

Faculty of Mechanical Engineering

NUMERICAL INVESTIGATION OF FLOW CHARACTERISTICS OF AN OSCILLATORY FLOW ACROSS A THERMOACOUSTIC STACK

Siti Hajar Adni binti Mustaffa

Master of Science in Mechanical Engineering

2019

NUMERICAL INVESTIGATION OF FLOW CHARACTERISTICS OF AN OSCILLATORY FLOW ACROSS A THERMOACOUSTIC STACK

SITI HAJAR ADNI BINTI MUSTAFFA

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Numerical Investigation of Flow Characteristics of an Oscillatory Flow Across a Thermoacoustic Stack" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Siti Hajar Adni binti Mustaffa
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my own opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature:Supervisor Name : Dr. Fatimah Al-Zahrah binti Mohd Sa'atDate:

DEDICATION

I dedicate this thesis to my beloved parent and also my family, who have been my source of inspiration and gave me strength when I though of giving up, who continually provide their moral, spiritual, emotional and financial support.

ABSTRACT

Thermoacoustic system uses green technology to convert heat into electrical power or vice versa. The technology is attractive but the lack of understanding about fluid dynamics behavior of flow inside the system leads to the challenging issue in improving the system's performance. Therefore, fundamental study of fluid dynamics in the complex thermoacoustic flow condition is needed. In this study, fluid dynamics investigations of an oscillatory flow across internal structure of a thermoacoustic system were carried out. Two dimensional CFD models of flow across structure known as "stack" inside thermoacoustic systems were solved using ANSYS CFD. The models were solved using laminar, Transition SST and SST k-ω turbulence models. The investigation covered drive ratios from 0.3 percent to 3.0 percent which corresponded to Stokes Reynolds number of 59 to 1722. A new investigation of the effect of flow frequency was also reported. The frequencies of flow was set at 13.1 Hz and 23.1 Hz. The CFD models were validated using experimental results. An experimental standing wave rig was developed and velocity data was measured and then used to validate the CFD models. The results of the CFD model agreed with experimental data with the errors ranging between 0.36 to 7.69 percent. Due to the limitation of the experimental rig, cases with drive ratio lower than 0.8 percent and higher than 1.6 percent were verified using theoretical solution. A good match was found between the CFD results and theoretical solution especially at low Reynolds number. Deviation between CFD results and theoretical predictions at high Reynolds number was discussed. Results were discussed based on velocity profiles and vorticity contour of flow within and around the "stack". At 13.1 Hz, turbulence was found to start at a Reynolds number as low as 163. The start of turbulence was delayed to a Reynolds number of 308 as the frequency was increased to 23.1 Hz. The investigation of vortex shedding flow phenomena revealed nine patterns of vortex shedding evolution for both flow frequencies. The vortex that sheds at the end of structure will come back into the channel of the structure as the flow reversed. As a result, the entry length for this oscillatory flow was found to be better predicted using the well-established entry length equation for turbulence one-dimensional flow condition even if the oscillatory flow was laminar. Comparison between the current study and published works regarding the ratio of the channel height to the boundary layer thickness (D/ δv) was also presented to strengthen the validity of the results of current study. The comprehensive fluid dynamics analysis reported in this study are expected to be beneficial for system that works with oscillatory flow condition especially the thermoacoustic systems.

