

Faculty of Mechanical Engineering

EXPERIMENTAL STUDY OF FLOW AROUND AIRFOIL USING DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATOR

Farah Ayiesya binti Zainuddin

Master of Science in Mechanical Engineering

EXPERIMENTAL STUDY OF FLOW AROUND AIRFOIL USING DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATOR

FARAH AYIESYA BINTI ZAINUDDIN

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Experimental Study of Flow Around Airfoil Using Dielectric Barrier Discharge Plasma Actuator" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATION

In the name of Allah, the Most Gracious and the Most Merciful

I dedicate this work to:

My parents,

Zainuddin bin Mohd Noh and Maznah binti Yusoff

My siblings,

Mentors who always give support and encouragement,

Dr. Nazri bin Md Daud, Dr. Cheng See Yuan, En Muhammad Amir Asyraf bin Abdul Kadir

ABSTRACT

Dielectric barrier discharge (DBD) plasma actuator has become a popular device in the aerodynamic flow control applications. The number of application of DBD plasma actuator increases due to its special features such as no moving parts, quick response and extremely low mass. For example, plasma actuators have been applied for flow control on airfoil, flow control around circular cylinders, delaying separation on turbine blades and improving the aerodynamic performance on cars. This study deals with the enhancement of aerodynamic performance on NACA 0015 airfoil when a DBD plasma actuator is mounted near the leading edge by using steady actuation method. Flow visualization test, lift and drag force test and pressure distribution test on upper surface airfoil test were conducted to investigate the effectiveness of DBD plasma actuator. A study on a NACA 0015 is performed to improve its aerodynamic performance particularly focused on the flow distribution visualized over an airfoil body, the evaluation and correlation of lift (C_L), drag (C_D) and pressure coefficient (C_P). The results were compared between the base case (DBD plasma actuator OFF) and actuation case (DBD plasma actuator ON). Experimental works were performed in the wind tunnel test section at Reynolds number (Re) approximately 0.63×10^5 to 2.52×10^5 with external airflow 5 m/s for flow visualization test while 15 m/s and 20 m/s for lift and drag force test. The DBD plasma actuator was installed on NACA 0015 airfoil with 190 mm chord length and 260 mm span length at x/c = 0.025, where x is the vertical distance measured from leading edge and c was the chord length. The DBD plasma actuator consists of two copper tape electrodes with 10 mm width and 50 µm thick that arranged parallel with 1 mm overlap. For the dielectric material, a Kapton film with 100 µm thickness was attached between these electrodes. A high voltage AC current was used where the output of the circuit can reach up until 6 kV with frequency 16 kHz. The result showed that actuation case was able to increase the aerodynamic performance of an airfoil by increasing lift coefficient about 22 % for 15 m/s and 49 % for 20 m/s, reducing the drag coefficient about 19 % for 15 m/s and 49 % for 20 m/s and recovering the pressure distribution about 1 %. These results were supported by flow visualization result which conducted at angles of attack $\alpha = 15^{\circ}$ to $\alpha = 18^{\circ}$. These angles of attack are the important phases for airfoil during stall control condition ($\alpha = 15^{\circ}$), stall point ($\alpha = 16^{\circ}$) and high angle of attack ($\alpha = 17^{\circ}$ and 18°). It is noticed that the actuation case results avoids a massive flow detachment from leading edge by producing strong vortices from plasma generation. The strong vortices flow near the airfoil surface and as a result, the C_L for actuation case may increase. Therefore, the DBD plasma actuator became a better device to replace other mechanical devices especially in aeronautical field.

