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Abstract: The focus of network security is to provide the 

secure, effective and private communication between the sender 

and the receiver. To achieve the aim of high security of sending 

information, the improvement in cryptography is needed to make 

sure the protection of the information against unauthorized 

users. Symmetric-key cryptography satisfies the constraint of 

resources in computational complexity performances, but it 

offers weak security since it is not resilient against physical 

compromise. One of the way to overcome the issue is by providing 

a cryptographic key that is strong, hard to break and almost 

unpredictable by the intruder. As the advancement of technology 

in Artificial Intelligence (AI), Genetic Algorithm (GA) is 

implemented to generate the best-fit key in symmetric-key 

cryptography. Due to natural selection of GA process, the 

generated key is found to be the most random and non-repeating 

as possible. Moreover, the fitness test shows the average fitness 

value of a generated key increases when the key length increases.  

 

Index Terms: Best-fit Key, Genetic Algorithm, Randomness, 

Symmetric-key 

I. INTRODUCTION 

Technology advancement is changing by leaps. Internet and 

technology rules our lives. Solving problems as easy as by 

browsing and clicking the solution in the internet via smart 

devices and laptops. Unfortunately, valid users as well as 

others can access the personal and private information 

without proper and strong security measurement. This gives 

the opportunity to the unauthorized user to steal the data or 

information for misuse. 

Today, platform such as online banking, e-commerce and 

online shopping critically apply cryptography to provide the 

confidentiality of the user’s information [1]. There are two 

processes involved in cryptography, which are encryption 

and decryption. For both processes, they use keys, either 

private key or public key [2]. Symmetric key cryptography 

involves only one key for encryption and decryption 

process, while, asymmetric key requires two keys, a public 

key for encryption and a private key for decryption process 

[3]. 
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Key is a root of cryptography process. It is a required 

parameter to make the transmitted information 

undecipherable. It specifies the particular transformation of 

the given plaintext into a cipher and vice versa [4]. For this 

reason, the key represents a shared secret between two or 

more parties that can be used to maintain private 

information [3]. Thus, it shows that symmetric key has its 

own weaknesses where it needs a secure channel to 

exchange the secret key. Due to it is a sharing key, the 

sender has to ensure that the exchanged remains in secret 

way. Besides, it has a problem that the origin and 

authenticity of message cannot be guaranteed especially 

when there is a dispute. This is because the sender and 

receiver use the same key, so it quite difficult to verify the 

message came from a particular user [5]. 

Despite the fact of the disadvantages of symmetric key, it 

also has its own good side. The benefit of symmetric key is 

the type of encryption is easy to carry out. The senders just 

need to specify and share the secret key, then, the process of 

encryption and decryption messages can be begin. Other 

than that, the use of symmetric key prevents widespread 

message security compromise [6]. For every communication 

with every different party, a different secret key is used. If a 

key is compromised, only the messages between a particular 

pair of sender and receiver are affected. The others 

communications are still secure. 

Therefore, the key particularly in symmetric cryptography 

needs to be random and unique so that it is hard to break by 

unauthorized user [3]. Consequently, the best-fit key is 

needed to ensure the technique to protect information are 

implemented effectively. Previously, researchers introduced 

several types of cryptography techniques such as Advanced 

Encryption Standard (AES) and Data Encryption Standard 

(DES) for symmetric key and Rivest, Shamir and Adleman 

(RSA) algorithm, Diffee-Hellman Key Exchange and 

Elgamal Cryptography for asymmetric key [4]. However, 

the growth of Artificial Intelligence (AI) inspires the 

researchers to propose several approaches in improving 

cryptography techniques. This study presents Genetic 

Algorithm as an approach to provide the best-fit key for 

encryption and decryption, and thus make the information 

harder to be deprived by any unauthorized users [3]. 

This paper is organized into five sections. Section 1 

provides brief introduction on symmetric-key cryptography 

and highlights several security issues. Section II discusses 

related work on generating the key and Section III illustrates 

the process of GA to find the fittest key for symmetric 

cryptography.  
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Section IV presents the result and analysis of the result. 

Finally, Section V concludes the study.  

II. RELATED WORKS 

As the increase of technology in this world today, experts 

and researchers need to come out with the most suitable 

method to keep any information safe against the attackers. 

The key with the properties of optimal randomness and 

uniqueness is one of the efforts to enhance cryptography 

process [4]. Thus, a good source of randomness is crucial 

for a number of cryptographic operations especially to 

establish secret session keys while commitment schemes use 

randomness to hide committed value [7].  

Genetic Algorithm or GA is a function that imitates the 

process of natural selection in AI. The combination of 

randomness and permutation makes the algorithm robust 

and hard to break [3]. In a research conducted by Conci,A. 

et.al (2015), they focus on AES cryptography in color image 

steganography. The process was divided into two 

methodologies, which are genetic algorithm and path 

relinking. It also involves a hybrid approach, Least 

Significant Bits (LSB) substitution technique. In this 

research, GA is used to enhance the quality of the resulting 

image [8]. 