ABSTRAK

Sistem termoakustik menggunapakai teknologi hijau untuk menukar haba kepada kuasa elektrik dan sebaliknya. Teknologi tersebut menarik tetapi pemahaman yang kurang terhadap kelakuan dinamik bendalir dalam aliran sistem mendorong kepada cabaran untuk menambahbaik prestasi sistem tersebut. Maka kajian asas terhadap dinamik aliran dalam keadaan aliran termoakustik yang kompleks diperlukan. Dalam kajian ini, model CFD dua dimensi untuk aliran merentasi struktur "stack" dalam sistem termoakustik telah diselesaikan menggunakan ANSYS CFD. Model tersebut telah diselesaikan menggunakan model laminar, model pergolakan Transition SST dan SST k- ω . Kajian ini merangkumi nisbah penggerak dalam julat 0.3 peratus sehingga 3.0 peratus yang bersamaan dengan nombor Stokes Reynolds 59 sehingga 1722. Kajian baru berkaitan frekuensi aliran telah dilaporkan. Frekuensi aliran adalah dari 13.1 Hz dan 23.1 Hz. Model CFD telah disahkan menggunakan data eksperimen. Sebuah rig eksperimen gelombang berdiri telah dibangunkan dan data halaju telah diukur dan digunakan untuk mengesahkan model CFD tersebut. Perbandingan keputusan CFD dan eksperimen adalah baik dengan peratus kesilapan 0.36 peratus sehingga 7.69 peratus. Disebabkan kekangan rig ujikaji, model dengan nisbah penggerak rendah daripada 0.8 peratus dan tinggi daripada 1.6 peratus hanya dapat disahkan menggunakan teori. Padanan yang baik telah diperolehi antara keputusan CFD dan penyelesaian teori pada nombor Reynolds yang rendah. Sisihan nilai di antara keputusan CFD dan penyelesaian teori pada nombor Reynolds yang tinggi turut dibincangkan. Data yang diperolehi telah dibincangkan dari segi profil halaju dan aliran kontur vortisiti di kawasan dalam dan sekitar "stack". Pada 13.1 Hz, pergolakan telah dikesan bermula pada nombor Reynolds serendah 163. Permulaan pergolakan telah tertangguh ke nombor Reynolds 308 apabila frekuensi meningkat ke 23.1 Hz. Kajian terhadap fenomena aliran tumpahan vorteks telah menunjukkan sembilan corak evolusi tumpahan vorteks pada kedua-dua frekuensi. Vorteks yang tertumpah pada hujung struktur akan kembali ke dalam saluran apabila aliran berpatah balik. Sebagai hasilnya, panjang masukan aliran ayunan ditemui lebih sesuai diramalkan menggunakan persamaan panjang masukan sedia ada untuk keadaan pergolakan satu dimensi, walaupun aliran ayunan tersebut berada dalam keadaan laminar. Perbandingan antara nisbah ketinggian saluran kepada ketebalan lapisan sempadan ($D/\delta v$) di antara kajian ini dan penerbitan lepas turut dipersembahkan untuk mengukuhkan lagi kesahihan data kajian ini. Analisis menyeluruh terhadap pemahaman dinamik aliran seperti yang dilaporkan dalam kajian ini dijangka akan memberi manfaat kepada sistem yang beroperasi dalam keadaan aliran ayunan terutamanya sistem termoakustik.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my greatest gratitude to my supervisor, Senior Lecturer Dr. Fatimah Al-Zahrah binti Mohd Sa'at from the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for her essential supervision, support and encouragement towards the completion of this thesis. I would also like to express my sincere acknowledgement to Senior Lecturer Dr. Ernie binti Mat Tokit from Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka who is a co-supervisor of this project for her advice and suggestions in improvement of this study. Special thanks to Universiti Teknikal Malaysia Melaka (UTeM) for providing the opportunity for conducting research for this study and special appreciation goes to Kementerian Pendidikan Malaysia for the financial support through the FRGS/1/2015/TK03/FKM/03/F00274 grant funding. I would also like to express my deepest gratitude to Mr. Rizal bin Roosli, an assistant engineer at the Computer-Aided Laboratory, Faculty of Mechanical Engineering, and Mr. Faizal bin Jaafar, an assistant engineer at the Turbomachinery Laboratory, for their assistances and efforts in all the laboratory works. Special thanks to all my peers, my beloved parents, my little brother and my families for their endless moral support while I am completing this thesis. Finally, thank you to everyone who had been there during crucial parts of this project.

TABLE OF CONTENTS

PAGE

	LARA'		
	ROVA		
			•
			i
	FRAK		ii
		LEDGEMENTS	iii ·
		CONTENTS	iv
		ABLES	vi
		GURES	viii
		PPENDICES BBREVIATIONS AND SYMBOLS	xiv xix
		UBLICATIONS AND ST MBOLS	XIX XX
	PTER	DODUCTION	1
1.	1.1	RODUCTION Background of study	1
	1.1	Background of study Problem of statement	1 5
	1.2		5
	1.3 1.4	5	0 6
	1.4	Thesis structures	0 7
	1.0		,
2.		ERATURE REVIEW	8
	2.1	Thermoacoustic principles	8
	2.2	Applications of the thermoacoustic system	10
	2.3	Fluid flow phenomena in oscillatory flow	15
		2.3.1 Transition to turbulence	17
		2.3.2 Vortex shedding phenomenon	23
		2.3.3 Entry length	30
	2.4	Numerical modelling of thermoacoustic phenomena	34
	2.5	Laminar model	35
	2.6	Turbulence modelling	36
	2.7	Current study in the context of the existing literatures	39
	2.8	Summary	40
3.	МЕТ	THODOLOGY	41
	3.1	Flowchart of methodology	41
	3.2	Computational model of the stack	44
	3.3	Grid independency test	51
	3.4	Experimental test-rig	52
	3.5	Method of data analysis	60
	3.6	Model validation	64
	3.7	Model verification	69
	3.8	Summary	76

