

# **Faculty of Electronic and Computer Engineering**

## ELECTROPHYSIOLOGICAL DEGRADING CORRELATES FOR DRIVING ATTENTION LOSS THRESHOLD DETERMINATION

Haslinah binti Mohd Nasir

**Doctor of Philosophy** 

2019

🔘 Universiti Teknikal Malaysia Melaka

### ELECTROPHYSIOLOGICAL DEGRADING CORRELATES FOR DRIVING ATTENTION LOSS THRESHOLD DETERMINATION

### HASLINAH BINTI MOHD NASIR

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

#### DECLARATION

I declare that this thesis entitled "Electrophysiological Degrading Correlates for Driving Attention Loss Threshold Determination" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |  |
|-----------|---|--|
| Name      | : |  |
| Date      | : |  |

#### APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

| Signature       | : |
|-----------------|---|
| Supervisor Name | : |
| Date            | : |

### **DEDICATION**

To my beloved father and mother, my husband and children whose steadfast love and prayers that always been my source of strength



#### ABSTRACT

Statistics by Malaysian Institute of Road Safety Research (MIROS) showed that attention loss significantly lead to road accidents. Hence, the area of research on attention detection for driver safety is becoming more important. There have been a number of studies that displayed the possibility of identifying drivers' attention using electroencephalography (EEG) signal. The studies obtained the Event Related Potential (ERP) waveform from a small pool of samples. However, the data obtained were insufficient to significantly characterize attentiveness and inattentiveness due to the unique characteristic of each individual. Therefore, the aim of this research is to define the attentiveness state of each subject from large number of samples in controlled parameters to minimize the variability gap of the ERP peak between each individual. The experiment has been conducted using driving simulator to obtain the EEG data from two groups of subjects which were categorized as attentive and inattentive state by using two distinct stimulations i.e., listening to radio and no stimulation. The obtained results show significant boundary and similarity patterns for the level of attentiveness in both groups. Due to these patterns, a hybrid mean-fuzzy (HMF) technique was proposed to analyze the peak of N170 ERP decrement value versus the accident score based on the driving performance and attention threshold was determined accordingly. Three levels of attention namely 'attentive', 'the beginning of inattentiveness' and 'inattentive' state were presented within a new framework scale in the form of a fish bone diagram known as Attention Degradation Scale (ADS). In order to validate the feasibility of the proposed ADS for both groups, the analysis of the data has been done with and without ADS. Based on the outcome, 52% of the subjects were detected as attentive whilst 56% were in inattentive state which is significant as the percentage obtained with ADS was more than without it. Finally, a prototype application has been implemented to prove the theoretical data of attention level prediction. The prototype has successfully warned the subjects of potential accidents whenever the attention level was below the threshold value. Therefore, the findings of this research can be a promising foundation for alarm system which based on attention recognition technique that potentially would be able to reduce road accidents specifically with the proposed ADS.