On the other hand, GA is used to analyse the security of 

quantum key distribution (QKD) protocols. The maximum 

tolerated noise level of a QKD protocol is found by 

implementing GA to improve the tolerated bound. In this 

research, GA evolves candidate solution G, where the initial 

solution is constructed by setting each element of G to a 

number chosen randomly in the internal range [-2, 2]. By 

choosing the range, it seems to provide good results which 

therefore, it did not spend a lot of time experimenting with 

other choices. Then, crossover takes place to cross one point 

for each individual vector in the collection G and the 

mutation process takes place. The 50 populations are 

generated at the end of the experiment. Thus, it shows the 

technique can be used to analyse the security of complicated 

QKD protocols requiring the adversary to interact with the 

users [9]. 

Due to the exploitation of randomness involved in 

crossover and mutation process in GA, this paper proposes 

GA to find the best-fit symmetric key in cryptography field. 

The calculation of fitness function depends upon the 

coefficient of auto correlation and phi-coefficient may help 

the GA technique to decide the best key from the result 

produced.  

III. GENERATING BEST-FIT CRYPTOGRAPHIC 

KEY USING GENETIC ALGORITHM 

Figure 1 illustrates the flowchart of GA to generate best-

fit symmetric key. Based on pseudo random number 

generator used to produce unique keys in various ciphers, 

GA starts with generating population known as 

chromosomes of computer generated random keys. The 

number of genes equals to the length of key used. In this 

study, the lengths of the key used are 48-bits and 128-bits 

size due to DES and AES techniques respectively. Thus, a 

random initial population of 100 chromosomes each having 

48 genes and 128 genes are generated. The population size 

depends on the large number of possible solutions. After the 

population is generated, it undergoes the genetic operations 

called crossover and mutation that increase the total number 

of chromosomes [3]. The individuals are probabilistically 

selected to participate in the genetic operations based on 

their fitness. 

 

Start

Generate Initial Population

Crossover

Mutation

Calculation of Fitness Function

Ordering

Dominance Testing

Final Key Selection from Repository

Result

End

N times

 

Fig. 1 The Flowchart of Genetic Algorithm 

A. Crossover 

The Crossover, known as the sexual genetic 

recombination which two randomly chosen individuals 

selected from populations undergo the mating process [3]. In 

mating process, the first individual bit is from the starting 

point until the crossover point while the bit of the second 

individual starts from crossover point until the end after of 

the chromosome. Figure 2 illustrates the example of the 

process. The example shows the point of crossover 

happened at crossover point = 25.  

The crossover point is randomly generated for each 

mating process. As the crossover rate is fixed at 2.5, the 

number of crossover is calculated given by (1).  

N times 
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Thus, this produces 120 and 320 number of crossovers for 

48 and 128 genes of chromosomes respectively. Now, the 

total population sizes for both different number of genes 

increase to 220 and 420 individually. 

 

 (1) 

 
Parent 1-

000010011011001011010111100011110000111001100001 

Parent 2-

000001111001010110010000101011100111011111011001 

Child -  0000100110110010110101111  

01011100111011111011001 
 

Fig. 2 The Example of Crossover Process from 48 Genes 

Chromosome 

B. Mutation 

Next, the mutation operation takes place. This process 

changes one or more genes in a chromosome from its 

previous state [10]. Figure 3 shows the mutation process that 

happened at mutation point = 45. Based on the previous 

example, the original chromosome comes from child as the 

output of crossover between Parent 1 and Parent 2. With 

mutation rate equals to 0.5, the number of mutation is 

calculated given by (2) which gives 52 and 268 number of 

mutations. Therefore, the new total population sizes now are 

increased to 272 and 692. 

 

   (2) 

 
Original chromosome-

000010011011001011010111101011100111011111011001 

Mutated chromosome-

111100110100000111111100011011010100000011000001 

Mutate 1 to 0 at point 45 

 

Fig. 3 The Example of Mutation Process 

C. Fitness Function 

After mutation, fitness function needs to be calculated to 

test the suitability of the chromosome to go through the next 

process. The individual fitness of the best chromosome is 

increasing as the algorithm continues. The total fitness of 

the population is also increasing as a whole. This condition 

makes the size of the chromosome in binary form increases. 

Therefore, the key needs to be converted from binary into 

the decimal form.  

Gap test and frequency test are performed on 10 selected 

populations using fitness function as in Table 1 and Table 2. 

Gap test measures the gap between the two repeating 

numbers. It is a test to compare each chromosome with the 

expected number of gaps. It counts the number of digits that 

appears between repetitions of a particular digit. A gap of 

length occurs between the recurrences of some digit [11].  