ABSTRAK

Dielektrik halangan pelepasan (DBD) penggerak plasma telah menjadi alat yang terkenal dalam aplikasi kawalan aliran aerodinamik. Bilangan penggunaan DBD halangan penggerak plasma bertambah disebabkan oleh ciri-ciri khasnya seperti tiada bahagian yang bergerak, cepat bertindak balas dan mempunyai jisim yang sangat rendah. Contohnya, penggerak plasma telah digunakan untuk mengawal aliran pada kerajang udara, mengawal aliran di sekitar silinder bulat, melambatkan pemisahan pada bilah turbin dan meningkatkan prestasi aerodinamik pada kereta. Kajian ini berkait dengan peningkatan prestasi aerodinamik ke atas NACA 0015 kerajang udara apabila DBD halangan penggerak plasma dipasang pada bahagian yang berdekatan pinggiran hadapan kerajang udara dengan menggunakan langkah penjanaan plasma tetap. Ujian aliran gambar, ujian daya angkat dan seret dan ujian pengedaran tekanan pada permukaan atas kerajang udara dilakukan untuk mengkaji keberkesanan DBD halangan penggerak plasma. Kajian pada kerajang udara NACA 0015 dilakukan dengan tujuan untuk meningkatkan prestasi aerodinamik dengan tumpuan khusus pada penilaian dan hubung kait pada pekali angkat, pekali seretan dan pekali tekanan. Selain itu, gambar aliran pada badan kerajang udara dapat dijelaskan Hasilnya telah dibandingkan antara kes asas (DBD halangan penggerak plasma dimatikan) dan kes penjanaan plasma (DBD halangan penggerak plasma dihidupkan). Kerja-kerja ujikaji dilakukan pada nombor Revnolds (Re) anggaran 0.63×10^5 sehingga 2.52×10^5 dengan aliran udara luaran 5 m/s untuk ujian aliran gambar kemudian 15 m/s dan 20 m/s untuk ujian daya angkat dan seret. DBD halangan penggerak plasma telah dipasang pada kerajang udara NACA 0015 dengan panjang perentas 190 mm dan lebar 260 mm pada x/c = 0.025, di mana x adalah jarak tegak yang diukur dari pinggir depan dan c ialah panjang perentas. DBD penggerak plasma terdiri daripada dua elektrod pita tembaga dengan lebar 10 mm dan tebal 50 µm yang disusun selari dengan jarak 1 mm bertindih. Untuk bahan dielektrik, filem Kapton dengan 100 µm tebal dilekatkan diantara elektrodelektrod ini. Arus AC voltan tinggi digunakan di mana output litar boleh mencapai sehingga 6 kV dengan kekerapan 16 kHz. Hasilnya menunjukkan bahawa kes-kes penjanaan plasma dapat meningkatkan prestasi aerodinamik kerajang udara dengan peningkatan pekali angkat kira-kira 22 % untuk 15 m/s dan 49 % untuk 20 m/s, mengurangkan pekali seret kira-kira 19 % untuk 15 m/s dan 49 % untuk 20 m/s, memulihkan pengagihan tekanan pada purata 1 %. Pekali telah disokong oleh keputusan gambar aliran pada 15° sehingga 18°. Sudut-sudut serang merupakan fasa yang penting untuk kerajang udara semasa pengawalan keadaan tegun ($\alpha = 15^{\circ}$), titik tegun ($\alpha = 16^{\circ}$) dan sudut serang yang tinggi ($\alpha = 17^{\circ}$ dan 18°). Keputusan kes penjanaan plasma menunjukkan pemisahan aliran yang besar dapat dielakkan dari pinggir hadapan dengan penghasilan pusaran yang kuat terhasil daripada pembentukan plasma. Pusaran kuat mengalir menghampiri permukaan kerajang udara dan mengakibatkan peningkatan pekali angkat semasa penjanaan plasma.

ACKNOWLEDGEMENTS

First and foremost, I thank Allah s.w.t, the Almighty God for His mercy and grace in enabling me to complete this thesis work. I would like to take this opportunity to express my sincere acknowledgement to my supervisors Dr. Nazri bin Md Daud and Dr. Cheng See Yuan from the Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for their essential supervision, support and encouragement towards the completion of this thesis. I would like to extend my appreciation to Assoc. Prof. Dr. Zolkafle bin Buntat from Institute of High Voltage and High Current, Universiti Teknologi Malaysia (UTM), Johor for his suggestions and support to successfully complete this research.

Special thanks to the Kementerian Pengajian Tinggi (KPT) under the funding of Research Acculturation Grant Scheme (RAGS), Faculty Mechanical Engineering and Centre of Advanced Research on Energy Universiti Teknikal Malaysia Melaka (UTeM) (RAGS/1/2015/TK0/FKM/03/B00102) for financial sponsors, facilities and knowledge during this research.