i

#### ABSTRAK

Statistik oleh Institut Penyelidikan Keselamatan Jalan Raya Malaysia (MIROS) menunjukkan bahawa kehilangan tumpuan boleh membawa kepada kemalangan jalanraya. Oleh itu, bidang penyelidikan mengenai pengesanan tumpuan bagi keselamatan pemandu menjadi semakin penting. Terdapat sejumlah kajian menunjukkan terdapat kemungkinan mengenali tumpuan pemandu dengan isyarat elektroensefalografi (EEG. Kajian memperolehi bentuk Potensi Berkaitan Peristiwa (ERP) dari satu sampel yang kecil. Walau bagaimanapun, data yang diperoleh tidak mencukupi untuk mengenalpasti tumpuan dan kurang tumpuan disebabkan oleh keunikan EEG bagi setiap individu. Oleh itu, tujuan penyelidikan ini adalah untuk menentukan keadaan tumpuan setiap subjek daripada jumlah sampel yang banyak dalam parameter terkawal untuk meminimumkan jurang keberubahan puncak ERP antara setiap individu. Ujikaji telah dijalankan menggunakan simulator pemanduan untuk mendapatkan data EEG dari dua kumpulan subjek yang dikategorikan sebagai keadaan tumpuan penuh dan kurang tumpuan dengan menggunakan dua stimulasi yang berbeza iaitu, mendengar radio dan tiada rangsangan. Hasil yang diperoleh menunjukkan corak sempadan dan kesamaan yang signifikan tahap tumpuan kedua-dua kumpulan. Disebabkan corak ini, teknik hibrid pemurataan-fuzzy (HMF) dicadangkan untuk menganalisis puncak nilai penurunan N170 ERP berbanding skor kemalangan berdasarkan prestasi memandu dan ambang tumpuan ditentukan dengan sewajarnya. Tiga tahap tumpuan iaitu keadaan 'penuh tumpuan', 'permulaan anjakan tumpuan' dan 'anjakan tumpuan' telah dibentangkan dalam kerangka skala baru dalam bentuk gambarajah tulang ikan yang dikenali sebagai Skala Anjakan Tumpuan (ADS). Untuk mengesahkan penggunaan ADS yang dicadangkan untuk kedua-dua kumpulan, analisis data telah dilakukan dengan dan tanpa ADS. Berdasarkan hasilnya, 52% subjek dikesan sebagai memberi tumpuan manakala 56% berada dalam keadaan kurang tumpuan yang signifikan kerana peratusan yang diperoleh dengan ADS adalah lebih daripada tanpanya. Akhirnya, aplikasi prototaip telah dilaksanakan untuk membuktikan data teori mengenai ramalan tahap tumpuan. Prototaip telah berjaya memberi amaran kepada subjek kemalangan yang berpotensi apabila tahap tumpuan berada di bawah nilai ambang. Oleh itu, penemuan kajian ini boleh dijadikan landasan yang menggalakkan sistem penggera yang berasaskan teknik mengesan tumpuan yang berpotensi untuk mengurangkan kemalangan jalanraya secara khusus dengan ADS yang dicadangkan.

#### ACKNOWLEDGMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgment to my supervisor Dr. Mai Mariam binti Mohamed Aminuddin from the Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM) for her essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Madam Izadora binti Mustaffa from Faculty of Engineering Technology, co-supervisor of this project for her advice and suggestions in completion of this thesis. Special thanks to Ministry of Higher Education and UTeM for the scholarship as well as the grant funding for the financial support throughout this thesis.

Particularly, I would also like to express my deepest gratitude to all subjects who participate in laboratory experiment. Much appreciate of the time spent for two hours during the experiment to gather the data for this thesis.

Special thanks to my beloved husband, children as well as my parents and siblings also not forgetting to all my peers for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this thesis.

### TABLE OF CONTENTS

DECLARATION APPROVAL

| D  | EDIC  | CATION                                                                   |       |
|----|-------|--------------------------------------------------------------------------|-------|
| A  | BSTR  | RACT                                                                     | i     |
| A  | BSTR  | RAK                                                                      | ii    |
| Α  | CKN   | OWLEDGMENTS                                                              | iii   |
| T. | ABLE  | E OF CONTENTS                                                            | iv    |
| L  | IST O | <b>DF TABLES</b>                                                         | vi    |
| L  | IST O | <b>DF FIGURES</b>                                                        | viii  |
| L  | IST O | <b>DF APPENDICES</b>                                                     | xiv   |
| L  | IST O | <b>DF ABBREVIATIONS</b>                                                  | XV    |
| L  | IST O | DF SYMBOLS                                                               | xvii  |
| L  | IST O | <b>DF PUBLICATIONS</b>                                                   | xviii |
| C  | HAP   | TER                                                                      |       |
| 1. | INT   | TRODUCTION                                                               | 1     |
|    | 1.1   | Research background                                                      | 1     |
|    | 1.2   | Problem statement                                                        | 4     |
|    | 1.3   | Research objectives                                                      | 6     |
|    | 1.4   | Research scope                                                           | 6     |
|    | 1.5   | Research contribution                                                    | 7     |
|    | 1.6   | Research organization                                                    | 8     |
| 2. | LIT   | TERATURE REVIEW                                                          | 10    |
|    | 2.1   | Fundamental concepts and terminology of attention                        | 10    |
|    |       | 2.1.1 The importance of attention in driving                             | 13    |
|    | 2.2   | Brain functioning and EEG measurements                                   | 18    |
|    |       | 2.2.1 Technical aspects of EEG recording                                 | 22    |
|    |       | 2.2.2 Event Related Potential (ERP)                                      | 26    |
|    | 2.3   | Driving attention monitoring method                                      | 28    |
|    |       | 2.3.1 Related research in attention classification using threshold value | 30    |
|    | 2.4   | Attention classification using fuzzy system                              | 31    |
|    | 2.1   | 2.4.1 Membership function                                                | 34    |
|    |       | 2.4.2 Fuzzy rule base (IF – THEN rules)                                  | 36    |
|    |       | 2.4.3 Defuzzification method                                             | 37    |
|    |       | 2.4.4 Related research in attention classification using fuzzy system    | 38    |
|    | 2.5   | Related research in EEG statistical analysis                             | 40    |
|    | 2.6   | Summary                                                                  | 40    |
| 3. | RES   | SEARCH METHODOLOGY                                                       | 42    |
|    | 3.1   | Research flowchart                                                       | 42    |
|    | 3.2   | Data acquisition                                                         | 45    |
|    |       | 3.2.1 Subject preparation                                                | 45    |
|    |       | 3.2.2 Stimuli and experimental paradigm                                  | 47    |
|    |       | 3.2.3 EEG recording                                                      | 53    |
|    |       | -                                                                        |       |