4.	RES	ULT AND DISCUSSION	77		
	4.1	Velocity profiles	77		
		4.1.1 Flow frequency of 13.1 Hz	78		
		4.1.2 Flow frequency of 23.1 Hz	85		
	4.2	Vortex shedding processes	91		
		4.2.1 Flow frequency of 13.1 Hz	94		
		4.2.2 Flow frequency of 23.1 Hz	106		
	4.3	Velocity profiles within channel	116		
	4.4	Entry length	124		
	4.5	5 0			
	4.6	Summary	136		
5.	CON	ICLUSION AND RECOMMENDATIONS FOR FUTURE			
		EARCH	137		
	5.1	Conclusion	137		
		5.1.1 Objective 1	137		
		5.1.2 Objective 2	137		
		5.1.3 Objective 3	138		
	5.2	Recommendations for future research	141		
REF	EREN	CES	142		
	ENDIC		156		

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	The boundary conditions for flow frequency of 13.1 Hz	48
3.2	The boundary conditions for flow frequency of 23.1 Hz	49
3.3	Specification of test section	57
3.4	List of devices with uncertainty values	60
3.5	Data validation of axial velocity amplitude between	66
	theoretical calculations, experimental results and CFD models	
3.6	Comparison of axial velocity amplitude between theoretical	71
	and numerical models at flow frequency of 13.1 Hz	
3.7	Comparison of axial velocity amplitude between theoretical	72
	and numerical models at flow frequency of 23.1 Hz	75
3.8	Comparison of percentage of deviation of axial velocity	
	amplitude between theoretical and CFD models for	
	flow frequency of 23.1 Hz	
4.1	Comparison of the percentage of deviation for all	83
	CFD models	
4.2	Comparison of the location of the maximum velocity	85
	amplitude between numerical models	
4.3	Comparison of the percentage of deviation for	87
	CFD models	

4.4	Comparison of the location of the maximum velocity	90
	amplitude between numerical models	
4.5	The description of the vortex wake patterns	93
	between Shi et al. (2010) and current findings	
4.6	Summary of the entry length taken from CFD results and	131
	theoretical calculation based on phase f_{20} of a flow cycle	
4.7	Comparison of the values of the boundary layer thickness	134
	between Swift (2002) and CFD models for two	
	flow frequencies	
5.1	Summary of the findings of velocity profiles for	138
	flow frequencies of 13.1 Hz	
5.2	Summary of the findings of velocity profiles for	139
	flow frequencies of 23.1 Hz	
5.3	Vortex shedding pattern for flow frequency of 13.1 Hz	139
	and 23.1 Hz	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	A schematic diagram of a simple standing waves	2
	thermoacoustic mechanism	
1.2	An ice-cream cabinet powered by a travelling	3
	wave thermoacoustic refrigerator (Penn State University, 2005)	
2.1	The working principle of a standing-wave thermoacoustic	9
	refrigerator (Saechan and Dhuchakallaya, 2015)	
2.2	Schematic diagram of the illustration of (a) unidirectional flow	16
	and (b) oscillatory flow	
2.3	Observation of transition at the location of \hat{u}_{max} for different tube	18
	lengths and piston amplitude (Merkli and Thomann, 1975)	
2.4	Stability diagrams, (a) $Re \text{ vs } \lambda$ and (b) $Re_{\delta} \text{ vs } \lambda$ (Hino et. al., 1976)	20
2.5	The locations between y_p and the generation region of turbulence	20
	(Ohmi and Iguchi, 1982)	
2.6	The regimes of laminar, transitional and turbulent flows	21
	(Ohmi et. al., 1984)	
2.7	Correlation equation in terms of A_0 and Re_{ω}	22
	(Zhao and Cheng, 1996)	
2.8	Illustration of the vortex formation in front of a circular cylinder	23

