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ABSTRACT 

 

 

Dielectric barrier discharge (DBD) plasma actuator has become a popular device in the 

aerodynamic flow control applications. The number of application of DBD plasma 

actuator increases due to its special features such as no moving parts, quick response and 

extremely low mass. For example, plasma actuators have been applied for flow control 

on airfoil, flow control around circular cylinders, delaying separation on turbine blades 

and improving the aerodynamic performance on cars. This study deals with the 

enhancement of aerodynamic performance on NACA 0015 airfoil when a DBD plasma 

actuator is mounted near the leading edge by using steady actuation method. Flow 

visualization test, lift and drag force test and pressure distribution test on upper surface 

airfoil test were conducted to investigate the effectiveness of DBD plasma actuator. A 

study on a NACA 0015 is performed to improve its aerodynamic performance 

particularly focused on the flow distribution visualized over an airfoil body, the 

evaluation and correlation of lift (CL), drag (CD) and pressure coefficient (CP). The 

results were compared between the base case (DBD plasma actuator OFF) and actuation 

case (DBD plasma actuator ON). Experimental works were performed in the wind tunnel 

test section at Reynolds number (Re) approximately 0.63 × 105 to 2.52 × 105 with 

external airflow 5 m/s for flow visualization test while 15 m/s and 20 m/s for lift and 

drag force test. The DBD plasma actuator was installed on NACA 0015 airfoil with 190 

mm chord length and 260 mm span length at x/c = 0.025, where x is the vertical distance 

measured from leading edge and c was the chord length. The DBD plasma actuator 

consists of two copper tape electrodes with 10 mm width and 50 μm thick that arranged 

parallel with 1 mm overlap. For the dielectric material, a Kapton film with 100 μm 

thickness was attached between these electrodes. A high voltage AC current was used 

where the output of the circuit can reach up until 6 kV with frequency 16 kHz. The result 

showed that actuation case was able to increase the aerodynamic performance of an 

airfoil by increasing lift coefficient about 22 % for 15 m/s and 49 % for 20 m/s, reducing 

the drag coefficient about 19 % for 15 m/s and 49 % for 20 m/s and recovering the 

pressure distribution about 1 %. These results were supported by flow visualization result 

which conducted at angles of attack α = 15° to α = 18°. These angles of attack are the 

important phases for airfoil during stall control condition (α = 15°), stall point (α = 16°) 

and high angle of attack (α = 17° and 18°). It is noticed that the actuation case results 

avoids a massive flow detachment from leading edge by producing strong vortices from 

plasma generation. The strong vortices flow near the airfoil surface and as a result, the 

CL for actuation case may increase. Therefore, the DBD plasma actuator became a better 

device to replace other mechanical devices especially in aeronautical field. 
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ABSTRAK 

 

 

Dielektrik halangan pelepasan (DBD) penggerak plasma telah menjadi alat yang 

terkenal dalam aplikasi kawalan aliran aerodinamik. Bilangan penggunaan DBD 

halangan penggerak plasma bertambah disebabkan oleh ciri-ciri khasnya seperti tiada 

bahagian yang bergerak, cepat bertindak balas dan mempunyai jisim yang sangat 

rendah. Contohnya, penggerak plasma telah digunakan untuk mengawal aliran pada 

kerajang udara, mengawal aliran di sekitar silinder bulat, melambatkan pemisahan 

pada bilah turbin dan meningkatkan prestasi aerodinamik pada kereta. Kajian ini 

berkait dengan peningkatan prestasi aerodinamik ke atas NACA 0015 kerajang udara 

apabila DBD halangan penggerak plasma dipasang pada bahagian yang berdekatan 

pinggiran hadapan kerajang udara dengan menggunakan langkah penjanaan plasma 

tetap. Ujian aliran gambar, ujian daya angkat dan seret dan ujian pengedaran tekanan 

pada permukaan atas kerajang udara dilakukan untuk mengkaji keberkesanan DBD 

halangan penggerak plasma. Kajian pada kerajang udara NACA 0015 dilakukan dengan 

tujuan untuk meningkatkan prestasi aerodinamik dengan tumpuan khusus pada penilaian 

dan hubung kait pada pekali angkat, pekali seretan dan pekali tekanan. Selain itu, 

gambar aliran pada badan kerajang udara dapat dijelaskan Hasilnya telah 

dibandingkan antara kes asas (DBD halangan penggerak plasma dimatikan) dan kes 

penjanaan plasma (DBD halangan penggerak plasma dihidupkan). Kerja-kerja ujikaji 

dilakukan pada nombor Reynolds (Re) anggaran 0.63 × 105 sehingga 2.52 × 105 dengan 

aliran udara luaran 5 m/s untuk ujian aliran gambar kemudian 15 m/s dan 20 m/s untuk 

ujian daya angkat dan seret. DBD halangan penggerak plasma telah dipasang pada 

kerajang udara NACA 0015 dengan panjang perentas 190 mm dan lebar 260 mm pada 

x/c = 0.025, di mana x adalah jarak tegak yang diukur dari pinggir depan dan c ialah 

panjang perentas. DBD penggerak plasma terdiri daripada dua elektrod pita tembaga 

dengan lebar 10 mm dan tebal 50 μm yang disusun selari dengan jarak 1 mm bertindih. 