|    | 3.3        | Data analysis                                                      | 58  |
|----|------------|--------------------------------------------------------------------|-----|
|    |            | 3.3.1 Pre-processing of EEG data                                   | 59  |
|    |            | 3.3.2 Simple averaging technique                                   | 61  |
|    |            | 3.3.3 Wavelet time scale coherence technique                       | 65  |
|    |            | 3.3.4 Fuzzy rule-based system                                      | 66  |
|    |            | 3.3.4.1 Fuzzification block                                        | 67  |
|    |            | 3.3.4.2 Fuzzy decision block                                       | 70  |
|    |            | 3.3.4.3 Defuzzification block                                      | 72  |
|    |            | 3.3.5 Statistical test analysis                                    | 73  |
|    | 3.4        | Validation                                                         | 75  |
|    | 3.5        | System application development                                     | 77  |
|    |            | 3.5.1 Hardware implementation                                      | 79  |
|    |            | 3.5.2 Software integration                                         | 83  |
|    | 3.6        | Summary                                                            | 84  |
| 4. | RES        | SULT AND DISCUSSION                                                | 85  |
|    | 4.1        | Preliminary research findings                                      | 85  |
|    |            | 4.1.1 N100 ERP component waveform                                  | 86  |
|    |            | 4.1.2 N170 ERP component waveform                                  | 88  |
|    |            | 4.1.3 N100 vs N170 ERP waveform analysis for comparison            | 91  |
|    | 4.2        | Comparison between wavelet time scale coherence and simple         | 95  |
|    |            | averaging techniques as attention recognition                      |     |
|    | 4.3        | Driving performance during significant and insignificant degrading | 99  |
|    |            | 4.3.1 Individual results for both stimulations                     | 100 |
|    |            | 4.3.2 Grand average of N170 ERP component waveform amplitude       | 106 |
|    |            | over the subjects                                                  |     |
|    | 4.4        | Fuzzy rule – based as attention classification                     | 111 |
|    |            | 4.4.1 Attention threshold value                                    | 111 |
|    |            | 4.4.2 Driver's attention classification based on the ADS           | 116 |
|    | 4.5        | Data and method validation                                         | 121 |
|    |            | 4.5.1 Data validation                                              | 122 |
|    |            | 4.5.2 Method validation                                            | 126 |
|    | 4.6        | Hardware implementation for attention monitoring system            | 135 |
|    | 4.7        | Summary                                                            | 141 |
| 5. | CO         | NCLUSION AND FUTURE WORK RECOMMENDATION                            | 143 |
|    | 5.1        | Conclusion of research work                                        | 143 |
|    | 5.2        | Limitation of research work                                        | 144 |
|    | 5.3        | Future work recommendation                                         | 145 |
| RI | EFER       | RENCES                                                             | 147 |
| AI | APPENDICES |                                                                    | 173 |

v

#### LIST OF TABLES

| TABLE | TITLE                                                            | PAGE |
|-------|------------------------------------------------------------------|------|
| 1.1   | General statistic of accidents between 2006-2016 in Malaysia     | 2    |
|       | (Malaysian Institute of Road Safety Research (MIROS), 2017)      |      |
| 2.1   | Task dimension for attention studies during driving              | 14   |
|       | (Aliakbaryhosseinabadi et al.,2017)                              |      |
| 2.2   | The available physiological methods for attention measurement    | 16   |
| 2.3   | The detail description of each lobes function                    | 20   |
| 2.4   | Comparison of different frequency band of brain waves and the    | 21   |
|       | affect to human attention (Liu et al., 2013; Hasan et al., 2014) |      |
| 2.5   | Difference between monopolar and bipolar recordings              | 24   |
| 2.6   | The comparison between Mamdani and Sugeno type inference         | 33   |
|       | approach                                                         |      |
| 2.7   | Typical type of membership function used and its description     | 34   |
|       | (Villafruela, 2018)                                              |      |
| 3.1   | Number of subjects who participated in experiment                | 46   |
| 3.2   | Step of the experimental paradigm                                | 49   |
| 3.3   | The equipment used during research                               | 52   |
| 3.4   | Matrix Mamdani inference system                                  | 70   |
| 3.5   | Arduino Uno board specifications detail                          | 79   |

