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Abstract: In this study of automatic obstacle avoidance maneuver, a fast and precise algorithm
for solving a two-point boundary value problem (TPBVP) is developed. This algorithm realizes
optimal control by minimizing the total vehicle force using integrated steering and braking
control. Such optimal control is characterized by three nonlinear equations that result from
the application of the necessary conditions for optimality. These highly nonlinear simultaneous
equations are nondimensionalized, and algebraic manipulations are performed for simplification.
As a result, they are reduced to a single nondimensionalized equation with the dimensionless
final time as an unknown and aspect ratio as an input that describes the relative position
between the obstacle and vehicle. For a fast and robust solution process, a search interval for a
numerical root solving method is set using approximating polynomials. Based on the solution of
the dimensionless final time, the dimensionless total vehicle force and dimensionless jerk, both
of which are essential aspects of collision avoidance maneuver, can be easily computed.
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1. INTRODUCTION

In automotive engineering, driver assistance systems for
safety are considered the most essential field of study. Col-
lision avoidance systems based on automatic braking are
already available in production vehicles. Collision avoid-
ance by pure braking is effective for cases of low vehicle
speed with high tire-road friction coefficients. Obstacle
avoidance by steering offers better performance for higher
vehicle speed and/or on wet road surfaces. With full uti-
lization of the vehicle friction circle, the integration of
steering and braking has been demonstrated to be more
effective than pure steering (Hattori et al., 2008).

Various objective functions for the optimal control of the
integrated steering and braking have been studied. Shiller
and Sundar (1998) used minimum longitudinal avoidance
distance. In a study by Fujioka et al. (2008), a minimiza-
tion of collision risk was suggested. This collision risk
consists of a risk function that depends on the obstacle
location, a function of time-to-collision or longitudinal
avoidance distance, and a penalty function of longitudinal
and lateral accelerations. The penalty function provides
smooth acceleration/braking and steering actions. Mini-
mization of the time integral of the sum of squared tire
workloads, and front-wheel steering angle rate was studied
by Horiuchi et al. (2006).

In a recent study, a minimization of the total vehicle force
problem was proposed by Ohmuro and Hattori (2010).
By minimizing the total vehicle force, the force margin
is maximized, and this allows operations with some safety
margin. Because of the availability of friction estimation
methods, we can assume online monitoring of the maxi-

mum vehicle force. In order to estimate the friction coef-
ficient, Muller et al. (2003) used friction coefficient versus
slip data for the low slip region; Alvarez et al. (2004) used a
first-order dynamic friction model called the LuGre model;
Wang et al. (2004) used linear and non-linear models
for low and high slips, respectively; and Nishihara and
Kurishige (2011) used the grip margin derived from the
brush model. Note that the obstacle avoidance maneuver
can be realized if the required total force does not exceed
the maximum vehicle force.

In the previous study (Ohmuro and Hattori, 2010), the
application of the optimal control theory results in a two-
point boundary value problem (TPBVP), that is reduced
to a system of highly nonlinear equations. Because of
the difficulties expected in the online solution of these
highly nonlinear equations, they proposed a pair of two-
dimensional maps that provide the total vehicle force
along with the direction angle that constitutes the optimal
control inputs. In general, use of these maps leads to
inaccurate solutions, particularly in the case where the
output is very sensitive to the inputs. Such accuracy could
be improved by increasing map resolution at the expense
of large data storage space.

For one equation in one unknown, fast root finding meth-
ods, such as Newton’s, secant, and inverse quadratic inter-
polation, are available. Brent’s method is a hybrid algo-
rithm that includes the very stable bisection method, and
is known for its combined efficiency and robustness (Brent,
1971). To a system of nonlinear equations, application of
Newton’s or Broyden’s method may offer speed; however,
there is no guarantee of convergence. Reduction to one
equation in one unknown is preferable because stable con-
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application of the optimal control theory results in a two-
point boundary value problem (TPBVP), that is reduced
to a system of highly nonlinear equations. Because of
the difficulties expected in the online solution of these
highly nonlinear equations, they proposed a pair of two-
dimensional maps that provide the total vehicle force
along with the direction angle that constitutes the optimal
control inputs. In general, use of these maps leads to
inaccurate solutions, particularly in the case where the
output is very sensitive to the inputs. Such accuracy could
be improved by increasing map resolution at the expense
of large data storage space.