I would also like to express my greatest gratitude to technician team from Faculty Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), especially to Mr. Faizal bin Jaafar, Mr. Asjufri bin Muhajir, not forgetting to Aero Laboratory and Fluid Laboratory, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) team, especially Mr. Abd Basid bin Abd Rahman and Mr. Sahlan bin Sadiron for the technical support and ideas given during collected experiment. Finally, I would like to make an affectionate acknowledgement to my parents, my siblings, all my colleagues and friends who had helped and supported me during my research studies directly or indirectly.

TABLE OF CONTENTS

PAGE

i
ii
iii
iv
vii
viii
xiii
xiv
XV
xvii

CHAPTER

1.	INT	RODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	5
	1.3	Research Objectives	6
	1.4	Research Scope	6
	1.5	Research Organization	7
2.	LIT	ERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Definition of Plasma	9
	2.3	Plasma Actuator as Flow Control Device	10
	2.4	Fundamental of Dielectric Barrier Discharge (DBD) Plasma Actuator	11
		2.4.1 Optimization DBD Plasma Actuator Geometry	17
		2.4.1.1 Dielectric Material and Thickness	17
		2.4.1.2 Voltage and Frequency	19
		2.4.1.3 Electrodes Gap	20
	2.5	Flow Control around Airfoil	20
		2.5.1 Advantages of Airfoil Flow Control	20
		2.5.2 Boundary Layer	21
		2.5.3 Fluid Dynamic Phenomenon of Airflow	25
		2.5.4 Flow Separation Control, Steady and Unsteady Actuation Method	26
	2.6	Vortex Development	31
	2.7	Ionic Wind Velocity	36
	2.8	Fabrication and Setup	38
		2.8.1 DBD plasma actuator Construction	38
		2.8.2 Wing Model	42
		2.8.3 Wind Tunnel	45
	2.9	Airfoils and General Concepts of Aerodynamic	47

		2.9.1	Terminology of Airfoil	49
		2.9.2	Flow Visualization on Airfoil	50
		2.9.3	Lift and Drag Force on Airfoil	54
		2.9.4	Pressure Distribution on Airfoil	61
	2.10	Summa	ry	69
3.	MET	HODOI	LOGY	73
	3.1	Introduc	ction	73
	3.2	Experin	nental Equipment	75
		3.2.1	Wind Tunnel for Lift and Drag Measurement	75
		3.2.2	Wind Tunnel for Pressure Measurement	77
		3.2.3	Wind Tunnel for Flow visualization Measurement	79
		3.2.4	Airfoil Model	80
		3.2.5	Dielectric Barrier Discharge (DBD) Plasma Actuator	81
		3.2.6	High Voltage AC Current	82
		3.2.7	Pitot-Static Probe and Micromanometer	83
		3.2.8	Analog Push-Pull Gauge	85
		3.2.9	Led Lamp with Driver	86
		3.2.10	High-Speed Camera	87
		3.2.11	Smoke Generator	89
	2.2	3.2.12 E	Lock of Angle	91
	3.3	Experin	Flow Viewelization Measurement	91
		3.3.1	Flow visualization Measurement	92
		3.3.2	2.3.2.1 Components Load Call	94
		333	Pressure Distribution Measurement	90
	3.4	Summa	rv	101
4.	RES	ULT AN	DISCUSSION	102
	4.1	Introdu	ction	102
	4.2	Effect of	of DBD Plasma Actuator on Flow visualization	103
		4.2.1	Flow Visualization at Angle 15 Degree (Stall Control Condition)	104
		4.2.2	Flow Visualization at Angle 16 Degree (Stall Condition)	106
		4.2.3	Flow Visualization at Angle 17 Degree (High Angle of	100
			Attack)	108
		4.2.4	Flow Visualization at Angle 18 Degree (High Angle of	110
	12	Effect	Attack)	110
	4.5	Effect of	of DBD Plasma Actuator on Drog Coefficient	112
	4.4	Lift ond	DED Plasma Actuator on Drag Coefficient	110
	4.5	Effort of	of DRD Plasma Actuator on Pressure Distribution	110
	4.0 4 7	Summa	ry	120
	4.7	Summa	ı y	120
5.	CON		ON AND RECOMMENDATIONS FOR FUTURE	130
	5 1	Conclu	sion	130
	5.1	Contrib	nution to Knowledge	130
	5.3	Recom	mendations for Future Work	134

v

REFERENCES APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Characteristic of dielectric barrier materials	18
2.2	Research gap	72
3.1	Specifications of wind tunnel	77
3.2	Specification of micromanometer	84
3.3	Product parameters led lamp with driver	87
3.4	Specifications of Phantom v710	89