| 3.6 | Electronic Components needed for System Development                  | 80  |
|-----|----------------------------------------------------------------------|-----|
| 4.1 | The estimated coefficient from the T-test statistical analysis for   | 99  |
|     | wavelet time coherence scale and simple averaging techniques         |     |
| 4.2 | The driving grade for individual subject without stimulation         | 101 |
| 4.3 | The driving grade for individual subject with stimulation (listening | 101 |
|     | to radio)                                                            |     |
| 4.4 | The comparison of driving simulator and collected EEG data for       | 106 |
|     | individual subject                                                   |     |

### LIST OF FIGURES

| FIGURE | TITLE                                                              | PAGE |
|--------|--------------------------------------------------------------------|------|
| 2.1    | The behavior of attention                                          | 11   |
| 2.2    | Illustration of two tasks simultaneously at same time              | 12   |
| 2.3    | Brain parts and its function illustration                          | 19   |
| 2.4    | EEG electrode cap with 10 - 20 system                              | 23   |
| 2.5    | ERP waveform components of EEG signal                              | 27   |
| 2.6    | The system architecture of fuzzy logic                             | 32   |
| 3.1    | The simplified flowchart of the attention monitoring for hardware  | 43   |
|        | implementation                                                     |      |
| 3.2    | Flowchart of the research work                                     | 44   |
| 3.3    | The overview of conducted laboratory experiment                    | 45   |
| 3.4    | Logitech G27 steering system with steering, pedal and gear shift   | 48   |
|        | box used in driving simulator                                      |      |
| 3.5    | The position of the LCD display (for virtual driving environment   | 48   |
|        | and the subject throughout the laboratory experiment               |      |
| 3.6    | Subject's progress report from CarnetSoft driving simulator result | 50   |
| 3.7    | BIOPAC Inc. Framework Mp150 EEG 100c and software                  | 51   |
|        | AcqKnowledge 4.2 specifications (details in Appendix C)            |      |
| 3.8    | The EEG electrode placement                                        | 53   |

viii

| 3.9  | 10-20 EEG electrode placement system                                 | 54 |
|------|----------------------------------------------------------------------|----|
| 3.10 | Illustration of length measurement from nasion to inion              | 55 |
| 3.11 | Illustration of the location of $Fp_z$ and $O_z$                     | 56 |
| 3.12 | Total circumference of the head                                      | 56 |
| 3.13 | Illustration on the location of the occipital lobe                   | 57 |
| 3.14 | Spectral transformation using FFT method                             | 58 |
| 3.15 | EEG signal cutting into individual responses                         | 62 |
| 3.16 | Flowchart of EEG dataset cutting into individual responses           | 63 |
|      | procedure in MATLAB software                                         |    |
| 3.17 | The averaging technique for EEG signal analysis which plotted        | 65 |
|      | the amplitude versus time (Aminuddin and Mustaffa, 2013)             |    |
| 3.18 | Fuzzy rule-based system block diagram                                | 67 |
| 3.19 | Fuzzy system (Mamdani type) build in MATLAB software                 | 67 |
| 3.20 | The crisp input of EEG data (ERP waveform define the attention       | 68 |
|      | level) converted into four categories                                |    |
| 3.21 | The input membership function of attention level plotted in          | 68 |
|      | MATLAB                                                               |    |
| 3.22 | The crisp input of accident score is converted into three categories | 69 |
|      | to reflect the driver performance during driving                     |    |
| 3.23 | The input membership function of accident score plotted in           | 69 |
|      | MATLAB                                                               |    |
| 3.24 | Diagram of the relation of EEG and driving simulator data with       | 72 |
|      | the attention state of the driver                                    |    |
| 3.25 | The output membership of fuzzy that define the driver's attention    | 72 |