For one equation in one unknown, fast root finding meth-
ods, such as Newton’s, secant, and inverse quadratic inter-
polation, are available. Brent’s method is a hybrid algo-
rithm that includes the very stable bisection method, and
is known for its combined efficiency and robustness (Brent,
1971). To a system of nonlinear equations, application of
Newton’s or Broyden’s method may offer speed; however,
there is no guarantee of convergence. Reduction to one
equation in one unknown is preferable because stable con-
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1. INTRODUCTION

In automotive engineering, driver assistance systems for
safety are considered the most essential field of study. Col-
lision avoidance systems based on automatic braking are
already available in production vehicles. Collision avoid-
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speed with high tire-road friction coefficients. Obstacle
avoidance by steering offers better performance for higher
vehicle speed and/or on wet road surfaces. With full uti-
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effective than pure steering (Hattori et al., 2008).
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integrated steering and braking have been studied. Shiller
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distance. In a study by Fujioka et al. (2008), a minimiza-
tion of collision risk was suggested. This collision risk
consists of a risk function that depends on the obstacle
location, a function of time-to-collision or longitudinal
avoidance distance, and a penalty function of longitudinal
and lateral accelerations. The penalty function provides
smooth acceleration/braking and steering actions. Mini-
mization of the time integral of the sum of squared tire
workloads, and front-wheel steering angle rate was studied
by Horiuchi et al. (2006).

In a recent study, a minimization of the total vehicle force
problem was proposed by Ohmuro and Hattori (2010).
By minimizing the total vehicle force, the force margin
is maximized, and this allows operations with some safety
margin. Because of the availability of friction estimation
methods, we can assume online monitoring of the maxi-

mum vehicle force. In order to estimate the friction coef-
ficient, Muller et al. (2003) used friction coefficient versus
slip data for the low slip region; Alvarez et al. (2004) used a
first-order dynamic friction model called the LuGre model;
Wang et al. (2004) used linear and non-linear models
for low and high slips, respectively; and Nishihara and
Kurishige (2011) used the grip margin derived from the
brush model. Note that the obstacle avoidance maneuver
can be realized if the required total force does not exceed
the maximum vehicle force.

In the previous study (Ohmuro and Hattori, 2010), the
application of the optimal control theory results in a two-
point boundary value problem (TPBVP), that is reduced
to a system of highly nonlinear equations. Because of
the difficulties expected in the online solution of these
highly nonlinear equations, they proposed a pair of two-
dimensional maps that provide the total vehicle force
along with the direction angle that constitutes the optimal
control inputs. In general, use of these maps leads to
inaccurate solutions, particularly in the case where the
output is very sensitive to the inputs. Such accuracy could
be improved by increasing map resolution at the expense
of large data storage space.

For one equation in one unknown, fast root finding meth-
ods, such as Newton’s, secant, and inverse quadratic inter-
polation, are available. Brent’s method is a hybrid algo-
rithm that includes the very stable bisection method, and
is known for its combined efficiency and robustness (Brent,
1971). To a system of nonlinear equations, application of
Newton’s or Broyden’s method may offer speed; however,
there is no guarantee of convergence. Reduction to one
equation in one unknown is preferable because stable con-
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vergence is mostly guaranteed with a sufficiently narrow
interval determined with an approximate solution to the
equation.

In this paper, minimization of the total vehicle force for
the obstacle avoidance problem is reduced to finding the
solution of one equation in one unknown. In order to
estimate the initial guess for the root solving method,
Chebyshev and least squares function approximations are
performed. The dimensionless final time is obtained with
high precision using Brent’s method, and this leads to
the determination of optimal control that is as precise as
required.

