

Faculty of Mechanical Engineering

MECHANICAL BEHAVIOUR OF CARBON REINFORCED POLYMER USING RTM AND VIP TECHNIQUES FOR AIRCRAFT SPOILER HINGE

Zailinda binti Abdullah

Master of Science in Mechanical Engineering

2019

MECHANICAL BEHAVIOUR OF CARBON REINFORCED POLYMER USING RTM AND VIP TECHNIQUES FOR AIRCRAFT SPOILER HINGE

ZAILINDA BINTI ABDULLAH

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "Mechanical Behaviour of Carbon Reinforced Polymer using RTM and VIP Techniques for Aircraft Spoiler Hinge" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Zailinda Binti Abdullah
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature	:	
Supervisor Name	:	Assoc. Prof. Ir. Ts. Dr. Mohd Yuhazri Bin Yaakob
Date	:	·····

DEDICATION

Dedicated specially for

Beloved husband and family.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

The existing hinge bracket for aircraft spoilers is mostly made of metallic materials. The change of the materials of the hinge bracket from metallic to composites can contribute to a low weight structure. The demand for fibre-reinforced plastic (FRP) composites in aircraft industries especially the hinge bracket for spoilers is increasing over the years. However, the current fabrication process for aircraft hinge brackets used as spoilers incurred high costs in terms of tooling, production, and testing cost. Therefore, in this thesis, flat panel with different number and orientation of woven carbon fibre layers in laminated composites system were used to determine its mechanical behaviour. Two different processes have been used, namely Resin Transfer Moulding Process (RTM) and Vacuum Infusion Process (VIP). The fabrication processes were used to fabricate FRP composite with different plies as parameters. The parameters used were 8, 16, 24 and 32 plies of woven carbon fibres. Besides that, the orientation of the carbon fibre remains constant which are [0/90]n and [45/-45]n. For the mechanical test, these FRP composites undergo tensile tests and flexural tests. From the experiment, it is shown that 8CF/EP composites fabricated using VIP have 10.6 % higher in specific strength obtained from the tensile test and 64.4 % higher in specific strength obtained from the flexural test. It is also indicated that the composites with 8 plies of carbon FRP composite fabricated by using VIP gave good tensile and flexural strength compared to the composites fabricated by using the RTM method. Moreover, 8 plies of carbon FRP gave better mechanical properties compared to other different plies of carbon FRP composite. A comparison of mechanical properties between FRP composites made by VIP with existing hinge for aircraft spoiler shows that the UTS of FRP composites is 58% lower than existing material; AA7075-T651.

i

ABSTRAK

Pendakap engsel sedia ada untuk kelepai pesawat kebanyakannya diperbuat daripada bahan logam. Perubahan bahan pendakap engsel dari logam ke komposit boleh menyumbang kepada struktur berat badan yang rendah. Permintaan untuk komposit plastik gentian bertetulang (FRP) dalam industri pesawat udara terutamanya dalam pendakap engsel untuk kelepai semakin meningkat mengikut perkembangan semasa. Namun begitu, proses fabrikasi semasa untuk pendakap engsel pesawat digunakan sebagai spoiler yang menanggung kos yang tinggi dari segi perkakas, pengeluaran, dan kos ujian. Oleh itu, tesis ini membentangkan kesan bilangan dan orientasi serat karbon yang berlainan lapisan dalam sistem komposit berlapis berhubungan dengan sifat-sifat mekaniknya. Dua proses yang berbeza telah digunakan iaitu Proses Pembendungan Pemindahan Resin (RTM) dan Proses Penyedutan Vakum (VIP). Proses fabrikasi digunakan untuk membuat komposit FRP dengan lapisan yang berlainan sebagai parameter. Parameter yang digunakan ialah 8, 16, 24 dan 32 helai gentian karbon tenunan. Selain itu, orientasi serat karbon kekal tetap sedemikian rupa sehingga [0/90] n. Bagi ujian mekanikal, komposit FRP ini menjalani ujian tegangan dan ujian lenturan. Daripada eksperimen ini, ianya menunjukkan komposit 8CF/EP yang direka menggunakan VIP mempunyai 10.6% lebih tinggi dalam kekuatan tertentu yang diperolehi daripada ujian tegangan dan 64.4% lebih tinggi dalam kekuatan tertentu yang diperolehi dari ujian lenturan. Ia juga menunjukkan bahawa komposit dengan 8 lapisan karbon FRP komposit yang direka dengan menggunakan VIP memberikan kekuatan tegangan dan lenturan yang baik berbanding dengan komposit yang direka dengan menggunakan kaedah RTM. Lebihlebih lagi, FRP komposite dengan 8 helai karbon memberikan sifat mekanikal yang lebih baik berbanding dengan lain-lain sebatian karbon komposit FRP. Perbandingan sifat mekanik antara komposit FRP yang dibuat oleh VIP dengan braket engsel sedia ada untuk spoiler pesawat, menunjukkan bahawa UTS komposit FRP adalah 58% lebih rendah daripada bahan sedia ada; AA7075-T651.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