viii

2.9	Instantaneous velocity and vorticity fields around the stack for	25
	thick-plate configuration, (a) experimental and (b) computational	
	methods (Blanc-Benon et al., 2003)	
2.10	Velocity and vorticity fields for thin-plate configuration, (a)	26
	computational and (b) experimental methods	
	(Blanc-Benon et al., 2003)	
2.11	The categories of vortex formation at the end of a stack plate	27
	(Aben et al., 2009)	
2.12	The vortex shedding phenomena of different plate ends	27
	(Aben et al., 2009)	
2.13	The vorticity contour of various vortex shedding patterns at the	28
	end of the parallel-plate stack (Mao et al., 2009)	
2.14	The classification of four different flow pattern regions	29
	(Shi et al., 2010)	
2.15	Velocity development at the entrance region of a	30
	circular pipe (Kanda and Shimomukai, 2009)	
2.16	Normalized entrance length as a function of Va (Tang et al., 2011)	33
2.17	Schematic diagram of the "entrance region" for an oscillating flow	33
	(Jaworski et al., 2009)	
2.18	RANS-based turbulence models available in ANSYS FLUENT	37
	(ANSYS, 2013)	
3.1	Flowchart describing the workflow of the turbulence study	42
3.2	Schematic diagram of the resonator (a) black dashed-box	44
	represents the computational domain of the stack and (b) enlarged	
	view for only four plates shown	

The time history of the area-weighted average of axial velocity for	50
flow frequencies of, (a) 13.1 Hz and (b) 23.1 Hz	
The meshing of the domain of 78780 cell count (red dash box	51
represent the stack)	
Grid independency test for velocity profiles within the flow	52
channel	
Schematic diagram of standing-wave thermoacoustic system for	53
flow frequency of 13.1 Hz	
The test rig. Parts A, B and C are related to Figure 3.8	54
Exploded view of the resonator	55
(a) Front view and (b) the technical drawing of the stack	56
Schematic diagram of the exploded view of components in the	57
"test section I"	
Configuration of an acoustic driver (loudspeaker) with rig	58
Schematic diagram of arrangement of instrumentation devices	59
(a) The schematic diagram of the computational domain, (b) the	61
illustration of the geometry of the stack structure (only two plates	
shown), black dashed circle represents the location where	
velocity profile is measured, (c) the enlarged view of the meshing	
at the middle of the stack and (d) the oscillatory flow defined in	
twenty phases of a flow cycle	
(a) The schematic diagram of the computational domain,	62
(b) the location of data for model validation,	
and (c) the location of vortex shedding	
analysis (yellow dashed box)	
	flow frequencies of, (a) 13.1 Hz and (b) 23.1 Hz The meshing of the domain of 78780 cell count (red dash box represent the stack) Grid independency test for velocity profiles within the flow channel Schematic diagram of standing-wave thermoacoustic system for flow frequency of 13.1 Hz The test rig. Parts A, B and C are related to Figure 3.8 Exploded view of the resonator (a) Front view and (b) the technical drawing of the stack Schematic diagram of the exploded view of components in the "test section I" Configuration of an acoustic driver (loudspeaker) with rig Schematic diagram of the computational domain, (b) the illustration of the geometry of the stack structure (only two plates shown), black dashed circle represents the location where velocity profile is measured, (c) the enlarged view of the meshing at the middle of the stack and (d) the oscillatory flow defined in twenty phases of a flow cycle (a) The schematic diagram of the computational domain, (b) the location of data for model validation, (a) The schematic diagram of the computational domain, (b) the location of oty cytex shedding

3.15	The definition of the "ejection stage" and "suction stage"	63
3.16	(a) The schematic diagram of the location of data for	64
	entrance region analysis in the computational domain	
	shown as yellow dashed box and	
	(b) the enlarged investigation area of entrance region	
	analysis shown in black dashed circle	
3.17	Validation of axial velocity amplitude against drive ratios	68
	between theoretical calculations, experimental results and	
	numerical models	
3.18	The model verification for flow frequency of 13.1 Hz	73
3.19	The model verification for flow frequency of 23.1 Hz	74
4.1	Oscillating velocity profiles for drive ratios of,	79
	(a) 0.30%, (b) 0.45% and (c) 0.65%	
4.2	Oscillating velocity profiles with turbulent kinetic energy profiles	80
	for drive ratios of, (a) 0.83% and (b) 1.0%	
4.3	Oscillating velocity profiles with turbulent kinetic energy profiles	82
	for drive ratios of, (a) 1.2%, (b) 1.5%, (c) 2.0% and (d) 3.0%	
4.4	Oscillating velocity profiles for drive ratios of,	86
	(a) 0.45%, (b) 0.65%, (c) 0.83%, (d) 1.0%, (e) 1.2% and (f) 1.5%	
4.5	Oscillating velocity profiles and turbulent kinetic energy profiles	89
	(a) transition regime (DR = 2.0%) and (b) fully-turbulence regime	
	(DR = 3.0%)	
4.6	The definition of the phases and direction of the flow	91