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Schematic illustration of DBD Plasma Actuator	12
2.2	Discharged plasma from top view	12
2.3	Schematic drawing of SDBD plasma actuator	14
2.4(a)	DBD plasma actuator applied voltage negative going.	15
2.4(b)	DBD plasma actuator applied voltage the voltage reverses, the ions	15
	transferred through the plasma is not enough to deposit on the	
	dielectric material surface	
2.5	Schematic illustration of SDBD plasma actuator (top) and photograph	15
	of ionized air at 1 atm. pressure that forms over electrode covered by	
	dielectric layer (bottom)	
2.6(a)	DBD plasma actuators orientation actuators at the leading and trailing	16
	edges	
2.6(b)	DBD plasma actuators orientation electrodes at the leading edge of an	16
	airfoil	
2.7	The thickness of dielectric material affects the voltage usage	18
2.8	Maximum velocities induced with velocity and frequency	19
2.9	Flow of boundary layer adjacent to a solid body in a fluid flow	23
2.10	Low Reynolds number	24
2.11	Medium Reynolds number	24
2.12	High Reynolds number	24
2.13	Different zones around an airfoil	25
2.14(a)	Plasma actuator in steady operation mode	30
2.14(b)	Plasma actuator with duty cycle applied voltage (unsteady mode)	30
2.15(a)	The starting vortex induced by DBD plasma actuator smoke-flow	33
	visualization	
2.15(b)	The starting vortex induced by DBD plasma actuator PIV vorticity	33

	field, the white dots indicate the center of the vortex core in flow	
	visualization and PIV data	
2.16(a)	Entrainment by the plasma actuator and the development of the	34
	starting vortex plasma initiation	
2.16(b)	Entrainment by the plasma actuator and the development of the	34
	starting vortex formation	
2.16(c)	Entrainment by the plasma actuator and the development of the	34
	starting vortex generation of secondary vorticity	
2.17	Flow separation control on NACA 4418 with counter rotating (plasma	35
	on) vortex generators	
2.18	Photograph of the DBD actuator of top view with exposure time of a	36
	few seconds	
2.19	Schlieren visualizations of the electric wind produced by a single-	38
	surface dielectric barrier discharge, at $t = 0$ (a), 20 ms (b), 40 ms (c),	
	80 ms (d), 100 ms (e) and 600 ms (f) after the application of the AC	
	high voltage. Here, $V_{AC} = 10.4 \text{ kV}$	
2.20	Time series of photomultiplier-tube (PMT) output	40
2.21	Represent the sample of voltage time series for two and half cycles of	41
	plasma actuator	
2.22(a)	High-speed photography of a typical AC-DBD plasma actuator shows	41
	the dramatic difference in structure between forward stroke	
2.22(b)	High-speed photography of a typical AC-DBD plasma actuator shows	41
	the dramatic difference in structure between back stroke	
2.23	Schematic diagram of a DBD plasma actuator and an actual DBD	42
	plasma actuator installed on a NACA 0015 wing model	
2.24	NACA 0015 airfoil model with plasma actuators in	43
2.25	Schematic of airfoil and force balance arrangement and corresponding	44
	photograph in wind-tunnel test section	
2.26	Calibration of dynamic response in air of tubing	44
2.27	Experimental setup using airfoil model NACA 0015 in a low-speed,	46
	semi closed wind tunnel with $Re = 6.7 \times 10^4$ and an airflow velocity of	
	10 m/s	
2.28	Aerodynamic Forces on Airplane in Motion	47