I wish to express my sincere appreciation to my supervisors, Professor Madya Ir. Ts. Dr. Mohd Yuhazri Bin Yaakob, Professor Madya Ahmad Rivai, and Professor Madya Dr. Mohd Fadzli Bin Abdollah for their encouragement, guidance, critics and friendship.

I also would like to thank to Encik Ahmad Fitri Faizee lecturer from Kolej Kemahiran Tinggi MARA Masjid Tanah and all technicians in UTeM who always give me full cooperation for providing assistance and guiding me throughout my specimen fabrication and testing.

In addition, I would like to extend my deepest sincere appreciation to Ministry of Higher Education (MOHE), Malaysia Ministry of Science, Technology and Innovation for sponsoring the research work under FRGS/1/2014/TK01/FKM/02/F00228 and Universiti Teknikal Malaysia Melaka (UTeM) for offering me this Master Science in Mechanical Engineering. I'm so thankful for this opportunity.

I also would like to give recognition for the significant contribution by my family and friends throughout the duration of my master studies. I genuinely appreciate their continual support especially my husband. With his support, I have managed to make it this far. Alhamdulillah.

TABLE OF CONTENTS

8

10

36 37

DEC	LARA'	ΓΙΟΝ	
APP	ROVA		
DED	ICATI	ON	
ABS	TRAC	ſ	i
ABS	TRAK		ii
ACK	NOWI	LEDGEMENTS	iii
TAB	LE OF	CONTENTS	iv
LIST	C OF TA	ABLES	vii
LIST	C OF FI	GURES	viii
LIST	COF Al	PPENDICES	xi
LIST	COF SY	MBOLS	xii
LIST	COF Al	BBREVIATIONS	xiii
LIST	C OF PU	JBLICATIONS	xiv
СНА	PTER		
1.	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Problem statement	4

1.3	Objectives	6
1.4	Scope	6
1.5	Knowledge contribution	7
1.6	Novelty	8

	=	
1.7	Overview of thesis report	

LITERATURE REVIEW 2.

2.1	Introduction	10
2.2	Fibre	10
	2.2.1 Natural fibre	10
	2.2.2 Synthetic fibres	16
2.3	Reinforcement	20
2.4	Matrix phase	21
2.5	Thermoplastic resins	24
	2.5.1 Polypropylene (PP)	25
	2.5.2 Polyvinylchloride (PVC)	25
	2.5.3 Polyethylene	26
2.6	Thermosetting resins	26
	2.6.1 Polyester	28
	2.6.2 Phenolic Resin	28
	2.6.3 Polyimides	29
	2.6.4 Epoxy	29
2.7	Composites	30
2.8	Laminated composite	33
2.9	Composite in aerospace	35

