally, Section V concludes the study.

II. RELATED WORKS

As the increase of technology in this world today, experts

and researchers need to come out with the most suitable

method to keep any information safe against the attackers.

The key with the properties of optimal randomness and

uniqueness is one of the efforts to enhance cryptography

process [4]. Thus, a good source of randomness is crucial

for a number of cryptographic operations especially to

establish secret session keys while commitment schemes use

randomness to hide committed value [7].

Genetic Algorithm or GA is a function that imitates the

process of natural selection in AI. The combination of

randomness and permutation makes the algorithm robust

and hard to break [3]. In a research conducted by Conci,A.

et.al (2015), they focus on AES cryptography in color image

steganography. The process was divided into two

methodologies, which are genetic algorithm and path

relinking. It also involves a hybrid approach, Least

Significant Bits (LSB) substitution technique. In this

research, GA is used to enhance the quality of the resulting

image [8].

On the other hand, GA is used to analyse the security of

quantum key distribution (QKD) protocols. The maximum

tolerated noise level of a QKD protocol is found by

implementing GA to improve the tolerated bound. In this

research, GA evolves candidate solution G, where the initial

solution is constructed by setting each element of G to a

number chosen randomly in the internal range [-2, 2]. By

choosing the range, it seems to provide good results which

therefore, it did not spend a lot of time experimenting with

other choices. Then, crossover takes place to cross one point

for each individual vector in the collection G and the

mutation process takes place. The 50 populations are

generated at the end of the experiment. Thus, it shows the

technique can be used to analyse the security of complicated

QKD protocols requiring the adversary to interact with the

users [9].

Due to the exploitation of randomness involved in

crossover and mutation process in GA, this paper proposes

GA to find the best-fit symmetric key in cryptography field.

The calculation of fitness function depends upon the

coefficient of auto correlation and phi-coefficient may help

the GA technique to decide the best key from the result

produced.

III. GENERATING BEST-FIT CRYPTOGRAPHIC

KEY USING GENETIC ALGORITHM

Figure 1 illustrates the flowchart of GA to generate best-

fit symmetric key. Based on pseudo random number

generator used to produce unique keys in various ciphers,

GA starts with generating population known as

chromosomes of computer generated random keys. The

number of genes equals to the length of key used. In this

study, the lengths of the key used are 48-bits and 128-bits

size due to DES and AES techniques respectively. Thus, a

random initial population of 100 chromosomes each having

48 genes and 128 genes are generated. The population size

depends on the large number of possible solutions. After the

population is generated, it undergoes the genetic operations

called crossover and mutation that increase the total number

of chromosomes [3]. The individuals are probabilistically

selected to participate in the genetic operations based on

their fitness.

Start

Generate Initial Population

Crossover

Mutation

Calculation of Fitness Function

Ordering

Dominance Testing

Final Key Selection from Repository

Result

End

N times

Fig. 1 The Flowchart of Genetic Algorithm

A. Crossover

The Crossover, known as the sexual genetic

recombination which two randomly chosen individuals

selected from populations undergo the mating process [3]. In

mating process, the first individual bit is from the starting

point until the crossover point while the bit of the second

individual starts from crossover point until the end after of

the chromosome. Figure 2 illustrates the example of the

process. The example shows the point of crossover

happened at crossover point = 25.

The crossover point is randomly generated for each

mating process. As the crossover rate is fixed at 2.5, the

number of crossover is calculated given by (1).

N times

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-8S, June 2019

329

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: H10550688S19/19©BEIESP

Thus, this produces 120 and 320 number of crossovers for

48 and 128 genes of chromosomes respectively. Now, the

total population sizes for both different number of genes

increase to 220 and 420 individually.

 (1)

Parent 1-

000010011011001011010111100011110000111001100001

Parent 2-

000001111001010110010000101011100111011111011001

Child - 0000100110110010110101111

01011100111011111011001

Fig. 2 The Example of Crossover Process from 48 Genes

Chromosome

B. Mutation

Next, the mutation operation takes place. This process

changes one or more genes in a chromosome from its

previous state [10]. Figure 3 shows the mutation process that

happened at mutation point = 45. Based on the previous

example, the original chromosome comes from child as the

output of crossover between Parent 1 and Parent 2. With

mutation rate equals to 0.5, the number of mutation is

calculated given by (2) which gives 52 and 268 number of

mutations. Therefore, the new total population sizes now are

increased to 272 and 692.