2.29(a)	Force on vertical plate submitted to a flow	49
2.29(b)	Force on inclined plate submitted to a flow	49
2.29(c)	Drag and lift on airfoil submitted to the flow	49
2.30	An airfoil terms	50
2.31	Flow control with the DBD plasma actuator	51
2.32	DBD plasma actuator enhance the reattachment flow structure at 15°	52
2.33	Flow structures around NACA 0015 airfoil at angles of attack 20° with	52
	13 kV voltages	
2.34	Flow separation at an angle of attack = 12 degrees, $V = 3.6$ kV, $f = 4.2$	53
	kHz (top); The failure of flow separation at angle of attack = 16	
	degrees, $V = 4$ kV, $f = 4.2$ kHz (bottom)	
2.35	DBD plasma actuator control the flow around bluff body	54
2.36	Forces acting on a typical airfoil	55
2.37(a)	Variation of lift and drag coefficient for NACA 0015	56
2.37(b)	Variation of lift and drag coefficient for NACA 4415	56
2.38	Typical lift and drag coefficients for a symmetric airfoil (NACA 0012)	57
2.39	Typical lift and drag coefficients of the NACA 0015 model	58
2.40	Conventional graphical of airfoil characteristic	58
2.41(a)	Effect of actuator on base lift curves lift control device	59
2.41(b)	Effect of actuator on base lift curves flow control separation control	59
	device	
2.42	Effect of DBD plasma actuator on C_L and drag polar for airfoil at 21	60
	m/s	
2.43	C_L against angle of attack NACA 0015 airfoil with actuator off, steady	61
	actuator and unsteady actuator	
2.44	Measured C_L and C_P on the discharge voltage at different angles of	61
	attack	
2.45	Pressure distribution on an airfoil	62
2.46	Pattern of the pressure distribution and typical airfoil stall patterns for	63
	single element airfoil	
2.47	Effects of favorable (decreasing) and adverse (increasing) effects	65
	pressure gradient on boundary layer	
2.48	Flow separation of boundary layer and stall	65

2.49	C_P against distance for 4° angle of attack at $Re = 72640$ (NACA 0015	66
	and flat plate)	
2.50	C_P against distance for 16° angle of attack at $Re = 72640$ (NACA 0015	66
	and flat plate)	
2.51	C_P distributions for NACA 0015 at $\alpha = 14^{\circ}$	68
2.52	C_P distributions at different angles	69
3.1	Flow chart diagram through the research study	74
3.2	Wind tunnel for lift, drag and pressure measurement	76
3.3	Flow Kinetics LLC FKPS 30DP electronic pressure scanner	78
3.4	Experimental setup of pressure on airfoil using Flow Kinetics LLC	79
	FKPS 30DP electronic pressure scanner	
3.5	Wind tunnel for flow visualization measurement	79
3.6	The NACA 0015 airfoil model with end plates	81
3.7	The NACA 0015 airfoil model with DBD plasma actuator	82
3.8	High voltage AC current	83
3.9	Pitot probe connected micromanometer	85
3.10	Analog Push Pull Gauge	86
3.11	Led lamp	87
3.12	Led driver	87
3.13	Phantom v710	88
3.14	Image of smoke flow on NACA 0015 airfoil surface by Phantom	89
	Camera Control Application (PCC) 2.8 Software	
3.15	Smoke generator	90
3.16	Visual Smoke	91
3.17	Lock Angle	91
3.18	Flow visualization test module	93
3.19	Experimental setup of flow visualization measurement of the airflow	94
	around NACA airfoil model	
3.20	Schematic diagram measurement lift and drag force	96
3.21	Schematic diagram measurement lift and drag force	97
3.22	NACA 0015 for pressure distribution measurement	100
3.23	Schematic diagram pressure distribution measurement	100
4.1	Captured images of airflow over an airfoil at $\alpha = 15^{\circ}$ for base case	105