- 2.9.1 Aircraft spoiler hinge2.10 Classification of composites

		2.10.1 Metal matrix composites	37
		2.10.2 Polymer matrix composites	38
	2.11	Composite processing	39
		2.11.1 Resin Transfer Moulding (RTM)	39
		2.11.2 Vacuum Infusion Process (VIP)	42
	2.12	Summary	44
3.	MET	HODOLOGY	45
	3.1	Introduction	45
	3.2	Raw material	47
		3.2.1 Carbon fibre	47
		3.2.2 Epoxy	48
	3.3	Preparation of carbon laminate composites	50
		3.3.1 Mould preparation	50
		3.3.2 Carbon laminate composites via resin transfer moulding	53
	2.4	3.3.3 Carbon laminate composites via vacuum infusion process	5/
	5.4 2.5	I he specimens Machanical tasting	38 60
	5.5	3.5.1 Tonsile testing	00 61
		3.5.2 Elevural testing	6/
	36	Analysis on microstructure	69
	3.7	Summary	70
	517		70
4.	RES	ULT AND DISCUSSION	71
	4.1	Introduction	71
	4.2	Mechanical behavior	71
	4.3	Resin transfer moulding	72
		4.5.1 Effect of tensile strength on familiated composites	12
		4.3.2 Effect of flexural strength on laminated composites	70
		fabricated by using RTM process	13
	4.4	Vacuum infusion process	83
		4.4.1 Effect of tensile strength on laminated composites	83
		fabricated by using VIP	
		4.4.2 Effect of flexural strength on laminated composites	88
		fabricated by using VIP	
	4.5	Comparison of laminated composites fabricated using RTM and	91
	1.0	VIP on tensile strength	06
	4.0	VIP on flexural test	90
	47	Comparison of mechanical properties on different manufacturing	100
	1.7	process and different number of carbon fibre layers	100
	4.8	Comparison between composites material and material use by	101
		existing hinge	
	4.9	Summary	102
5	CON	CILISION AND DECOMMENDATIONS	102
3.	5 1	Conclusion	103
	5.1	Concrusion	103

5.2	Recommendations for future studies	104
REFEREN	NCES	105
APPENDI	ICES	113

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	The physical and mechanical properties of natural fibres (Faruk	13
	et al., 2012; Kabir et al., 2012)	
2.2	Properties of reinforcing fibre(Fischer, 2009)	21
2.3	Properties of thermosetting polymer (Askeland and Fulay, 2009)	28
3.1	Physical properties of carbon fibre (CTRM)	47
3.2	Physical properties of epoxy (KIRD Enterprise)	49
3.3	Handling properties of epoxy (KIRD Enterprise)	49
3.4	Mould specifications	51
3.5	Percentage (%) of carbon fibre and epoxy resin in composite	53
	fabricated using RTM and VIP	
3.6	Fibre orientation and layer arrangement	59
3.7	Thickness for RTM and VIP Specimen on tensile test	61
3.8	Thickness for RTM and VIP Specimen on flexure test	61
4.1	Ultimate tensile strength of neat epoxy and carbon fibre laminate	73
	fabricated using RTM process	
4.2	UTS results for RTM and VIP composites	92
4.3	Tensile modulus results for RTM and VIP composites	94
4.4	Specific strength for RTM and VIP composites	95
4.5	Flexural strength results for RTM and VIP composites	96
4.6	Flexure modulus results for RTM and VIP composites	97
4.7	Specific strength results for RTM and VIP composites	98
4.8	Mechanical properties of FRP composites made by RTM and	100
	VIP	
4.9	Mechanical properties of AA7075-T651 and composites	101

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Types of natural fibre (Ramli, 2018)	11
2.2	Tensile stress and tensile modulus of PLA/flax compared with	15
	PP/flax composites (Oksman et al., 2003)	
2.3	Polyamide (Ramli, 2018)	17
2.4	The arrangement of monomer units in thermoplastic material can	23
	be compared to a set of strings (Ramli, 2018)	
2.5	Location aircraft spoiler hinge (Tom Benson, 2015)	37
2.6	RTM process (Morrison, 2019)	40
3.1	Flow chart of research study	46
3.2	Woven carbon fibre fabric	48
3.3	Epoxy and hardener used for carbon laminate composites	48
3.4	Schematic drawing of the mould	51
3.5	Mould for RTM and VIP techniques	52
3.6	Schematic drawing of the RTM process	55
3.7	RTM process	55
3.8	Laminated composited fabricated using RTM	56
3.9	Vacuum infusion process (Vacuum Infusion Complete Guide,	58
	2019)	
3.10	Laminated composite fabricated using VIP	58
3.11	Fibre orientation for specimen	60
3.12	Schematic drawing of tensile test	62
3.13	Tensile test using SHIMADZU	62
3.14	Schematic drawing of tensile specimen	64
3.15	Tensile test specimen	64