Frequency test is used to calculate the randomness and 

test the number uniformity distribution. There are two 

different methods available, which are Kolmogorov-

Smirnov test and Chi-Square test. The agreement between 

the distribution of a sample of generated random numbers 

and theoretical uniform distribution is measured by both 

tests. Both tests are based on the null hypothesis of no 

significant difference between the theoretical distribution 

and sample distribution [12]. Kolmogorov-Smirnov (K-S) 

Test is chosen because it is widely used as a goodness-of-fit 

test [13]. 

D. Ordering 

The ordering step takes place after calculating the fitness 

function. Firstly, the chromosomes are arranged in a sorted 

order from the highest fitness value to the lowest value 

according to their fitness function. Based on Table 1, Figure 

4 shows the example of fitness value for Population 1. 

Compared to other populations, the fitness value for 

Population 1 is the least fitness value. 

 
Population 1-

111000111110111100001011111110111011111011011001 

 

Fitness Value : 0.7026 

 

Fig. 4 The Fitness Value 

E. Dominance Testing 

The dominance testing is then performed using the output 

of ordering step. In this process, the key with the highest 

fitness value is being paired with the rest of the keys. Next, 

hamming distance is calculated between pairs. The 

hamming distance is calculated by performing XOR of the 

two binary keys then calculating the number of 1’s [4]. In 

Figure 5, Population 10, which is the topmost key with the 

highest fitness value are compared to Population 1 as the 

lowest fitness value and the hamming distance is calculated 

between them. The hamming distance between both 

populations is 17.  

To end the process, the population with the maximum 

hamming distance is then chosen as the key that can 

dominate over others. The key is chosen as the final key.  

 
Population 10- 

110000000001010101110011010110110101001111110000 

 

Population 1-

111000111110111100001011111110111011111011011001 

 

Fig. 5 The Comparison between Populations 

IV. RESULTS AND DISCUSSION 

The results in Table 1 and Table 2 are based on two tests 

that applied in generated population. There are Gap Test and 

Kolmogorov-Smirnov Test. Based on both tests, the results 

are used in the fitness function to get the fitness value. The 

highest fitness value is selected as the most random key and 

be chosen as the key tested in the next steps. 
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Table. 1 The Test Results with 48 bits 

No. Gap 

Test 

 

K-S 

Test 

 
 

 Fitness Value = 

 

Position 

1 0.5474 0.3125 0.8599 0.7026 10 

2 0.6203 0.3542 0.9745 0.7260 5 

3 0.5691 0.3542 0.9233 0.7157 9 

4 0.5909 0.3542 0.9451 0.7201 7 

5 0.5691 0.3958 0.9649 0.7241 6 

6 0.6960 0.4583 1.1543 0.7603 1 

7 0.6126 0.4583 1.0709 0.7448 2 

8 0.5688 0.3750 0.9438 0.7199 8 

9 0.5909 0.4792 1.0701 0.7446 3 

10 0.5470 0.4792 1.0262 0.7362 4 

Table. 2 The Test Results with 128 bits 

No. Gap 

Test 

 

K-S 

Test 

 

 Fitness Value = 

 

Position 

1 0.6005 0.4141 1.0146 0.7339 7 

2 0.5746 0.4063 0.9809 0.7273 10 

3 0.5926 0.4141 1.0067 0.7324 8 

4 0.5826 0.4219 1.0045 0.7319 9 

5 0.6100 0.4219 1.0319 0.7373 6 

6 0.6005 0.4766 1.0771 0.7459 2 

7 0.6005 0.4531 1.0536 0.7415 4 

8 0.5767 0.4688 1.0455 0.7399 5 

9 0.5688 0.4922 1.0610 0.7429 3 

10 0.6005 0.4922 1.0927 0.7489 1 

 

Table 3 shows the result of the average fitness value and 

the computational complexity for Genetic Algorithm. The 

results states that the accuracy measured based on fitness 

value is increased if the key length increases. This may due 

to the greater of the key length makes the population 

generated through the process of GA most random and the 

probability of the repetition reduces. However, the 

computational time shows that the time taken for the 

algorithm to run increases due to the difference of the key 

length. In conclusion, 128 bits has higher fitness than 48 bits 

key size but it takes longer computational than 48 bits.  

Table. 3 The Result of Computational Analysis for 

Genetic Algorithm 

No. Analysis of Result Genetic Algorithm 

48 bits 128 bits 

1. Accuracy based on 

average fitness value 
0.7294 0.7382 

2. Elapsed time (sec) 

 
1.386 1.593 

3. Self-time (sec) 1.333 1.581 

V. CONCLUSION 

Both 48 bits and 128 bits key sizes produce the results 

based on three parameters that are measured at the end of 

this study. The fitness test reveals that the longer key length 

is produced, the higher fitness value is determined. 

Nevertheless, elapsed time and self-time increases as the key 

length increases. This is because it needs more time to 

undergo several processes in GA which are complex and 

most random so that make almost impossible for the 

cryptanalysts to attack the data.  
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