xi

4.7	Vorticity contour map for the flow around the end of stack during	95
	one acoustic cycle for drive ratios, (a) 0.30% ($Re_D = 402.43$),	
	(b) 0.45% ($Re_D = 607.44$) and (c) 0.65% ($Re_D = 888.38$)	
4.8	Vorticity contour map for the flow around the end of stack during	99
	one acoustic cycle for drive ratios of, (a) 0.83% ($Re_D = 1116.17$)	
	and (b) 1.0% ($Re_D = 1347.76$)	
4.9	Vorticity contour map for the flow around the end of stack during	102
	one acoustic cycle for drive ratios of, (a) 1.2% ($Re_D = 1697.04$) and	
	(b) 1.5% ($Re_D = 2137.43$)	
4.10	Vorticity contour map for the flow around the end of stack during	104
	one acoustic cycle for drive ratios of, (a) 2.0% ($Re_D = 2885.35$)	
	and (b) 3.0% ($Re_D = 4362.19$)	
4.11	Vorticity contour map for the flow around the end of stack during	107
	one acoustic cycle for drive ratios of, (a) 0.45% ($Re_D = 599.85$),	
	(b) 0.65% ($Re_D = 869.40$) and (c) 0.83% ($Re_D = 1119.97$)	
4.12	Vorticity contour map for the flow around the end of stack during	111
	one acoustic cycle for drive ratios of, (a) 1.0% ($Re_D = 1359.15$),	
	(b) 1.2% ($Re_D = 1628.70$) and (c) 1.5% ($Re_D = 2042.52$)	
4.13	Vorticity contour map for the flow around the end of stack during	114
	one acoustic cycle for drive ratios of, (a) 2.0% ($Re_D = 2684.13$)	
	and (b) 3.0% (<i>Re</i> _D = 4198.94)	
4.14	Axial velocity profiles at difference distances away from the	117
	channel entrance at drive ratio of 0.45%; (a) $f = 13.1$ Hz and	
	(b) $f = 23.1 \text{ Hz}$	

4.15	The differences of velocity profiles within the channel for drive	119
	ratio of 0.45%, (a) $f = 13.1$ Hz and (b) $f = 23.1$ Hz	
4.16	Axial velocity profiles at difference distances away from the	121
	channel entrance for flow frequency of 13.1 Hz; (a) $DR = 0.83\%$	
	and (b) DR = 1.0%	
4.17	Axial velocity profiles at difference distances away from the	122
	channel entrance at drive ratio of 2.0% for flow frequency of	
	23.1 Hz	
4.18	Axial velocity profiles at difference distances away	123
	from the channel entrance at drive ratio of 3.0%;	
	(a) $f = 13.1$ Hz and (b) $f = 23.1$ Hz	
4.19	Distribution of velocity amplitude at the centre of the channel	125
	for drive ratio of 0.65%, (a) $f = 13.1$ Hz, (b) $f = 23.1$ Hz	
4.20	Distribution of velocity amplitude at the centre of the channel for	127
	flow frequency of 13.1 Hz; (a) $DR = 0.83\%$ and (b) $DR = 1.0\%$	
4.21	Distribution of velocity amplitude at the centre of the channel for	128
	flow frequency of 23.1 Hz for drive ratio of 2.0%	
4.22	Distribution of velocity amplitude at the centre of the channel for	129
	drive ratio of 3.0%, (a) $f = 13.1$ Hz, (b) $f = 23.1$ Hz	
4.23	The estimation of the boundary layer thickness	133
	of a velocity profile (Cengel, 2007)	
4.24	Comparison of boundaries between regimes of	135
	oscillating flow between CFD results and Swift (2002)	

xiii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A

User Defined Function Code

156

LIST OF ABBREVIATIONS AND SYMBOLS

AHX	-	Ambient Heat Exchanger
CFD	-	Computational Fluid Dynamics
CHX	-	Cold Heat Exchanger
DR	-	Drive ratio
PISO	-	Pressure-Implicit with Splitting Operators
PIV	-	Particle Image Velocimetry
SST	-	Shear-Stress Transport
TKE	-	Turbulent Kinetic Energy
UDF	-	User-Defined Function
UVP	-	Ultrasonic Velocity Profile
2D	-	Two-dimensional
Т	-	Theoretical
Е	-	Experiment
σ	-	Inertial number
D	-	Diameter of the pipe
D_h	-	Hydraulic diameter
d	-	Diameter of the pipe
ρ	-	Density of the fluid
ω	-	Angular frequency
ω′	-	Dimensionless frequency