3.16	Schematic drawing of flexural testing	65
3.17	Flexural test using INSTRON Universal Testing Machine	66
3.18	Illustration for flexural test specimen	68
3.19	Specimens for flexural test	69
3.20	Scanning electron microscope	70
4.1	Load displacement of carbon fibre fabricated using RTM technique	72
4.2	Ultimate tensile strength of carbon fibre laminate fabricated using RTM process	74
4.3	Tensile modulus of carbon fibre laminate fabricated using RTM process	76
4.4	Specific strength of carbon fibre laminate fabricated using RTM process	77
4.5	SEM image of RTM 8CF/EP composites for RTM process on tensile test	78
4.6	Flexural strength of carbon fibre laminate fabricated using RTM process	79
4.7	Flexure modulus of carbon fibre laminate fabricated using RTM process	80
4.8	Specific strength of carbon fibre laminate fabricated using RTM process on flexural strength	81
4.9	SEM image of RTM 8CF/EP composites for RTM process on flexural test	82
4.10	Ultimate tensile strength of carbon fibre laminate composite fabricated using VIP	83
4.11	Tensile modulus of carbon fibre laminate composite fabricated using VIP	85
4.12	Specific strength of carbon fibre laminate fabricated using VIP	86
4.13	SEM image of VIP 8CF/EP composites for VIP on tensile test	87
4.14	Flexural strength of carbon fibre laminate fabricated using VIP	88
4.15	Image of 1 layer carbon fibre composite on three point bending test	89

4.16	Flexure modulus of carbon fibre laminate fabricated using VIP	90
4.17	Specific strength of carbon fibre laminate fabricated using VIP on	91
	flexural strength	
4.18	Comparison UTS results between RTM and VIP composites	92
4.19	Comparison on tensile modulus results between RTM and VIP	94
	composites	
4.20	Comparison on specific strength between RTM and VIP	95
	composites	
4.21	Comparison on flexural strength between RTM and VIP	96
	composites	
4.22	Comparison on flexural modulus between RTM and VIP	97
	composites	
4.23	Comparison on specific strength between RTM and VIP	99
	composites	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	ASTM D3039 Standard Test Method for Void Content of	113
	Reinforced Plastics	
В	ASTM D790 Standard Test Methods for Flexural Properties	126
	of Unreinforced and Reinforced Plastics and Electrical	
	Insulting Materials	

LIST OF SYMBOLS

А	- Area
b	- Width of the specimen
d	- Depth of beam, mm
E _f	- Modulus of elastic in bending, MPa
F	- Force
L	- Length of the support span, mm
m	- Slope of the tangent to the initial straight line portion of the load
	deflection curve, N/mm
R	- Rate of cross head motion, mm/min
tl	- Total length
t	- Thickness of the specimen, mm
W	- Modulus of elastic in bending, MPa
Z	- Rate of straining of the entire fibre mm/mm/min

LIST OF ABBREVIATIONS

AFRP	- Aramid Fibre Reinforced Polymer
ASTM	- American Society for Testing and Materials
CFRP	- Carbon Fibre Reinforced Polymer
CMC	- Ceramic Matrix Composites
CTRM	- Composites Technology Research Malaysia Sdn. Bhd
FACC	- Fischer Advanced Composites Components
FRP	- Fibre Reinforced Composite
FTIR	- Fourier Transform Infrared Spectroscopy
GFRP	- Glass Fibre Reinforced Polymer
MMC	- Metal Matrix Composites
PEEK	- Polyether Ether Ketone
PLA	- Polylactic Acid
PMC	- Polymer Matrix Composites
PP	- Polypropylene
PVC	- Polyvinylchloride
RTM	- Resin Transfer Moulding
SEM	- Scanning Electron Microscope
UD	- Unidirectional
VARTM	- Vacuum Resin Transfer Moulding
VIP	- Vacuum Infusion Process
1CF/EP	- 1 Carbon Fibre/Epoxy
8CF/EP	- 8 Carbon Fibre/Epoxy
16CF/EP	- 16 Carbon Fibre/Epoxy
24CF/EP	- 24 Carbon Fibre/Epoxy
32CF/EP	- 32 Carbon Fibre/Epoxy

LIST OF PUBLICATIONS

JOURNAL:

 Yuhazri, M.Y., Zailinda, A., Amirhafizan, M.H., Sihombing, H., and Lau, S.T.W., 2019. Effects of Different Processes on Mechanical Properties of CFRP by RTM and VIP Techniques. *International Journals of Engineering and Sciences*, 19 (5), pp. 98-103.

