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ABSTRACT 

 

 

Thermoacoustic system uses green technology to convert heat into electrical power or vice 

versa. The technology is attractive but the lack of understanding about fluid dynamics 

behavior of flow inside the system leads to the challenging issue in improving the system’s 

performance. Therefore, fundamental study of fluid dynamics in the complex 

thermoacoustic flow condition is needed. In this study, fluid dynamics investigations of an 

oscillatory flow across internal structure of a thermoacoustic system were carried out. Two 

dimensional CFD models of flow across structure known as “stack” inside thermoacoustic 

systems were solved using ANSYS CFD. The models were solved using laminar, 

Transition SST and SST k-ω turbulence models. The investigation covered drive ratios 

from 0.3 percent to 3.0 percent which corresponded to Stokes Reynolds number of 59 to 

1722. A new investigation of the effect of flow frequency was also reported. The 

frequencies of flow was set at 13.1 Hz and 23.1 Hz. The CFD models were validated using 

experimental results. An experimental standing wave rig was developed and velocity data 

was measured and then used to validate the CFD models. The results of the CFD model 

agreed with experimental data with the errors ranging between 0.36 to 7.69 percent. Due to 

the limitation of the experimental rig, cases with drive ratio lower than 0.8 percent and 

higher than 1.6 percent were verified using theoretical solution. A good match was found 

between the CFD results and theoretical solution especially at low Reynolds number. 

Deviation between CFD results and theoretical predictions at high Reynolds number was 

discussed. Results were discussed based on velocity profiles and vorticity contour of flow 

within and around the “stack”. At 13.1 Hz, turbulence was found to start at a Reynolds 

number as low as 163. The start of turbulence was delayed to a Reynolds number of 308 as 

the frequency was increased to 23.1 Hz. The investigation of vortex shedding flow 

phenomena revealed nine patterns of vortex shedding evolution for both flow frequencies. 

The vortex that sheds at the end of structure will come back into the channel of the 

structure as the flow reversed. As a result, the entry length for this oscillatory flow was 

found to be better predicted using the well-established entry length equation for turbulence 

one-dimensional flow condition even if the oscillatory flow was laminar. Comparison 

between the current study and published works regarding the ratio of the channel height to 

the boundary layer thickness (D/δv) was also presented to strengthen the validity of the 

results of current study. The comprehensive fluid dynamics analysis reported in this study 

are expected to be beneficial for system that works with oscillatory flow condition 

especially the thermoacoustic systems. 
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ABSTRAK 

 

 

Sistem termoakustik menggunapakai teknologi hijau untuk menukar haba kepada kuasa 

elektrik dan sebaliknya. Teknologi tersebut menarik tetapi pemahaman yang kurang 

terhadap kelakuan dinamik bendalir dalam aliran sistem mendorong kepada cabaran 

untuk menambahbaik prestasi sistem tersebut. Maka kajian asas terhadap dinamik aliran 

dalam keadaan aliran termoakustik yang kompleks diperlukan. Dalam kajian ini, model 

CFD dua dimensi untuk aliran merentasi struktur “stack” dalam sistem termoakustik telah 

diselesaikan menggunakan ANSYS CFD. Model tersebut telah diselesaikan menggunakan 

model laminar, model pergolakan Transition SST dan SST k-ω. Kajian ini merangkumi 

nisbah penggerak dalam julat 0.3 peratus sehingga 3.0 peratus yang bersamaan dengan 

nombor Stokes Reynolds 59 sehingga 1722. Kajian baru berkaitan frekuensi aliran telah 

dilaporkan. Frekuensi aliran adalah dari 13.1 Hz dan 23.1 Hz. Model CFD telah disahkan 

menggunakan data eksperimen. Sebuah rig eksperimen gelombang berdiri telah 

dibangunkan dan data halaju telah diukur dan digunakan untuk mengesahkan model CFD 

tersebut. Perbandingan keputusan CFD dan eksperimen adalah baik dengan peratus 

kesilapan 0.36 peratus sehingga 7.69 peratus. Disebabkan kekangan rig ujikaji, model 

dengan nisbah penggerak rendah daripada 0.8 peratus dan tinggi daripada 1.6 peratus 

hanya dapat disahkan menggunakan teori. Padanan yang baik telah diperolehi antara 

keputusan CFD dan penyelesaian teori pada nombor Reynolds yang rendah. Sisihan nilai 

di antara keputusan CFD dan penyelesaian teori pada nombor Reynolds yang tinggi turut 

dibincangkan. Data yang diperolehi telah dibincangkan dari segi profil halaju dan aliran 

kontur vortisiti di kawasan dalam dan sekitar “stack”. Pada 13.1 Hz, pergolakan telah 

dikesan bermula pada nombor Reynolds serendah 163. Permulaan pergolakan telah 

tertangguh ke nombor Reynolds 308 apabila frekuensi meningkat ke 23.1 Hz. Kajian 

terhadap fenomena aliran tumpahan vorteks telah menunjukkan sembilan corak evolusi 

tumpahan vorteks pada kedua-dua frekuensi. Vorteks yang tertumpah pada hujung struktur 

akan kembali ke dalam saluran apabila aliran berpatah balik. Sebagai hasilnya, panjang 

masukan aliran ayunan ditemui lebih sesuai diramalkan menggunakan persamaan 

panjang masukan sedia ada untuk keadaan pergolakan satu dimensi, walaupun aliran 

ayunan tersebut berada dalam keadaan laminar. Perbandingan antara nisbah ketinggian 

saluran kepada ketebalan lapisan sempadan (D/δv) di antara kajian ini dan penerbitan 

lepas turut dipersembahkan untuk mengukuhkan lagi kesahihan data kajian ini. Analisis 

menyeluruh terhadap pemahaman dinamik aliran seperti yang dilaporkan dalam kajian ini 

dijangka akan memberi manfaat kepada sistem yang beroperasi dalam keadaan aliran 

ayunan terutamanya sistem termoakustik. 
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