

Faculty of Mechanical Engineering

OPTIMIZATION OF COMPOSITE HINGES FOR AIRCRAFT SPOILER USING FINITE ELEMENT METHOD

Amirul Herman bin Razali

Master of Science in Mechanical Engineering

2019

OPTIMIZATION OF COMPOSITE HINGES FOR AIRCRAFT SPOILER USING FINITE ELEMENT METHOD

AMIRUL HERMAN BIN RAZALI

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled 'Optimization of Composite Hinges for Aircraft Spoiler Using Finite Element Method' is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	·
Name	: Amirul Herman bin Razali
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality as a partial fulfilment of Master of Science in Mechanical Engineering.

Signature	:
Supervisor Name	: Associate Professor Ahmad Rivai
Date	·

DEDICATION

To my beloved family, lecturers, friends and company (CTRM Aero Composites Sdn Bhd)

ABSTRACT

Current hinge brackets for A320 aircraft are made from metallic materials. The change of material from metallic to composite can reduce the structure weight. The classical method of analysis such as hand calculation and actual testing are not recommended for the new composite hinge design because it leads to high production and testing cost, as well as longer time consumption. This thesis is concerned with the method of modelling and analysing composite hinge bracket for A320 Spoiler using finite element method. The reverse engineering method through MSC PATRAN software is used to benchmark the actual loadings, constraints and allowable stress for the new hinge. Then, the method of optimization using Hypermesh software is used to avoid trial and error method, which requires a lot of efforts and more time. Next, a prototype of composite hinge is developed to validate the weight of the panel. The comparison of results between the old and the new design is done which records a reduction of 32% of the weight. This result proves that the simulation method proposed in this research is indeed feasible to be used for preliminary design stage for the hinge bracket of A320 Spoiler.

ABSTRAK

Kesemua engsel bagi pesawat A320 dibuat daripada bahan logam. Perubahan bahan daripada logam ke bahan komposit boleh mengurangkan berat struktur. Kaedah analisis secara konvensional menggunakan pengiraan manual dan ujian fizikal amat tidak digalakkan bagi reka bentuk engsel baru kerana kaedah ini membawa kepada kos pengeluaran yang tinggi, peningkatan masa dan kos ujian. Tesis ini adalah berkenaan dengan kaedah analisis dan permodelan engsel komposit bagi A320 Spoiler dengan menggunakan kaedah unsur terhingga. Kaedah kejuruteraan membalik dengan menggunakan perisian MSC Patran digunakan sebagai penanda aras beban, kekangan dan tekanan yang dibenarkan untuk engsel yang baru. Kemudian, kaedah pengoptimuman dilakukan dengan mengunakan perisian Hypermesh bagi mengelakkan kaedah cuba jaya yang memerlukan banyak usaha dan masa. Prototaip engsel komposit disediakan untuk diukur berat bagi mengesahkan hasil daripada pengiraan kaedah unsur terhingga. Perbandingan keputusan antara kaedah simulasi rekabentuk asal dengan rekabentuk optimum mendapati terdapat pengurangan sebanyak 32% daripada berat struktur. Dapatan kajian ini membuktikan kaedah simulasi yang dicadangkan dalam kajian ini boleh diaplikasikan pada peringkat reka bentuk engsel spoiler A320.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgment to my supervisor, Associate Professor Ahmad Rivai from the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his active supervision, support and encouragement towards the completion of this thesis.