PROCEEDING:

 A. Zailinda, A. Rivai, Yuhazri, M.Y., & M.K.M. Rus, Comparison of Two Different Composite Process Using Hand Lay UP and Resin Transfer Moulding for Tensile Properties. *Proceeding of Mechanical Engineering Day 2017, Melaka, 30 March* 2017, pp. 308-309.

CHAPTER 1

INTRODUCTION

1.1 Background

Fibre Reinforced Plastics (FRP) composite materials have many advantages; such as lightweight, high strength, high-temperature resistance, and corrosion resistance. Due to the advantages of FRP, it has been applied in transportation which requires lightweight materials to save fuel consumption and improve acceleration (Sai, 2016). Composite is made of a combination of two or more materials with different properties. FRP composites consist of fibre or reinforcement bound into another material called a matrix. Matrix binds the fiber together like an adhesive and makes them stronger or more resistant towards external damage. The fibre reinforces the matrix to become stronger and stiffer and helps to resist cracks and fractures. The main functions of fibres are to carry the load and provide stiffness, strength, thermal stability, high ultimate strength, low variation among fibre, high stability of their strength during alignment of the fibres, protection from damage during manufacture and manipulation. The environment influences the durability of composites for the protection. Generally, a composite material is composed of reinforcement such as fibres, flakes, or fillers embedded in a matrix such as polymers, metals or ceramic to improve the overall mechanical properties of the matrix (Nagavally, 2017).

There are few types of fibres such as glass, carbon, carbide, and asbestos while the matrix usually used plastic, ceramic and metal. From these three types of matrix, it produces three groups of a composite including polymer matrix composites (PMCs), ceramic matrix composites (CMCs), and metal matrix composites (MMCs). There are

three types of composites namely particulate composite, fibre-reinforced composite, and a sandwich or laminate composite. Particulate composite composed of a particle of one or more material to become a stronger material. For fibre-reinforced composites, it consists of long or short fibre which is embedded in the matrix. The fibre can be in aligned continuous, aligned discontinuous or random direction of fibre orientation. While for the sandwich composite or laminated composite, they consist of layers of two or more different materials that are bonded together to make a stronger material. The behaviour of laminated composites is usually affected by the fibre angle or fibre orientation and the arrangements of the layers.

As mentioned by Papargyris et al., (2008), fibre reinforced polymer composites have gained substantial interest over the past decades, this is due to their very high strength of weight and stiffness to weight ratio which led to the application of composites materials in many industries such as aerospace and automotive industries. Carbon fibre reinforced polymer (CFRP) possesses a high strength and stiffness to weight ratio, excellent fatigue behaviour and corrosion resistance, quick application and relatively short construction time (Le-Trung et al., 2010). Apart from CFRP, there are some other types of fibre reinforced composite (FRP) such as carbon (CFRP) and glass (GFRP) (Sonnenchein et al., 2016).

The primary manufacturing process to produce composites includes manual lay-up, spray-up, filament winding, pultrusion, autoclave, and resin transfer moulding. Autoclave is one of the processes that is widely used in aerospace industries because this process can contribute a high volume of composite production. But autoclave process has some weaknesses which are high tooling cost and low flexibility to design changes. Due to this problem, new process is being investigated and reviewed. The selected processes are resin transfer moulding (RTM) and vacuum infusion process (VIP). RTM has a lot of advantages such as low tooling cost, good dimensional tolerances, possibility to mould

high complex shape, and have good surface finish on both sides of the composites. RTM has proved to a viable and competitive technique for fabrication of large, complex and high performance FRP composite materials (Richardson and Zhang, 2000). RTM process involves five important components which are the resin and catalyst container, pumping unit, mixing chamber, resin injector, and mould. Parameters that affect RTM process are the mould which is used to pave the fibres, injection pressure, temperature, viscosity, volume fraction, mould filling time, and resin curing time.