 (2)

Original chromosome-

000010011011001011010111101011100111011111011001

Mutated chromosome-

111100110100000111111100011011010100000011000001

Mutate 1 to 0 at point 45

Fig. 3 The Example of Mutation Process

C. Fitness Function

After mutation, fitness function needs to be calculated to

test the suitability of the chromosome to go through the next

process. The individual fitness of the best chromosome is

increasing as the algorithm continues. The total fitness of

the population is also increasing as a whole. This condition

makes the size of the chromosome in binary form increases.

Therefore, the key needs to be converted from binary into

the decimal form.

Gap test and frequency test are performed on 10 selected

populations using fitness function as in Table 1 and Table 2.

Gap test measures the gap between the two repeating

numbers. It is a test to compare each chromosome with the

expected number of gaps. It counts the number of digits that

appears between repetitions of a particular digit. A gap of

length occurs between the recurrences of some digit [11].

Frequency test is used to calculate the randomness and

test the number uniformity distribution. There are two

different methods available, which are Kolmogorov-

Smirnov test and Chi-Square test. The agreement between

the distribution of a sample of generated random numbers

and theoretical uniform distribution is measured by both

tests. Both tests are based on the null hypothesis of no

significant difference between the theoretical distribution

and sample distribution [12]. Kolmogorov-Smirnov (K-S)

Test is chosen because it is widely used as a goodness-of-fit

test [13].

D. Ordering

The ordering step takes place after calculating the fitness

function. Firstly, the chromosomes are arranged in a sorted

order from the highest fitness value to the lowest value

according to their fitness function. Based on Table 1, Figure

4 shows the example of fitness value for Population 1.

Compared to other populations, the fitness value for

Population 1 is the least fitness value.

Population 1-

111000111110111100001011111110111011111011011001

Fitness Value : 0.7026

Fig. 4 The Fitness Value

E. Dominance Testing

The dominance testing is then performed using the output

of ordering step. In this process, the key with the highest

fitness value is being paired with the rest of the keys. Next,

hamming distance is calculated between pairs. The

hamming distance is calculated by performing XOR of the

two binary keys then calculating the number of 1’s [4]. In

Figure 5, Population 10, which is the topmost key with the

highest fitness value are compared to Population 1 as the

lowest fitness value and the hamming distance is calculated

between them. The hamming distance between both

populations is 17.

To end the process, the population with the maximum

hamming distance is then chosen as the key that can

dominate over others. The key is chosen as the final key.

Population 10-

110000000001010101110011010110110101001111110000

Population 1-

111000111110111100001011111110111011111011011001

Fig. 5 The Comparison between Populations

IV. RESULTS AND DISCUSSION

The results in Table 1 and Table 2 are based on two tests

that applied in generated population. There are Gap Test and

Kolmogorov-Smirnov Test. Based on both tests, the results

are used in the fitness function to get the fitness value. The

highest fitness value is selected as the most random key and

be chosen as the key tested in the next steps.