2. PROBLEM FORMULATION

2.1 Obstacle Avoidance Problem

Figure 1 shows a vehicle that moves on a straight road with
initial vehicle longitudinal velocity vx0, and initial lateral
velocity vy0, at a given position. The vehicle performs
a lane change in order to avoid an obstacle blocking its
forward path. The longitudinal distance to the obstacle
is denoted by xf . The lateral distance at final time tf ,
is given as yf . For simplicity, the vehicle is treated as a
particle with mass m. In this problem, total vehicle force
Ft, is to be minimized for the lane change maneuver.

xf

vx0

vy0

obstacle

yf

vyf

vxf

Fig. 1. Schematic diagram of lane change maneuver

Figure 2 the trade-off between total longitudinal force Xt,
and total lateral force Yt. These are the forces that a
vehicle generates at a given instant. Total vehicle force
Ft, is assumed to be time invariant and limited by the
maximum vehicle force Fmax, that is expressed as the
product of tire-road friction coefficient µ, and vehicle
normal load Zt = mg. Maximum force Fmax = µZt

represents the tire grip limit. Once the longitudinal and
lateral vehicle forces are evaluated, tire-forces distribution
schemes (Nishihara and Higashino, 2013; Ono et al., 2006)
can be utilized to calculate the front and rear wheel
steering angles and braking torques, but this phase is not
within the scope of this study.

2.2 Optimal Control Problem Formulation

An optimal control theory is utilized for the obstacle
avoidance problem (Bryson and Ho, 1975). A system
model is given as

ẋ(t) = f(x(t),u(t), t) x(t0) = x0 (1)

where x (t) and u(t) denote, respectively, the n and m
dimensional vectors of the state and control variables. The
control inputs and corresponding states are

u(t) =

[
Ft

m
ϕ

]T
(2)

Yt

Xt

φ

Ft

–μZt

– μZt

0

Friction 
circle

μZt

μZt

Fig. 2. Total vehicle force bounded by friction circle

x(t) = [x(t) ẋ(t) y(t) ẏ(t)]
T

(3)

The initial conditions of the states are

x(t0) = [0 vx0 0 vy0]
T

(4)

The objective function for the obstacle avoidance lane
change problem is

min
u(t)

J = Ft (5)

The terminal constraint is written as

ψ(x(t), t) = [x(t)− xf y(t)− yf ẏ(t)]
T

(6)

The longitudinal and lateral dynamics of the vehicle can
be expressed as (7) and (8), respectively.

Xt (t) = max (t) (7)

Yt (t) = may (t) (8)

where the longitudinal acceleration ax, and lateral accel-
eration ay, are written as

ax (t) = −Ft

m
sinϕ (t) (9)

ay (t) = −Ft

m
cosϕ (t) (10)

where

tanϕ(t) =
−t+ tf

−νyt+ νytf + νv
(11)

Hattori and Ohmuro (2010) discussed three obstacle avoid-
ance problems that are minimization of xf , minimization
of Ft, and maximization of yf . These problems are related
to each other such that their optimal solutions can be
obtained by solving the same simultaneous equations with
different parameter sets of given and unknown. We have
derived a precise solution method for the minimization of
xf where y(tf ) = yf and vy(tf ) = 0 are the terminal
constraints, and Ft is assumed to be known prior to the
lane change maneuver (Singh and Nishihara, 2016). In
the present study, Ft is to be minimized for a given xf .
Note that the minimization of Ft is a dual problem of the
minimization of xf . Therefore, the simultaneous equations
of the primal problem is used here. In Eqs. (12) to (16),
the variables to be determined are Lagrange multiplier
constants νy and νv, as well as final time tf .
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mvx0
Ft

− 2νyνvM

(1 + ν2y)
3/2

−
ν2yνv

1 + ν2y
−

√
(νytf + νv)2 + t2f

1 + ν2y
= 0

(12)

mvx0tf
Ft

− mxf

Ft
+

ν2v(2ν
2
y − 1)M

(1 + ν2y)
5/2

− 3νyν
2
v

2(1 + ν2y)
2

−

(
(1 + ν2y)tf − 3νyνv

)√
(νyt+ νv)2 + t2f

2(1 + ν2y)
2

= 0 (13)

mvy0
Ft

+
2νvM

(1 + ν2y)
3/2

+
νyνv
1 + ν2y

−
νy
√

(νytf + νv)2 + t2f

1 + ν2y
= 0

(14)

mvy0tf
Ft

− myf
Ft

− 3νyν
2
vM

(1 + ν2y)
5/2

−
ν2v(ν

2
y − 2)