state

| 3.26 | The output of membership function that corresponds to the         | 73 |
|------|-------------------------------------------------------------------|----|
|      | driver's attention state plotted in MATLAB                        |    |
| 3.27 | The flowchart of the previous method (Weng, 2018)                 | 77 |
| 3.28 | The outline of the attention degradation detection for monitoring | 78 |
|      | and warning system application                                    |    |
| 3.29 | Arduino Uno board structure                                       | 80 |
| 3.30 | The prototype of basic electronic alarm system                    | 81 |
| 3.31 | The component circuits of basic electronic alarm system           | 82 |
| 4.1  | N100 ERP wave amplitude with no stimulation given to the          | 86 |
|      | subjects                                                          |    |
| 4.2  | N100 ERP wave amplitude with stimulation given to the subjects    | 87 |
| 4.3  | N170 ERP wave amplitude with no stimulation given to the          | 89 |
|      | subjects                                                          |    |
| 4.4  | N170 ERP wave amplitude with stimulation given to the subjects    | 90 |
| 4.5  | ANOVA statistical analysis between subjects without stimulation   | 92 |
| 4.6  | ANOVA statistical analysis between subjects with stimulation      | 92 |
| 4.7  | ANOVA statistical analysis between the stimulation for N100       | 93 |
|      | ERP component waveform                                            |    |
| 4.8  | ANOVA statistical analysis between the stimulation for N170       | 94 |
|      | ERP component waveform                                            |    |
| 4.9  | N170 ERP component waveform by using wavelet time coherence       | 96 |
|      | scale technique for all subjects                                  |    |
| 4.10 | N170 ERP component waveform by using averaging technique          | 97 |

for all subjects

| 4.11 | Individual N170 ERP wave amplitude over the response with no | 102 |
|------|--------------------------------------------------------------|-----|
|      | stimulation                                                  |     |

- 4.12 Individual N170 ERP wave amplitude over the response with 103 stimulation
- 4.13 The average of N170 ERP component waveform for every 10 104 responses (driving without stimulation)
- 4.14 The average of N170 ERP component waveform for every 10 105 responses (driving with stimulation)
- 4.15 The average result of N170 wave amplitude without stimulation 107
- 4.16 The average of N170 ERP component waveform amplitude with 108 stimulation
- 4.17 The average of every ten responses in N170 ERP component 109 amplitude waveform without stimulation
- 4.18 The average of every ten responses in N170 ERP component 110 amplitude waveform with stimulation
- 4.19 EEG data and accident of 50 subjects without stimulations 112
- 4.20 EEG data and accident of 50 subjects with stimulations 113
- 4.21 The threshold value obtained from the output fuzzy 113
- 4.22 Attention Degradation Scale (ADS) based on fish bone scale 114 diagram
- 4.23 Suggested application of the proposed ADS 115
- 4.24 The output fuzzy set of attention level for attentive state in rule 116 viewer

xi

| 4.25 | The aggregated output fuzzy set and defuzzified output value of       | 117 |
|------|-----------------------------------------------------------------------|-----|
|      | attentive state                                                       |     |
| 4.26 | The output fuzzy set of attention level for the begin of inattentive  | 118 |
|      | state in rule viewer                                                  |     |
| 4.27 | The aggregated output fuzzy set and defuzzified output value of       | 118 |
|      | attention level in medium, namely as begin of inattentive             |     |
| 4.28 | The output fuzzy set of attention level for inattentive state in rule | 119 |
|      | viewer                                                                |     |
| 4.29 | The aggregated output fuzzy set and defuzzified output value of       | 120 |
|      | inattentive                                                           |     |
| 4.30 | The surface viewer of attention relations                             | 121 |
| 4.31 | The amplitude difference of N170 ERP wave for controlled              | 122 |
|      | subjects (inattentive state)                                          |     |
| 4.32 | The average of the N170 ERP wave amplitude difference for             | 123 |
|      | controlled subjects (inattentive state)                               |     |
| 4.33 | The amplitude difference of N170 ERP wave for controlled              | 124 |
|      | subjects (attentive state)                                            |     |
| 4.34 | The average of the N170 ERP wave amplitude difference for             | 125 |
|      | controlled subjects (attentive state)                                 |     |
| 4.35 | The developed GUI for method comparison and validation                | 127 |
| 4.36 | Early stage of attention monitoring and warning system for both       | 128 |
|      | methods                                                               |     |
| 4.37 | Second stage of attention monitoring and warning system for both      | 128 |
|      | methods                                                               |     |

