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ABSTRACT 

 

 

This research presents a vibration analysis on the lattice structure material fabricated by 

utilizing fused deposition modeling (FDM) additive manufacturing (AM) for application as 

load-bearing lightweight body part in automated device. The work has been motivated by 

the need to explore the dynamic behaviour of the lattice structure material so that the real 

behaviour of the system, performance, suitability and limitations can be understood and 

which at the end can provide better safety of the structure in the real dynamic applications. 

This work has undertaken on clarifying issues related to weight and built quality of the 

manufactured lattice structure material samples prior to vibration testing. The four proposed 

topological designs namely simple cubic (SC), face centred cubic (FCC), body centred cubic 

(BCC) and body centred cubic with reinforced z pillars (BCCz) are evaluated based on these 

two criteria which are from manufacturability and weight practicality. Based on the selection 

process, it is found that the BCC topological design of the lattice structure is more acceptable 

and henceforth used to represent the vibrational response study of the lattice structure 

cellular material with different strut diameter sizes. The results show that the natural 

frequency of the lattice structure material can be greatly affected by the strut diameter sizes 

due to increase in stiffness as the strut diameter increases. In addition, the mathematical 

equation is also derived to calculate the total area moments of inertia of the lattice structure 

model and the validity of this developed model is shown through comparison of the results 

with experimental work of the three-point bending test. From the calculation of total area 

moment of inertia, it is found that the lattice structure model with the highest strut diameter 

size yield highest value of total area moment of inertia. The results show a good agreement 

between the theoretical model and experimental work. The investigation on various effects 

of damage existence including damage locations and damage extents to the natural frequency 

values of the lattice structure material are also examined. The damage in the lattice structure 

is represented by a damage parameter η which indicates the ratio of missing unit cells to the 

total unit cells of the intact lattice structure. It is found that the natural frequency values 

decrease with the increase of damage parameter η from ratio of 0.00 to 0.50. Meanwhile, the 

natural frequency values increase as the damage location became farthest from the clamped 

edge. This indicates that the effect of damage on the natural frequency values become 

smaller as the damage zone moves from the clamped edge boundary condition to the free 

end. This research provides a good information on the influence of the strut diameter design 

parameter as well as the effects of damage existence to the natural frequency values of the 

lattice structure material and it can be seen that the results could constitute a useful 

information for subsequent investigation into the development of the lattice structure in order 

to fulfil the demand on the lightweight and cost reduction of materials.  
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ABSTRAK 

 

 

Kajian ini membentangkan analisa getaran terhadap bahan berstruktur kekisi dibuat 

dengan pembuatan secara tambahan fused deposition modeling (FDM) untuk aplikasi 

bahagian badan menahan beban ringan pada peranti automatik. Kerja ini termotivasi oleh 

keperluan untuk meneroka tingkah laku dinamik bahan berstruktur kekisi agar tingkah laku 

sebenar sistem, prestasi, kesesuaian dan batasan difahami dan akhirnya memberikan 

keselamatan struktur lebih baik dalam aplikasi dinamik sebenar. Kerja ini juga 

melaksanakan penjelasan isu berkaitan berat dan kualiti pembinaan bahan berstruktur 

kekisi sebelum ujian getaran. Keempat rekabentuk topologi dicadangkan iaitu simple cubic 

(SC), face centred cubic (FCC), body centred cubic (BCC) dan body centred cubic dengan 

tiang z (BCCz) dinilai berdasarkan dua kriteria iaitu keterbuatan dan kepraktikan berat. 

Melalui proses pemilihan, didapati rekabentuk topologi BCC lebih baik dan digunakan 

mewakili kajian respon getaran bahan berstruktur kekisi dengan saiz garis pusat tiang 

berbeza. Hasil kajian menunjukkan frekuensi semulajadi bahan berstruktur kekisi amat 

dipengaruhi saiz garis pusat tiang kerana peningkatan kekakuan apabila saiz garis pusat 

tiang meningkat. Selain itu, persamaan matematik diperoleh untuk mengira jumlah kawasan 

momen inersia model bahan berstruktur kekisi dan kesahihan model diperoleh ini dibuktikan 

dengan perbandingan hasil kajian dengan esperimen lenturan tiga titik. Dari pengiraan 

jumlah kawasan momen inersia, didapati model bahan berstruktur kekisi dengan saiz garis 

pusat tiang tertinggi menghasilkan nilai jumlah kawasan momen inersia tertinggi. Hasil ini 

menunjukkan persetujuan baik antara model teori dan kerja esperimen. Kajian terhadap 

pelbagai kesan kerosakan termasuk lokasi dan keterukan kerosakan terhadap nilai frekuensi 

semulajadi bahan berstruktur kekisi juga dilaksanakan. Kerosakan bahan berstruktur kekisi 

diwakili parameter kerosakan η yang menunjukkan nisbah sel unit yang hilang berbanding 

sel unit struktur sempurna. Didapati nilai frekuensi semulajadi menurun dengan 

peningkatan parameter kerosakan η dari 0.00 hingga 0.50. Selain itu, nilai frekuensi 

semulajadi meningkat apabila lokasi kerosakan lebih jauh dari sisi dikapit. Ini menunjukkan 

kesan kerosakan terhadap frekuensi semulajadi bar bahan selular berstruktur kekisi menjadi 

lebih kecil apabila zon kerosakan bergerak dari sisi dikapit ke arah sisi bebas. Kajian ini 

memberikan maklumat baik mengenai pengaruh parameter rekabentuk saiz garis pusat 

tiang serta kesan kerosakan kepada nilai frekuensi semulajadi bahan berstruktur kekisi dan 

ianya boleh dilihat bahawa hasil kajian membentuk maklumat berguna untuk siasatan 

seterusnya ke atas pembangunan bahan struktur berbentuk kekisi dalam memenuhi 

permintaan untuk bahan ringan dan pengurangan kos bahan.   
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