2(1 + ν2y)
2

−

√
(νytf + νv)2 + t2f

(
νytf (1 + ν2y)− νv(ν

2
y − 2)

)

2(1 + ν2y)
2

= 0

(15)

where

M =
1

2
ln

(
Mn

Md

)
(16)

with

Mn =
(
νy +

√
1 + ν2y

)2

(
νv + tf

√
1 + ν2y −

√
(νytf + νv)2 + t2f

)

Md = −νv + tf

√
1 + ν2y +

√
(νytf + νv)2 + t2f

By solving Eq. (12) with respect to Ft/m and substituting
this solution into Eqs. (13) to (15), the remaining input
variables are xf , yf , vx0, and vy0, and the unknowns
referred to as the control parameters are νy, νv, and tf . By
applying Buckingham π theorem, the equations with seven
original variables and two physical dimensions: length
L and time T, can be expressed by five dimensionless
variables. These dimensionless variables are expressed as
the combination of original variables, as indicated in
Table 1. Throughout this paper, πx and τf are referred
to as the ratio of the final lateral distance to the final
longitudinal distance that can be referred to as the inverse
aspect ratio and dimensionless final time, respectively.

Table 1. Dimensionless variables

Original Dimensional Dimensionless
variables space variables(
vx0, xf , yf

)
[LT−1]0[L]−1[L]1 πx =

yf

xf(
vx0, xf , vy0

)
[LT−1]−1[L]0[LT−1]1 πv =

vy0

vx0(
vx0, xf , νy

)
[LT−1]0[L]0 N1 = νy(

vx0, xf , νv
)

[LT−1]1[L]−1[T]1 N2 =
vx0νv

xf(
vx0, xf , tf

)
[LT−1]1[L]−1[T]1 τf =

vx0tf

xf

The equations that describe TPBVP are then rewritten in
terms of these dimensionless variables. Algebraic manipu-
lations are performed to reduce the original problem to a
root finding problem of one variable equation, as given in

Eq. (17). For simplicity, the vehicle is assumed to travel
in the longitudinal direction at the point where the lane
change maneuver is initiated, and therefore, vy0 is zero.
Because of lack of space, the detailed derivation is not
provided here.

− 2N1N2P (3N2 + 2πxR)−
√
R(N2

2

(
N2

1 − 2
)

+ 2N2
1N2πxR−N2Q

(
N2

1 − 2
)
+QR (2πx +N1τf )) = 0

(17)

where

R = 1 +N2
1 (18)

Q =
√
N2

2 + 2N1N2τf +Rτ2f (19)

P =
1

2
ln



(
N1 +

√
R
)2 (

N2 −Q+ τf
√
R
)

−N2 +Q+ τf
√
R


 (20)

The cubic function ofN2 is given by the following equation:

a3N
3
2 + a2N

2
2 + a1N2 + a0 = 0 (21)

where the coefficients are given as

a3 = −256π5
x

(
2 + 2π2

x + τf (2τf − 5)
)

(22a)

a2 =− 64π4
x(4π

4
x + (τf − 2)

2
(1 + 6τf (τf − 1))

+ 4π2
x (2 + τf (4τf − 7))) (22b)

a1 =− 64π3
xτf

(
2 + 2π2

x + τf (τf − 3)
)

(
(τf − 2)

2
(2τf − 1) + π2

x (6τf − 4)
)

(22c)

a0 =− 16π2
xτ

2
f

(
4π2

x + (τf − 2)
2
)

(
2 + 2π2

x + τf (τf − 3)
)

(22d)

The real root of this cubic equation is found to be

N2 =− a2
3a3

− 21/3d0

3a3

(
d1 +

√
4d30 + d21

)1/3

+

(
d1 +

√
4d30 + d21

)1/3

3
(
21/3

)
a3

(23)

where

d1 = −2a32 + 9a3a2a1 − 27a23a0 (24a)

d0 = −a22 + 3a3a1 (24b)

After algebraic manipulations, N1 can be expressed as a
linear function of τf .