Vacuum infusion process (VIP) is a process that uses vacuum pressure to flow the resin into a laminate. The material or the reinforcement are placed in the mould and the vacuum pump is connected before the resin is inserted. Once the vacuum has completely achieved, the resin flow through the positioned tubing will automatically sucked up into the laminate (Abdurohman et al., 2018). VIP has several advantages such as better consistency, higher specific strength and rigidity, good interior finish and has faster cycle time and low cost. Besides that, other advantages include less wasted resin, unlimited setup time, high consistency and repeatability, cleaner process than traditionally FRP processing and ability to use standard composite tooling which is as long as the tool can hold a vacuum and flanges is wide enough to seal the bag (Reeve, 2018).

In RTM and VIP, laminated composite type will be used. Fibre is the primary load carrying element of the composite. The strength and stiffness of composite is in the direction of the fibres while the matrix supports the fibres and bonds them together in the composite materials. The matrix transfers all the applied loads to the fibres and keeps the fibres in their position and orientation. Fibre orientation directly impacts the mechanical the properties of composite since it is required to stack as many layers as possible in the carried main load and this approach may be applied for some structures with different directions of fibres such as 0° , $+45^\circ$, -45° , and 90° directions. The stacking sequences of

the fibre layers describe the distribution of ply orientations through the laminate thickness. The higher the numbers of fibre plies with preferred orientations, the more stacking sequences are possible to design. The strength and stiffness of the composites build up depends on the orientation sequence of the plies. The composites required 0° plies in order to react to axial loads, while $\pm 45^{\circ}$ plies to react with shear loads, and 90° plies to react to side loads. This is due to the strength design requirements are the function of applied load direction, ply orientation and ply sequence must be correct. There are few types of fibre orientation namely as unidirectional, bidirectional (fabric), and non-woven (knitted or stitched). Generally, for aerospace structures, woven fabrics are usually used in order to save weight, minimize and used of resin, use in maintaining the fibre orientation during fabrication process.

1.2 Problem statement

Nowadays, composite has increased in replacing the conventional materials and widely applied in various field such as aerospace structures and automotive parts. Aerospace industries require high volume of composite production and autoclaves process is one of the manufacturing processes that are widely used in these industries. But the weakness of this process is it requires high tooling cost and low flexibility to design changes. In aerospace industries, it shows high demand of composite manufacturing. The interest of composite materials in aircraft structures comes from the action to reduce fuel consumption in the commercial airlines Airbus and Boeing. For an instance, both have been competing to increase their aircraft (Mun et al., 2014).

The performance of an aircraft is mainly depending on the lightweight of component, so the design of an aircraft is impacted by the interaction of its functional necessity and its basic strength, stiffness, and life requirements. There are limitation for

4

doing smart design using metals in order to meet the specification of better performing design which is composites material called carbon fibre reinforced plastic (CFRP), is explored for the usage in aircraft part (Kalanchiam and Chinnasamy, 2012). Besides, most of the existing aircraft parts are made of metals. According to (Laurenzi and Marchetti, 2012), the global objective is to reduce to half the amount of fuel by 2020 and further improve to 70% less by 2025, for example it is one of the most efficient aircraft which entirely made of carbon fibre. In aerospace industries, it requires high volume of production and the compression moulding process produces low cost parts but requires a high capital investment in presses, infrastructure and tooling.

Aircraft use spoilers arranged on the upper surface of wings, which are used during the flight to manoeuvre the aircraft and hinge moves the spoiler upwards and downwards with a hydraulic cylinder in relation to the wing. The hinge bracket is the structure which attached to the aircraft spoiler mounted at the top of the aircraft wings and the hinge which allows the upward and downward movement of the aircraft spoilers. The location of the hinge bracket is between the spoiler and the wing, one of the brackets is attached to the spoiler while the other is joint to the wing (Mun et al., 2014). Existing hinge for aircraft spoilers is mostly made of metals. Composite hinge is still not well developed and not fully utilised in commercial aircraft due to a few barriers including manufacturing cost, nonrecurring development costs, maintenance technology, as well as difficulty in determining and analysing the mechanical behaviour of composite hinge.

The conventional method in determining the mechanical behaviour of composite hinge is by using destructive testing which is tough, timely and material consuming which in return increases the difficulty in design optimisation of the composite hinge. The arrangement and the orientation for actual hinge provided by CTRM were used in this