Enhancing the Randomness of Symmetric Key using Genetic Algorithm

330

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: H10550688S19/19©BEIESP

Table. 1 The Test Results with 48 bits

No. Gap

Test

K-S

Test

 Fitness Value =

Position

1 0.5474 0.3125 0.8599 0.7026 10

2 0.6203 0.3542 0.9745 0.7260 5

3 0.5691 0.3542 0.9233 0.7157 9

4 0.5909 0.3542 0.9451 0.7201 7

5 0.5691 0.3958 0.9649 0.7241 6

6 0.6960 0.4583 1.1543 0.7603 1

7 0.6126 0.4583 1.0709 0.7448 2

8 0.5688 0.3750 0.9438 0.7199 8

9 0.5909 0.4792 1.0701 0.7446 3

10 0.5470 0.4792 1.0262 0.7362 4

Table. 2 The Test Results with 128 bits

No. Gap

Test

K-S

Test

 Fitness Value =

Position

1 0.6005 0.4141 1.0146 0.7339 7

2 0.5746 0.4063 0.9809 0.7273 10

3 0.5926 0.4141 1.0067 0.7324 8

4 0.5826 0.4219 1.0045 0.7319 9

5 0.6100 0.4219 1.0319 0.7373 6

6 0.6005 0.4766 1.0771 0.7459 2

7 0.6005 0.4531 1.0536 0.7415 4

8 0.5767 0.4688 1.0455 0.7399 5

9 0.5688 0.4922 1.0610 0.7429 3

10 0.6005 0.4922 1.0927 0.7489 1

Table 3 shows the result of the average fitness value and

the computational complexity for Genetic Algorithm. The

results states that the accuracy measured based on fitness

value is increased if the key length increases. This may due

to the greater of the key length makes the population

generated through the process of GA most random and the

probability of the repetition reduces. However, the

computational time shows that the time taken for the

algorithm to run increases due to the difference of the key

length. In conclusion, 128 bits has higher fitness than 48 bits

key size but it takes longer computational than 48 bits.

Table. 3 The Result of Computational Analysis for

Genetic Algorithm

No. Analysis of Result Genetic Algorithm

48 bits 128 bits

1. Accuracy based on

average fitness value
0.7294 0.7382

2. Elapsed time (sec)

1.386 1.593

3. Self-time (sec) 1.333 1.581

V. CONCLUSION

Both 48 bits and 128 bits key sizes produce the results

based on three parameters that are measured at the end of

this study. The fitness test reveals that the longer key length

is produced, the higher fitness value is determined.

Nevertheless, elapsed time and self-time increases as the key

length increases. This is because it needs more time to

undergo several processes in GA which are complex and

most random so that make almost impossible for the

cryptanalysts to attack the data.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their

helpful comments. The authors would also like to appreciate

the support of Universiti Tun Hussein Onn Malaysia for

funding the study under Tier 1 Grant (H208).

REFERENCES

1. Kumari, S., “Recurrent sequences and cryptography,” Master in

Science dissertation, Department of Mathematics, National Institute of

Technology Rourkela, India, 2013.

2. Dutta, S., Das, T., Jash, S., Patra, D. and Paul, P., “A Cryptography

Algorithm Using the Operations of Genetic Algorithm & Pseudo

Random Sequence Generating Functions,” International Journal, vol.

3(5), 2014.

3. Jhingran, R., Thada, V. and Dhaka, S., “A study on cryptography using

genetic algorithm,” International Journal of Computer

Applications, vol. 118(20), 2015.

4. Jawaid, S., & Jamal, A., “Generating the Best Fit Key in Cryptography

using Genetic Algorithm,” International Journal of Computer

Applications, vol. 98(20), pp. 33–39, 2014.

5. Kalaiselvi, K. and Kumar, A., “An empirical study on effect of

variations in the population size and generations of genetic algorithms

in cryptography,” in 2017 IEEE International Conference on Current

Trends in Advanced Computing (ICCTAC), pp. 1-5.

6. Hussain, H. N., “Implementation of Symmetric Encryption

Algorithms,” vol. 8(4), pp. 13–18, 2017.

7. Tipcevic, Mario & Kaya, Koc, Cetin. “True Random Number

Generators,” in Open Problems in Mathematics and Computational

Science, 2014, pp. 1–45.
8. Conci, A., Brazil, A.L., Ferreira, S.B.L. and MacHenry, T., “AES

cryptography in color image steganography by genetic algorithms,”

in 2015 IEEE/ACS 12th International Conference of Computer Systems

and Applications (AICCSA), pp. 1-8.

9. Krawec, W.O., “A genetic algorithm to analyze the security of quantum

cryptographic protocols,” in 2016 IEEE Congress on Evolutionary

Computation (CEC), pp. 2098-2105.

10. Goyat, S., “Cryptography Using Genetic Algorithms (GAs),” Journal

of Computer Engineering, vol. 1(5), pp. 06–08, 2012.

11. Gap Test. (n.d.). Retrieved January 9, 2019, from

https://www.eg.bucknell.edu/~xmeng/Course/CS6337/Note/master/nod

e46.html

12. Frequency test. (n.d.). Retrieved January 9, 2019, from

https://www.eg.bucknell.edu/~xmeng/Course/CS6337/Note/master/nod

e43.html

13. Dong, X., “Small Improvement to the Kolmogorov-Smirnov Test,”

Master of Science dissertation, Department of Mathematics and

Statistics, Georgia State University, Atlanta, GA, 2013.