N1 =
τf − 2

2πx
(25)

After substituting Eqs. (23) and (25) into Eq. (17), τf
remains as a single unknown. To determine τf , an iterative
method should be applied because of the nonlinear nature
of this equation. The best approach would be an appli-
cation of hybrid method, such as Brent’s method (Brent,
1971), that combines the fast open methods and reliable
bisection method for root finding. In the root solving
method, it is most likely that a smaller initial interval
would yield faster convergence to the solution. The next
section describes the function approximation methods for
estimating initial search interval.
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By solving Eq. (12) with respect to Ft/m and substituting
this solution into Eqs. (13) to (15), the remaining input
variables are xf , yf , vx0, and vy0, and the unknowns
referred to as the control parameters are νy, νv, and tf . By
applying Buckingham π theorem, the equations with seven
original variables and two physical dimensions: length
L and time T, can be expressed by five dimensionless
variables. These dimensionless variables are expressed as
the combination of original variables, as indicated in
Table 1. Throughout this paper, πx and τf are referred
to as the ratio of the final lateral distance to the final
longitudinal distance that can be referred to as the inverse
aspect ratio and dimensionless final time, respectively.
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The equations that describe TPBVP are then rewritten in
terms of these dimensionless variables. Algebraic manipu-
lations are performed to reduce the original problem to a
root finding problem of one variable equation, as given in

Eq. (17). For simplicity, the vehicle is assumed to travel
in the longitudinal direction at the point where the lane
change maneuver is initiated, and therefore, vy0 is zero.
Because of lack of space, the detailed derivation is not
provided here.
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where
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d0 = −a22 + 3a3a1 (24b)

After algebraic manipulations, N1 can be expressed as a
linear function of τf .

N1 =
τf − 2

2πx
(25)

After substituting Eqs. (23) and (25) into Eq. (17), τf
remains as a single unknown. To determine τf , an iterative
method should be applied because of the nonlinear nature
of this equation. The best approach would be an appli-
cation of hybrid method, such as Brent’s method (Brent,
1971), that combines the fast open methods and reliable
bisection method for root finding. In the root solving
method, it is most likely that a smaller initial interval
would yield faster convergence to the solution. The next
section describes the function approximation methods for
estimating initial search interval.
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3. POLYNOMIAL APPROXIMATIONS OF
DIMENSIONLESS FINAL TIME

3.1 Chebyshev Approximation

A previous study (Ohmuro and Hattori, 2010) used a
lookup table for the solution of similar simultaneous equa-
tions. Lookup tables are commonly used with some inter-
polation technique, but the combination does not always
provide good results. In this study, we use the Chebyshev
approximation method known for its easy realization of
the substantial minimization of the maximum error (Press
et al., 1992). The trigonometric form of the Chebyshev
polynomial is

Tn (x) = cos (n arccosx) (26)

The recurrence relation for Chebyshev polynomials is

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n = 1, 2, ...;

T0 (x) ≡ 1, T1 (x) ≡ x. (27)

Chebyshev polynomials obey the discrete orthogonality in
interval [−1, 1].

m∑
k=1

Ti (xk)Tj (xk) =



0, i �= j

m/2, i = j �= 0

m, i = j = 0

(28)

Given a function f(x) defined in interval [−1, 1], and N
coefficients cj , j = 0, ..., N − 1, are

cj =
2

N

N∑
k=1

f (xk)Tj (xk) (29)

where

Tj (xk) = cos

(
πj (2k − 1)

2N

)
(30)

the Chebyshev approximating polynomial of degree N − 1
for f(x) over interval [−1, 1] is expressed as

f (x) ≈ −1

2
c0 +

N−1∑
k=0

ckTk (x) (31)

This approximation with a truncation realizes a smooth
spreading out of the error, and becomes very close to the
minimax polynomial with the smallest maximum deviation
from f(x). Nearness to the minimax polynomial and eas-
iness of computation make the Chebyshev approximating
polynomial a preference for practical work.

The approximation problem on an arbitrary interval
[x0, x1] can be performed with some linear variable trans-
formation; the problem is reformulated on interval [−1, 1].

x̃ =
x− 1

2
(x1 + x0)

1

2
(x1 − x0)

(32)

The quadratic and cubic Chebyshev approximating poly-
nomials for τf as a function of the normalized final distance
ratio π̃x, are determined in Eqs. (33) and (34), respectively.