Special thanks to my beloved family members for their moral support to me in completing this degree. Lastly, thank you to everyone who has been the crucial parts in realizing this project.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF PUBLICATIONS	xvi

CHAPTER

1.	INT	RODUCTION	1
	1.2 1.3 1.4	Background Problem statement Aim and objectives Scopes Overview of thesis	1 3 4 4 5
2.	LIT	ERATURE REVIEW	6
	2.1	Aircraft spoiler 2.1.1 Aircraft composite hinges	6 7
	2.2	Aerospace structural design 2.2.1 The design process 2.2.2 Stress analysis 2.2.3 Factor and margin of safety	8 8 11 13
	2.3	Aerospace composite 2.3.1 Composite in aircraft design 2.3.2 Laminated composite 2.3.3 Mechanics of laminated composite 2.3.4 Failure criteria of laminated composite 2.3.5 Composite design method	15 17 19 22 27 29
	2.4	Finite element method and analysis in aerocomposite structure 2.4.1 Finite element procedures 2.4.2 Verification and validation of simulation models 2.4.3 Software package for finite element analysis	30 32 34 35
	2.5	Composite structural optimization 2.5.1 Variable stiffness laminates 2.5.2 Structural Optimization 2.5.3 Manufacturing constraints	36 37 39 40

		2.5.4 Reverse engineering method	40
		2.5.5 Free size optimization method2.5.6 Size optimization method	41 44
		2.5.6.1 Ply-based laminate modelling	44
		2.5.6.2 Ply-based optimization	44
		2.5.7 Ply stacking optimization method	45
		2.5.8 Failure theory in composite	46
	2.6	Previous FE studies of composite	46
	2.7	Validation and verification of FE hinge model	52
	2.8	Summary	53
3.	ME	THODOLOGY	55
	3.1	Composite hinge optimization	55
	3.2	Phase 1 - baseline run	57
		3.2.1 Geometry model	59
		3.2.2 Finite element modelling	59
		3.2.3 Material properties and settings	63
		3.2.4 Boundary condition	66
		3.2.5 Loading and load cases	67
		3.2.6 Element size convergence analysis method3.2.7 Method to validate the FE model	68
			69
	3.3	Phase 2 – free size optimization	71
		3.3.1 Problem formulation of free size optimization	72 74
		3.3.2 Defining the free size design variable3.3.3 Free size responses	74
		3.3.4 Constraints for free size optimization	76
		3.3.5 Optimization objective function	76
	3.4	Phase 3 – size optimization (design fine tuning)	76
		3.4.1 Size optimization performance targets	78
		3.4.2 Size optimization responses and constraints	78
		3.4.3 Objective function for size optimization	79
	3.5	Phase 4 – ply stacking sequence optimization	80
	3.6	Phase 5 – result evaluation of composite optimization cycle	80
	3.7	Prototype development	82
4.	RES	SULT AND DISCUSSION	87
	4.1	Introduction	87
	4.2	Phase 1 results – baseline results	87
		4.2.1 Element size convergence analysis result	88
		4.2.2 Validation of FE model result	90
		4.2.3 Baseline results – stress analysis	90
		4.2.4 Baseline results – deformation analysis	99

	4.3 Phase 2 results – free size optimization	105
	4.3.1 Free size element thickness4.3.2 Baseline ply thickness4.3.3 Ply bundles	106 107 112
	 4.4 Phase 3 results – size optimization 4.4.1 Size of element thickness 4.4.2 Orientation thickness 4.4.3 Ply thickness 4.4.4 Ply bundles 	115 116 117 119 120
	 4.5 Phase 4 results – shuffling optimization 4.5.1 Shuffling results 4.5.2 Final optimized composite hinge design 	121 122 122
	 4.6 Phase 5 – results evaluation 4.6.1 Results evaluation – stress analysis 4.6.2 Results evaluation – deformation analysis 4.6.3 Results evaluation – weight and volume 	124 125 125 126
5.	CONCLUSION AND RECOMMENDATIONS	128
	5.1 Summarising research finding	128
	5.2 Significance of the findings	129
	5.3 Recommendations for further works	129
REF	FERENCES	131
APF	PENDICES	142

APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE	
3.1	FE model data information		61
3.2	Element type information		61
3.3	Material properties (Mun et. al., 2014)		64
3.4	Basic ply layup		65
3.5	Different composite ply setup		65
3.6	Overall material hinge setup		66
3.7	Load cases		68
3.8	Elastic properties of each ply (Feraboli & Kedward, 2003)		70
3.9	Problem formulation of hinge optimization		73
3.10	Weighted compliance		75
3.11	Size optimization performance targets		78
4.1	Ply by ply stress results of quasi-isotropic laminate		90
4.2	Summary of load cases		93
4.3	Category of hinge sample based on thickness and material		94
4.4	Baseline stress results: average, maximum and minimum stress		95
4.5	Effect of stress value with fibre orientation		96
4.6	Category 1 hinge baseline results: average stress, maximum stress minimum stress results based on load case	s and	97
4.7	Category 2 hinge baseline results for three different materials and properties arrangements (Stress [MPa])	ł	98

Baseline results for hinge deformation (mm): average, maximum and minimum deformation based on load case	100
Category 1 hinge baseline results for 16 plies composite arrangement (displacement [mm]): average, minimum and maximum value	101
Category 2 hinge baseline results for three different material and properties (displacement [mm]): average, minimum and maximum value	103
Composite ply stress for Comp1	103
Composite strain for Comp1	104
Initial properties of composite	105
Super ply bundles	112
16 ply bundles created by free size optimization	113
9 ply bundles in size optimization	121
Maximum stress for 4.0 mm thickness material code	124
Minimum stress for each load case	125
Maximum displacement for 4.0 mm thickness material codes	125
Minimum displacement for each load case	126
	 minimum deformation based on load case Category 1 hinge baseline results for 16 plies composite arrangement (displacement [mm]): average, minimum and maximum value Category 2 hinge baseline results for three different material and properties (displacement [mm]): average, minimum and maximum value Composite ply stress for Comp1 Composite strain for Comp1 Initial properties of composite Super ply bundles 16 ply bundles created by free size optimization 9 ply bundles in size optimization Maximum stress for 4.0 mm thickness material code Minimum stress for each load case Maximum displacement for 4.0 mm thickness material codes

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Composite structure development in Airbus (Jane Bold, 2007)	2
2.1	Rolling motion caused by deploying right spoiler (Ugural & Fenster, 2012)	6
2.2	FACC carbon composite centre hinge fitting (a) Metal bushings and bearings are installed in the fitting lugs; (b) Hinge fitting moulded via RTM (Dawson, 2006)	7
2.3	Design model (Babu & Srither, 2010)	9
2.4	General stress analysis process	11
2.5	Composite evolution in aircraft industry	16
2.6	General composite material application in aircraft industries	17
2.7	Fibre arrangement patterns in a lamina (Gurdal et al., 1999).	20
2.8	Standard laminate notation (MSC, 2010).	21
2.9	Sign convention of negative and positive fibre orientation (Staab, 1999).	22
2.10	Modelling of finite element method	32
2.11	The process of finite element analysis (Bathe, 2006)	33
2.12	ASME V&V flow chart	35
2.13	Early stage optimization	38
2.14	Schematic overview of the three-step approach	38
2.15	Wrong and correct edge of element (Zhang & Ju, 2008)	47
2.16	The super layers and goal laminate (Chen et al., 2018)	51
3.1	Process flow for optimization process ix	55

3.2	Process flow for based line model analysis	58
3.3	Composite outer hinge	60
3.4	Hinge finite element model (isometric view)	62
3.5	Hinge finite element model (left view)	62
3.6	Basic ply layup	64
3.7	Finite element model boundary condition	67
3.8	Hinge model showing CQUAD4 and TRIA6 elements. (This example shown 9 mm element size)	69
3.9	Composite laminate setup for tension coupon test (a) loads and boundary condition (b) quasi-isotropic layup (Willis, 2012)	70
3.10	Process flow for free size optimization	72
3.11	Free size optimization objective result	75
3.12	Process flow for size optimization	77
3.13	Size optimization objective function result	79
3.14	Process flow for ply sequence optimization	81
3.15	Process flow for result evaluation for optimization process	82
3.16	Process flow for prototype development process	83
3.17	Part and mould design and development	84
3.18	Mould preparation and plies kitting process	85
3.19	Layup and final bagging process	85
3.20	Curing and demoulding process	85
3.21	Manual trimming and drilling	86
4.1	Effect of number of element to the displacement value	89
4.2	Effect of number of element size to the stress value (increment of 5 mm element size)	89
4.3	Stress (ISO view)	92
4.4	Max stress occurred at mounting hole	92
4.5	Overall baseline results for stress (MPa)	95