and actuation case

4.2	Captured images of airflow over an airfoil at $\alpha = 16^{\circ}$ for base case and	107
	actuation case	
4.3	Captured images of airflow over an airfoil at $\alpha = 17^{\circ}$ for base case and	109
	actuation case	
4.4	Captured images of airflow over an airfoil at $\alpha = 18^{\circ}$ for base case and	111
	actuation case	
4.5	C_L vs. α at velocities 15 m/s and 20 m/s	112
4.6	Percentage improvement of C_L by presented of plasma vs. α at	113
	velocities 15 m/s and 20 m/s	
4.7	C_D vs. α at velocities 15 m/s and 20 m/s	116
4.8	Percentage reduction of C_D by presented of plasma vs. α at velocities	117
	15 m/s and 20 m/s	
4.9	C_L/C_D vs. α at velocities 15 m/s and 20 m/s	120
4.10	C_P vs. x/c at velocity 15 m/s (Base case)	121
4.11	C_P vs. x/c at velocity 15 m/s (Actuation case)	122
4.12	$C_{P actuation}/C_{P base}$ vs. x/c at velocity 15 m/s (stall control condition	123
	(15°), stall condition (16°) and high angle of attack (17°))	
4.13	C_P vs. x/c at velocity 20 m/s (Base case)	125
4.14	C_P vs. x/c at velocity 20 m/s (Actuation case)	126
4.15	$C_{P actuation}/C_{P base}$ vs. x/c at velocity 20 m/s (stall control condition, α =	127
	15°, stall condition, $\alpha = 16^{\circ}$ and high angle of attack, $\alpha = 17^{\circ}$)	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Gantt Chart of Research Activities	156
B1	Lift, Drag and Pressure Software	157
B2	Wind Tunnel Compartments for Flow Visualization Experiment	158
B3	Fabrication Dielectric Barrier Discharge (DBD) Plasma Actuator	159
B4	High voltage AC current	160
B5	Compartments Smoke Generator	161
B6	Lift and Drag Coefficients Preliminary Tables Result	162
B7	Sample Calculation Lift and Drag Coefficients of Airfoil NACA	164
	0015 at 0 Degree Angle of Attack (Actuation case)	
B8	Pressure Coefficients Preliminary Tables Result	166
B9	Sample Calculation Pressure Coefficient of Airfoil NACA 0015 at 0	171
	Degree Angle of Attack (Actuation case)	
B10	NACA 0015 for Pressure Distribution Measurement Details Drawing	172
C1	Lift and Drag Data (15 m/s)	173
C2	Lift and Drag Data (20 m/s)	175
C3	Lift-to-Drag Ratio Data	177
C4	Pressure Distribution Data 15 m/s (Base case)	178
C5	Pressure Distribution Data 15 m/s (Actuation case)	181
C6	$C_{P actuation}/C_{P base}$ 15 m/s	184
C7	Pressure Distribution Data 20 m/s (Base case)	185
C8	Pressure Distribution Data 20 m/s (Actuation case)	188
C9	$C_{P \ actuation}/C_{P \ base} \ 20 \ m/s$	191

xiii

LIST OF ABBREVIATIONS

AC	-	Alternating Current
AOA (a)	-	Angle of Attack
DBD	-	Dielectric Barrier Discharge
DC	-	Direct Current
EHD	-	Electrohydrodynamic
FKPS	-	Flow Kinetic Pressure Scanner
MAV	-	Micro Air Vehicle
MEE	-	Multiple encapsulated electrodes
MEMS	-	Microelectromechanical Systems
Ν	-	Newton
NACA	-	National Advisory Committee Aeronautics
PCC	-	Phantom Camera Control
PIV	-	Particle Image Velocimetry
PMMA	-	Polymethyl Methacrylate
PMT	-	Photomultiplier-Tube
SBDB	-	Single Dielectric Barrier Discharge
USB	-	Universal Serial Bus

xiv

LIST OF SYMBOLS

Α	-	Area of the object
AP	-	Actual pressure
α	-	Angle of attack
β	-	Burst ratio/ Duty cycle
С	-	Chord length
C_L	-	Lift coefficient
C_D	-	Drag coefficient
C_L/C_D	-	Aerodynamic efficiency
C_P	-	Pressure coefficient
d_D	-	Debye length
d	-	Dielectric thickness
D	-	Drag force
D_O	-	Indicated drag force
<i>E</i> _r	-	Dielectric constant
ε_0	-	Permittivity of air
Ε	-	Electric field /Dielectric strength
E*	-	Electric field
Factual	-	Actual force
$F_{indicated}$	-	Indicated force
F_b	-	Body force
f_b^*	-	Body force per volume
F_{eta}	-	Burst frequency
F^+	-	Frequency
h	-	Height
IF	-	Indicated force
IP	-	Indicated pressure
L	-	Length/ Lift force
ρ	-	Mass density / Fluid density