Untuk bahan dielektrik, filem Kapton dengan 100 μm tebal dilekatkan diantara elektrod-

elektrod ini. Arus AC voltan tinggi digunakan di mana output litar boleh mencapai 

sehingga 6 kV dengan kekerapan 16 kHz. Hasilnya menunjukkan bahawa kes-kes 

penjanaan plasma dapat meningkatkan prestasi aerodinamik kerajang udara dengan 

peningkatan pekali angkat kira-kira 22 % untuk 15 m/s dan 49 % untuk 20 m/s, 

mengurangkan pekali seret kira-kira 19 % untuk 15 m/s dan 49 % untuk 20 m/s, 

memulihkan pengagihan tekanan pada purata 1 %. Pekali telah disokong oleh keputusan 

gambar aliran pada 15° sehingga 18°. Sudut-sudut serang merupakan fasa yang penting 

untuk kerajang udara semasa pengawalan keadaan tegun (α = 15°), titik tegun (α = 16°) 

dan sudut serang yang tinggi (α = 17° dan 18°). Keputusan kes penjanaan plasma 

menunjukkan pemisahan aliran yang besar dapat dielakkan dari pinggir hadapan 

dengan penghasilan pusaran yang kuat terhasil daripada pembentukan plasma. Pusaran 

kuat mengalir menghampiri permukaan kerajang udara dan mengakibatkan peningkatan 

pekali angkat semasa penjanaan plasma. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

 Basically, any process or mechanism through the boundary layer that causes a fluid 

flow to behave differently is called as the flow control mechanism. The flow control is 

possible to control or the formations of transition boundary layer, turbulence and flow 

separation. The advantages of flow control are lift enhancement, drag reduction, increasing 

heat transfer and reduce the flow noise suppression. There are two methods in flow control 

such as active and passive methods. Normally, an active method of flow control device 

requires an energy input in certain amount to introduce into the flow. This method is 

flexible which can be turned on and off as needed. For the passive flow, it was modified 

without using external energy. Therefore, during the last decade, the development of active 

control methods has been emphasized (Johari and McManus, 1997; Amitay and Glezer, 

2002; List et al., 2003; Asada et al., 2009; Kotsonis and Ghaemi, 2012; Abdollahzadeh et 

al., 2018; Dalvand et al., 2018; Nakai et al., 2018).  

For a recent year, flow field was focused to microflow control devices which can 

control a large scale of flow control by adding local momentum. Therefore, Dielectric 

Barrier Discharge (DBD) plasma actuator is assumed to be a control device that can 

replace the traditional flow control devices such as vortex generators, slats and flaps. This 

device has many benefits such as easy structure, rapid response, and low energy 

consumption (Greenblatt et al., 2012; Fujii, 2014; Nakai et al., 2018). Meanwhile, Moreau 



2 

(2007) and Corke et al. (2010) provided a good evaluation of plasma actuator history, basic 

physics and flow control application with it types.  

A DBD plasma actuator includes two electrodes and one dielectric material, where 

generates plasma via DBD plasma actuator at the vicinity between exposed electrode and 

embedded electrode when high alternating current (AC) voltage is applied consequently. 

This generated plasma induces the flow toward the encapsulated electrode from the 

exposed electrode (Ogawa et al., 2018). Besides, the DBD plasma actuator actually can 

directly converts electric energy into kinetic energy without involving moving mechanical 

elements (Moreau, 2007), for instance, plasma actuators have been applied for flow control 

on airfoil, flow control around circular cylinders, delaying flow separation on turbine 

blades and improving the aerodynamic performance (Sosa and Artana, 2006; Benard et al., 

2008).  

Additionally, the easiness by changing the operating mode is also an advantage. By 

referring Plogmann et al. (2009), the feed-back models with DBD plasma actuator for the 

separated flow improvement are focused. They proposed that a DBD plasma actuator is 

applied for unsteady flow conditions such a dynamic stall and the demonstration of the 

feed-back control to separate flow under dynamic stall condition by DBD plasma actuator 

using a microphone to measure a noise of the instantaneous of the frequency peak has been 

done. They assumed that measured peak frequency directly relates to the unstable 

frequency of the separated shear layer and the actuation with the peak frequency can 

increase the lift and decrease the drag. Besides, the DBD plasma actuator is more efficient 

when it acts near to the natural separation vicinity, and that the power consumption can be 

quite reduced in using a non-stationary actuation (Jolibois et al., 2008).  

Plasma actuator is a type of electrical actuator that capable ionizing the flowing air 

and add localized momentum to the flow through collision process of migrating charged 