Х

4.6	Category 1 baseline results of stress (MPa) for 16 plies composite hinge	97
4.7	Category 2 hinge baseline results for three different materials and properties arrangements chart (Stress [MPa])	98
4.8	Hinge deformation	99
4.9	Overall baseline results for hinge deformation (mm) chart	100
4.10	Category 1 hinge baseline results for 16 plies composite arrangement (displacement [mm])	101
4.11	Category 2 hinge deformation baseline results for three different materials and properties (displacement [mm])	102
4.12	Composite ply stress Comp1	104
4.13	Free size optimization results at 53rd iteration showing the thickness element. (a) Isometric view. (b) Front view.	107
4.14	Maximum thickness area	107
4.15	Ply (0°) element thickness distribution	108
4.16	Ply (45°) element thickness distribution	108
4.17	Ply-by-ply thickness	112
4.18	Element thickness free size result (baseline ply#1 - 0°)	114
4.19	Ply shape 1 (ID101100)	115
4.20	Ply shape 2 (ID101200)	115
4.21	Ply shape 3 (ID101300)	115
4.22	Ply shape 4 (ID101400)	115
4.23	Size optimization results shown by element thickness. (a) Isometric view (b) Front view.	117
4.24	Size optimization iteration results shown by 0° orientation. (a) Isometric view (b) Front view.	118
4.25	Size optimization iteration results shown by 45° orientation. (a) Isometric view (b) Front view.	119
4.26	Summation of ply thickness – a sum of all 64 thickness and are presented in each element. (a) Isometric view (b) Front view.	120
4.27	Stacking sequence	122

xi

4.28	Optimized composite hinge design	123
4.29	Thickness variation of the optimized hinge	123
4.30	Bush link hole thickness	124
4.31	Weight comparison of three different materials of hinge	127

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Research plan	142
В	W.C.Mun thesis (Appendix B)	144
С	FEA results	146
D	Optimization results	155

xiii

LIST OF ABBREVIATIONS

- 1D One dimensional
- 2D Two dimensional
- 3D Three dimensional
- ASME American Society of Mechanical Engineers
- AFP Automatic Fibre Placement
- CAD Computer Aided Design
- CAM Cylindrical Assemblage Model
- CFRP Carbon Fibre Reinforced Plastic
- CLT Classical Laminate Theory
- CS Constant Stiffness
- FAA Federal Aviation Administration
- FACC Fischer Advanced Composite Components
- FE Finite Element
- FEA Finite Element Analysis
- FEM Finite Element Method
- FPF First Ply Failure
- FRP Fibre Reinforced Polymer
- FS Factor of Safety
- g Gram
- Hz Hertz

xiv

IBC	-	International Building Code
kN	-	Kilo Newton
mm	-	millimetres
mm ²	-	millimetres square
MPa	-	Mega Pascal
MS	-	Margin of Safety
NASA	-	National Aeronautics and Space Administration
Ν	-	Newton
Nm	-	Newton meter
PPF	-	Progressive Ply Failure
RBE	-	Rigid Body Elements
RF	-	Reserved Factor
RTM	-	Resin Transfer Moulding
UD	-	Unidirectional
VSL	-	Variable Stiffness Laminates
V&V	-	Verification and validation
VV&A	-	Verification, validation and accreditation

XV

LIST OF PUBLICATIONS

JOURNAL PAPER

Shamsudin, Z., Razali, A.H., Suzaim, F.H., Mustafa, Z., Rahim, T.A. and Hodzic, A., 2018. Preliminary investigation on the physical properties and morphological of sintered cockle shell/recycled soda lime silicate composite. *Journal of Advanced Manufacturing Technology (JAMT)*, *12*(1 (3)), pp.125-138.