$p @ P_i$	-	Pressure at location ports on the surface
p_o	-	Static pressure of the freestream
p_∞	-	Pressure at some distance from the section
P_1	-	Pressure distribution for laminar stall start
P_2	-	Pressure distribution for turbulent stall start
q_v	-	Ionized components
S_1	-	Point laminar separation start and reattachment
S_2	-	Point of turbulent separation start
SP	-	Static pressure
Т	-	Period of ON cycle
TF	-	Tare force/ Reading at wind velocity
ТР	-	Tare pressure
T _{control}	-	Temporal duration of actuation
Tsignal	-	Period of one burst cycle
t -	-	Time
μ	-	Fluid viscosity
v	-	Kinematic viscosity
RF	-	Recorded force/ Reading from indicator with wind velocity
RP	-	Recorded pressure
Re	-	Reynolds number
U	-	Velocity
Uo	-	Free stream velocity
V	-	Resistance drag/ Upstream wind velocity
X	-	Vertical distance from leading edge
X	-	Distance of reference mark on the model holder
X_A	-	Actual distance
X_S	-	Indicated distance
φ	-	Electric potential

xvi

LIST OF PUBLICATIONS

Zainuddin, F.A. and Daud, N.M., 2018. A Review on Dielectric Barrier Discharge (DBD) Plasma Actuator in Aeronautics Applications. *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, 48(2), pp. 125-132.

Zainuddin, F.A, Daud, N.M., Mat, S. and Buntat, Z., 2018. Experimental study on flow around airfoil by using dielectric barrier discharge (DBD) plasma actuator. *ARPN Journal of Engineering and Applied Sciences*, 13(7), pp.2400-2407.

Zainuddin, F.A., Daud, N.M. and Ghani, A.F.A., 2018. Experimental study of flow around airfoil at high angle of attack by using DBD plasma actuator. *Proceedings of Mechanical Engineering Research Day 2018*, 2018, pp.262-263.

xvii

CHAPTER 1

INTRODUCTION

1.1 Research Background

Basically, any process or mechanism through the boundary layer that causes a fluid flow to behave differently is called as the flow control mechanism. The flow control is possible to control or the formations of transition boundary layer, turbulence and flow separation. The advantages of flow control are lift enhancement, drag reduction, increasing heat transfer and reduce the flow noise suppression. There are two methods in flow control such as active and passive methods. Normally, an active method of flow control device requires an energy input in certain amount to introduce into the flow. This method is flexible which can be turned on and off as needed. For the passive flow, it was modified without using external energy. Therefore, during the last decade, the development of active control methods has been emphasized (Johari and McManus, 1997; Amitay and Glezer, 2002; List et al., 2003; Asada et al., 2009; Kotsonis and Ghaemi, 2012; Abdollahzadeh et al., 2018; Dalvand et al., 2018; Nakai et al., 2018).

For a recent year, flow field was focused to microflow control devices which can control a large scale of flow control by adding local momentum. Therefore, Dielectric Barrier Discharge (DBD) plasma actuator is assumed to be a control device that can replace the traditional flow control devices such as vortex generators, slats and flaps. This device has many benefits such as easy structure, rapid response, and low energy consumption (Greenblatt et al., 2012; Fujii, 2014; Nakai et al., 2018). Meanwhile, Moreau

(2007) and Corke et al. (2010) provided a good evaluation of plasma actuator history, basic physics and flow control application with it types.

A DBD plasma actuator includes two electrodes and one dielectric material, where generates plasma via DBD plasma actuator at the vicinity between exposed electrode and embedded electrode when high alternating current (AC) voltage is applied consequently. This generated plasma induces the flow toward the encapsulated electrode from the exposed electrode (Ogawa et al., 2018). Besides, the DBD plasma actuator actually can directly converts electric energy into kinetic energy without involving moving mechanical elements (Moreau, 2007), for instance, plasma actuators have been applied for flow control on airfoil, flow control around circular cylinders, delaying flow separation on turbine blades and improving the aerodynamic performance (Sosa and Artana, 2006; Benard et al., 2008).

Additionally, the easiness by changing the operating mode is also an advantage. By referring Plogmann et al. (2009), the feed-back models with DBD plasma actuator for the separated flow improvement are focused. They proposed that a DBD plasma actuator is applied for unsteady flow conditions such a dynamic stall and the demonstration of the feed-back control to separate flow under dynamic stall condition by DBD plasma actuator using a microphone to measure a noise of the instantaneous of the frequency peak has been done. They assumed that measured peak frequency directly relates to the unstable frequency of the separated shear layer and the actuation with the peak frequency can increase the lift and decrease the drag. Besides, the DBD plasma actuator is more efficient when it acts near to the natural separation vicinity, and that the power consumption can be quite reduced in using a non-stationary actuation (Jolibois et al., 2008).

Plasma actuator is a type of electrical actuator that capable ionizing the flowing air and add localized momentum to the flow through collision process of migrating charged