P2 (π̃x) = 1.09191 + 0.170312π̃x + 0.0780855π̃2
x (33)

P3 (π̃x) =1.09025 + 0.161437π̃x + 0.0817668π̃2
x

+ 0.0123006π̃3
x (34)

3.2 Least Squares Approximation

Another strategy for function approximation that is worth
considering is the least squares method. In this method,
the sum of the squares of the residuals, given in Eq. (35) is
minimized to yield the polynomial given in Eq. (36) with
small average error over the interval of approximation.

Sr =

n∑
i=1

(
yi −

(
c0 + c1x̃1 + ...+ ckx̃

k
i

))2
(35)

y = c0 + c1x̃+ ...+ ckx̃
k (36)

The quadratic and cubic least squares approximations of
τf are given in Eqs. (37) and (38), respectively.

L2 (π̃x) = 1.09068 + 0.168701π̃x + 0.0799931π̃2
x (37)

L3 (π̃x) =1.09068 + 0.160818π̃x + 0.0799931π̃2
x

+ 0.0129855π̃3
x (38)

Chebyshev and least squares approximating polynomials
are computed for πx on interval [0.001, 0.17]. Figure 3
shows the numerical solution and approximated values of
τf . It is apparent from Fig. 4 that both second and third
order Chebyshev approximations provide better perfor-
mance in terms of minimizing the maximum error com-
pared with the respective polynomial order of the least
squares approximations.

Fig. 3. Function approximation

Fig. 4. Function approximation absolute error

Figure 5 shows the lower and upper bounds of the initial
search interval for the Brent’s method along with the
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computed τf . A search interval [0.99P3 (π̃x) , 1.01P3 (π̃x)]
is reasonable because it is not too wide or too narrow.

Fig. 5. Lower and upper bounds of the initial search
interval

Figure 6 presents the number of function evaluations the
Brent’s method requires to converge. The iterations with
interval [τfl, τfu] converge if abs((τfu − τfl)/2) ≤ tol,
where tol = 2.0εmax (abs(τfu), 1.0), and ε is the machine
epsilon (Moler, 2004). For the same search interval and
convergence criteria, bisection method requires 48 function
evaluations. Figure 6 shows the maximum number of func-
tion evaluations is 14, indicate the remarkable performance
of the Brent’s method with function approximation based
search interval.

Fig. 6. Number of function evaluations

4. TOTAL VEHICLE FORCE AND MAXIMUM JERK

The total vehicle force can be represented in dimensionless
form πF , as shown in Eq. (40), by substituting Eq. (39)
into Eq. (12) and using the definitions listed in Table 1.
Once πF is evaluated, Ft required to perform the obstacle
avoidance maneuver can be calculated from Eq. (39).

Ft =
mv2x0
yf

πF (39)

πF =
R3/2πx

2N1N2P +
√
R (N2

1N2 +Q)
(40)

The total vehicle forces for pure braking and pure steering
are as given in Eqs. (41) and (42), respectively.

Ftb =
mv2x0
2xf

(41)

Fts =
4mv2x0yf

x2
f

(42)

These forces can be expressed in dimensionless form using
the definition in Eq. (39). The dimensionless total vehicle
forces for pure steering and pure braking are denoted by
πFs and πFb, respectively.

πFs = 4π2
x (43)

πFb =
1

2
πx (44)

Figure 7 compares the dimensionless total vehicle force
for steering with braking, pure steering, and pure braking
cases. Switching point A at πx = 1/8 is determined by
algebraically solving πFs = πFb, whereas at switching
point B, πx = 0.1716314 is obtained by numerically solving
πF = πFb. These switching points provide essential in-
sights into the selection of the best maneuver. If πx < 1/8,
pure steering is better than pure braking because a smaller
total vehicle force is required. If πx > 1/8, pure braking
is better than pure steering. Similarly, if πx < 0.1716314,
steering with braking requires a smaller total vehicle force
compared with pure braking, and pure braking becomes
the optimal maneuver when πx > 0.1716314. Interestingly,
Fig. 7 demonstrates the lower and upper bounds on πx for
steering with braking to be the most effective maneuver.
Another significant application of Fig. 7 is that one can
continuously monitor the required Ft and compare it with
Fmax available.