CONFERENCES ATTENDED

Razali, A.H and Ahmad, R., Reverse engineering method to analyse aircraft spoiler middle hinge using finite element analysis, 2nd Postgraduate Research Symposium on Mechanical Engineering, 05 January 2017.

CHAPTER 1

INTRODUCTION

1.1 Background

The Airbus A320 family consists of short to medium range aircraft with narrow body. The A320 is the pioneer of commercial aircraft that uses Fly by Wire (FBW) flight control system. It is one of the most popular Airbus aircraft that records for high demand from airlines worldwide. In December 2010, Airbus officially launched the new generation of the A320 fleet with new engine options which are CFM International LEAP-X and Pratt & Whitney PW1000G. This new generation aircraft has an improved airframe and additional winglets that are called sharklet. The new A320, namely A320neo delivers fuel saving of up to 20% (Airbus, 2017). During the past 35 years, Airbus has continuously and progressively introduced the composite technology for aircraft part to the world. Figure 1.1 shows the evolution of composite application in aircraft parts.

Wings are the primary structure of an aircraft. Within them, there is a part that functions to increase drag, reduce lift, and assist aileron in rolling, called spoiler. A spoiler is a structure to assist the aircraft during landing and descending from higher to lower altitude. It is also used to generate the rolling motion of an aircraft. The method of control of aircraft movement for spoiler is by 'spoiling' the airflow over the wing (Dawson, 2006).

Figure 1.1 : Composite structure development in Airbus (Jane Bold, 2007)

The movement of the aircraft spoilers is controlled by a set of hinges. These hinges function to provide a rotational motion in one axis direction (Leet et. al., 2002). Hinges are usually made from metal and consist of two brackets. The brackets have bearings fitting to reduce frictional force between the brackets and the pin. In the new generation of aircraft constructions, the usage of the metallic material is no more an option in aircraft development. The usage of composite materials has been increasing because its capability in reducing the overall structural weight effectively (Basavaraju, 2005; Mallick, 2007).

Therefore, to meet the new technology demand, the metallic components like metal hinge will be replaced by composite. Hence, the new development of composite hinge is crucial to achieve overall weight reduction in aircraft development. However, the strength of the composite material is difficult to predict especially during flight. Conventional stress calculation is not enough to predict the stress on the composite components. Hence, the use of computer simulation, finite element method (FEM) is very helpful to predict the mechanical behaviour of the composite components under different flight conditions. Simulation using FEM is a process of modelling a real phenomenon with a set of mathematical formulas. It is an alternative method to provide the best approximation to solve complex engineering problems (Logan, 2007). FEM is an analysis method that uses virtual reality for testing. This method can reduce overall cost and time because it does not require raw material and physical testing (Soutis, 2005).

1.2 Problem statement

Current hinge brackets for A320 aircraft are made from metallic material that is aerospace grade aluminium. In term to improve aircraft efficiency, the major issue with metallic part is the heavy-weight. Material replacement from metallic to composite can reduce the structure weight. However, the development of composite hinges is very different in approach with metal hinges. There are several factors to be considered: design of hinge, type of composite material, number of composite ply, ply direction and manufacturability (Gasbarri et. al., 2009). These five factors need to be properly chosen and optimized to meet the design requirements. Hence, the issue at hand here is the choice of suitable and faster method to achieve an optimized composite hinge design. The current hinges for A320 spoiler are using conventional method during their development phase (Gransden & Alderliesten, 2017). Metallic hinge design parameter is chosen using the design of experiment method. Each set of hinge is fabricated and tested which uses a lot of development time. Therefore, to solve this issue, the FEM and composite optimization method are introduced in this thesis to reduce the development time of composite hinges.

3