μ	-	Dynamics viscosity
V	-	Kinematic viscosity
δ	-	Boundary layer thickness
δ_v	-	Boundary layer thickness
Re	-	Reynolds number
Re_{δ}	-	Reynolds number based on boundary layer thickness
U	-	Axial velocity amplitude
\mathcal{U}_m	-	Velocity amplitude at the middle of the channel
Α	-	Critical value of Reynolds number
Re _{crit}	-	Critical value of Reynolds number
λ	-	Stokes parameter
\mathcal{Y}_p	-	Distance from the wall to its position
R	-	Radius of the pipe
Λ	-	Stokes parameter
Re _ω	-	Kinetic Reynolds number
A_0	-	Amplitude of the oscillation
<i>x_{max}</i>	-	Maximum fluid displacement
ω_z	-	Vorticity
L _h	-	Characteristics length
u _{max}	-	Maximum velocity amplitude
<i>Re_{max}</i>	-	Maximum Reynolds number
Va	-	Valensi number
L _d	-	Entry length
L _a	-	Fluid displacement amplitude
u_1	-	Velocity

xvi

$h_{\kappa,1}$	-	Shape factor
$ ho_m$	-	Mean density
c _p	-	Specific heat capacity
<i>P</i> ₁	-	Oscillating pressure
T_m	-	Mean temperature
X	-	Axial length
U ₁	-	Volume flow rate
$ec{v}$	-	Velocity vector
t	-	Time
τ	-	Stress tensor
р	-	Pressure
k	-	Thermal conductivity
Т	-	Temperature
S_c	-	User-defined function
S_m	-	User-defined function
S_E	-	User-defined function
μ_t	-	Turbulent viscosity
γ	-	Intermittency
Г	-	Effective diffusivity
δ_v	-	Viscous penetration depth
δ_k	-	Thermal penetration depth
λ	-	Wavelength
С	-	Speed of sound
f	-	Flow frequency
k	-	Wavenumber
		••

xvii

π	-	Pi (3.14159)
L	-	Length of the resonator
Н	-	Height of the resonator
x _s	-	Stack centre position
<i>x</i> ₁	-	Inlet locations
<i>x</i> ₂	-	Outlet locations
l	-	Length of the plate
d	-	Thickness of the plate
D	-	Channel's height
Pa	-	Acoustic pressure at the location of pressure antinode
P_m	-	Mean pressure
m'_2	-	Oscillating mass flux
θ	-	Phase
ł	-	Turbulent length scale
TI	-	Turbulent intensity
<i>y</i> ⁺	-	Location of the nearest node from the wall
т	-	Location at the middle of the stack
у	-	Distance from the wall
ϕ	-	Phase
Φ	-	Porosity
ξ	-	Displacement amplitude

xviii

LIST OF PUBLICATIONS

Mustaffa, S. H. A., Mohd Saat, F. A. Z. and Mat Tokit, E. 2018. Turbulent vortex shedding across internal structure in thermoacoustics oscillatory flow. *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, 46 (1), pp. 175-184.

Mustaffa, S. H. A., Mohd Saat, F. A. Z. and Mat Tokit, E. 2018. Numerical study of the entrance effects in an oscillatory flow of a standing-wave thermoacoustics. *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, 43 (1), pp. 149-157.

Mustaffa, S. H. A., Mohd Saat, F. A. Z. and Mat Tokit, E. 2017. Numerical investigation of turbulence in oscillatory flow found in thermoacoustics. *Proceedings of Mechanical Engineering Research Day*, pp. 1-2.

Mustaffa, S. H. A., Mohd Saat, F. A. Z. and Mat Tokit, E. 2016. Design of experimental test-rig to investigate turbulence in oscillatory flow used in thermoacoustics. *Postgraduate Symposium for Environmental Engineering Technology*.

xix