Fig. 7. Dimensionless total vehicle force for steering with
braking, pure steering and pure braking cases

Figure 8 illustrates the variation of Ft with respect to vx0
at yf = 3.5 m and m = 1707 kg for different values of xf .
For a given vx0, the Ft required to execute the lane change
maneuver decreases with the increase in xf .

Jerk is defined as the time derivative of acceleration. A
trapezoidal acceleration profile that accommodates the
maximum lateral acceleration and maximum lateral jerk
constraints was proposed for the automated lane change
maneuver (Chee and Tomizuka, 1994). In their study,
lateral jerk of 1 m/s3 was considered for human comfort.
Isermann et al. (2008) used a sigmoide function to repre-
sent a collision avoidance vehicle position trajectory that
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cases. Switching point A at πx = 1/8 is determined by
algebraically solving πFs = πFb, whereas at switching
point B, πx = 0.1716314 is obtained by numerically solving
πF = πFb. These switching points provide essential in-
sights into the selection of the best maneuver. If πx < 1/8,
pure steering is better than pure braking because a smaller
total vehicle force is required. If πx > 1/8, pure braking
is better than pure steering. Similarly, if πx < 0.1716314,
steering with braking requires a smaller total vehicle force
compared with pure braking, and pure braking becomes
the optimal maneuver when πx > 0.1716314. Interestingly,
Fig. 7 demonstrates the lower and upper bounds on πx for
steering with braking to be the most effective maneuver.
Another significant application of Fig. 7 is that one can
continuously monitor the required Ft and compare it with
Fmax available.

Fig. 7. Dimensionless total vehicle force for steering with
braking, pure steering and pure braking cases

Figure 8 illustrates the variation of Ft with respect to vx0
at yf = 3.5 m and m = 1707 kg for different values of xf .
For a given vx0, the Ft required to execute the lane change
maneuver decreases with the increase in xf .

Jerk is defined as the time derivative of acceleration. A
trapezoidal acceleration profile that accommodates the
maximum lateral acceleration and maximum lateral jerk
constraints was proposed for the automated lane change
maneuver (Chee and Tomizuka, 1994). In their study,
lateral jerk of 1 m/s3 was considered for human comfort.
Isermann et al. (2008) used a sigmoide function to repre-
sent a collision avoidance vehicle position trajectory that
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Fig. 8. Total vehicle force for different final longitudinal
distances

captures the limits on the lateral acceleration and lateral
jerk. Lateral jerk of 30 m/s3 was considered for evasive
maneuver. Therefore, jerk is an important aspect for the
collision avoidance study.

In the present study, we provide a mathematical relation
between the jerks along the trajectory with respect to vx0,
xf , and yf . The longitudinal jerk along the trajectory is
obtained by differentiating Eq. (9) with respect to t.

jx =
Ft

m

νv (νy (tf − t) + νv)(
(t− tf )

2
+ (νy (tf − t) + νv)

2
)3/2

(45)

By differentiating Eq. (45) with respect to t and then
equating the differentiated equation to zero, a quadratic
equation in t is obtained. By solving this equation for t,
we have

tx1
tx2

}
=

4νytf
(
ν2y + 1

)
+ νv

(
4ν2y + 3±

√
8ν2y + 9

)

4νy
(
ν2y + 1

)
(46)

Therefore, two extremum longitudinal jerks occur at tx1
and tx2.

jx1
jx2

}
=

4Ft

3m

√
2

3

ν2y

√
ν4y + ν2y

(
1∓

√
8ν2y + 9

)

νv

(
4ν2y + 3±

√
8ν2y + 9

)3/2
(47)

Differentiating Eq. (10) with respect to t yields the lateral
jerk during the maneuver

jy =
Ft

m

νv (t− tf )(
(t− tf )

2
+ (νy (tf − t) + νv)

2
)3/2

(48)

Equation (48) is differentiated with respect to t and
the result is equated to zero. This produces a quadratic
equation in t, which when solved gives

ty1
ty2

}
=

4tf
(
ν2y + 1

)
± νv

(
νy +

√
9ν2y + 8

)

4
(
ν2y + 1

) (49)

The lateral jerks at ty1 and ty2 are expressed as

jy1
jy2

}
=

4Ft

3m

√
2

3

√
ν2y + 1

(
νy ±

√
9ν2y + 8

)

νv

(
4 + νy

(
3νy ∓

√
9ν2y + 8

))3/2
(50)

Because the total acceleration is constant, the total jerk
jt, is proportional to the angular velocity ϕ̇.

jt =
Ft

m
ϕ̇(t) (51)

In order to find the maximum total jerk, the derivative
of Eq. (51) with respect to t is equated to zero, and the
resulting equation is solved with respect to t.

t1 = tf +
νyνv
ν2y + 1

(52)

At t1, the total jerk is

jt1 =
Ft

m

ν2y + 1

νv
(53)

In order to verify whether these maximum jerks occur
within interval [t0, tf ], Eqs. (46), (49) and (52) should first
be translated to the respective dimensionless time.

τx1
τx2

}
=

4N1τfR+N2

(
4N2

1 + 3±
√

8N2
1 + 9

)

4N1R
(54)

τy1
τy2

}
=

N1N2 + 4τfR±N2

√
9N2

1 + 8

4R
(55)

τt1 = τf +
N1N2

R
(56)

Then, by plotting Eqs. (54) to (56) along with τf in the
same figure, the maximum jerks that occur outside interval
[t0, tf ] can be detected and omitted. Figure 9 shows that
only τy1 > τf indicate that jy1 does not occur along the
trajectory.

Fig. 9. Dimensionless time for maximum jerks and dimen-
sionless final time against final distance ratio

The maximum longitudinal jerks can be expressed in
dimensionless form

Jx1
Jx2

}
=

4

3

√
2

3

N2
1πFπx

√
RN2

1

(
1∓

√
8N2

1 + 9
)

N2

(
4N2

1 + 3±
√

8N2
1 + 9

)3/2
(57)

Similarly, the dimensionless maximum lateral jerk is

Jy2 =
4

3

√
2

3

πFπx

√
R
(
N1 −

√
9N2

1 + 8
)

N2

(
4 +N1

(
3N1 +

√
8N2

1 + 9
))3/2

(58)
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and the dimensionless maximum total jerk is

Jt1 =
RπFπx

N2
(59)

Figure 10 presents the dimensionless maximum longitudi-
nal, lateral, and total jerks as functions of πx. Note that
these jerks can be easily computed after the numerical
solution of τf is obtained. In general, the absolute values
of the dimensionless jerks increases as πx increases. For
a given yf , starting an automated lane change maneuver
with shorter xf will produce higher jerks. Figures 7 and 10
are important tools for verifying whether the constraints
on the total vehicle force and jerks are violated for a given
πx.

(a) Dimensionless maximum longitudinal jerks

(b) Dimensionless maximum lateral jerk

(c) Dimensionless maximum total jerk

Fig. 10. Dimensionless jerks for given final distance ratio

A numerical example of the jerks along the trajectory for
vx0 = 25 m/s, xf = 40 m, and yf = 3 m is shown in
Fig. 11. It can be seen that the maximum jerks occur
approximately at the trajectory midway.

(a) Longitudinal jerk

(b) Lateral jerk

(c) Total jerk

Fig. 11. Jerk profiles

5. CONCLUSIONS

Optimal control for automatic single lane change maneu-
ver by minimizing the total force of the vehicle is de-
veloped. The effectiveness of the nondimesionalization in
reducing the complexity of the obstacle avoidance problem
is clearly demonstrated. Fast and robust Brent’s method
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Fig. 11. It can be seen that the maximum jerks occur
approximately at the trajectory midway.

(a) Longitudinal jerk

(b) Lateral jerk

(c) Total jerk

Fig. 11. Jerk profiles

5. CONCLUSIONS

Optimal control for automatic single lane change maneu-
ver by minimizing the total force of the vehicle is de-
veloped. The effectiveness of the nondimesionalization in
reducing the complexity of the obstacle avoidance problem
is clearly demonstrated. Fast and robust Brent’s method
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with function approximation for setting the search interval
was used in order to obtain a precise solution of the one
equation in one unknown problem. The relations between
the total vehicle force and jerk, and vehicle states are
established in a dimensionless domain. Further studies
that consider a more general problem setting with nonzero
initial lateral velocity for the realization of feedback con-
troller will be undertaken.
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