xii

| 4.38 | The overall response of the driver attention level for both methods  | 129 |
|------|----------------------------------------------------------------------|-----|
| 4.39 | The comparison of the result from both methods with the EEG          | 130 |
|      | waveform                                                             |     |
| 4.40 | The method comparison of individual attention determination          | 133 |
| 4.41 | Welcome message displayed on LCD once the connection with            | 136 |
|      | PC is initialized                                                    |     |
| 4.42 | Attention level indicator when the attention is in attentive state   | 137 |
| 4.43 | Attention level indicator when the attention is in intermediate      | 138 |
|      | condition (the beginning of inattentiveness)                         |     |
| 4.44 | Attention level indicator when the attention is in inattentive state | 139 |
| 4.45 | Driving attention alarm system on developed GUI                      | 140 |
| 5.1  | The proposed of the whole system for future work                     | 146 |
|      | recommendation                                                       |     |

xiii

### LIST OF APPENDICES

| APPENDIX | TITLE                                               | PAGE |
|----------|-----------------------------------------------------|------|
| A        | National medical research register                  | 173  |
| В        | Informed consent form for participation             | 174  |
| С        | Product sheet of BIOPAC MP150                       | 178  |
| D        | Additional individual results for both stimulations | 179  |
| E        | Gantt chart and milestone                           | 189  |

### LIST OF ABBREVIATIONS

| ADAS      | - Advanced Driver Assistance Systems                             |
|-----------|------------------------------------------------------------------|
| ADS       | Attention Degradation Scale                                      |
| Ag/Ag-Cl  | - silver-silver chloride                                         |
| ANFIS     | - Adaptive Neuro Fuzzy Inference System                          |
| ANN       | - Artificial Neural Network                                      |
| BCI       | - brain-computer interface                                       |
| CRF       | - Conditional Random Field                                       |
| DMS       | - Driver Monitoring System                                       |
| DWT       | - Discrete Wavelet Transform                                     |
| ECG       | - Electrocardiography                                            |
| EEG       | - Electroencephalography                                         |
| EMG       | - Electromyography                                               |
| EOG       | - Electrooculography                                             |
| ERP       | - Event Related Potential                                        |
| F-VAS     | - Fatigue Visual Analog Scale                                    |
| FFT       | - Fast Fourier Transform                                         |
| FL-RSEFNN | - Functional - link recurrent self-evolving fuzzy neural network |
| GD        | - gradient descent                                               |
| GPS       | - Global Positioning System                                      |
|           |                                                                  |

| HMM   | - | Hidden Markov Model                            |
|-------|---|------------------------------------------------|
| ICA   | - | Independent Component Analysis                 |
| KNN   | - | K-Nearest Neighbors                            |
| KSS   | - | Karolinska Sleepiness Scale                    |
| LDA   | - | Linear discriminant analysis                   |
| LM    | - | linked mastoids                                |
| MEMS  | - | microelectromechanical systems                 |
| MIROS | - | Malaysian Institute of Road Safety Research    |
| NHTSA | - | National Highway Traffic Safety Administration |
| NMRR  | - | National Medical Research Register             |
| PSD   | - | Power Spectral Density                         |
| REM   | - | Rapid eye movement                             |
| SNR   | - | signal to noise ratio                          |
| SVM   | - | Support Vector Machine                         |
| SVR   | - | Support Vector Machine Regression              |
| SWS   | - | Slow Wave Sleep                                |

### LIST OF SYMBOLS

| Cz  | - | Vertex lobe          |
|-----|---|----------------------|
| Fpz | - | Forehead lobe        |
| Oz  | - | Occipital lobe       |
| α   | - | Alpha frequency band |
| β   | - | Beta frequency band  |
| δ   | - | Delta frequency band |
| θ   | - | Theta frequency band |
| γ   | - | Gamma frequency band |

xvii

#### LIST OF PUBLICATIONS

- Nasir, H.M., Aminuddin, M.M.M., Brahin, N.M.A., and Mustaffa, I., 2019. Event Related Potential N100 VS N170 Wave Results Comparison On Driving Alertness. *Journal of Engineering Science and Technology*. 14(3), pp.1150-1160. [Scopus] [Published]
- Aminuddin, M.M.M. and Nasir, H.M., 2018. The Feasibility of Music and Talk Radio Program as a Focus Stimulant for Driver. International Journal of Human and technology Interaction, 2(1), pp.45-49. [Published]
- Aminuddin, M.M.M., Nasir, H.M., Mustaffa, I. and Brahin, N.M.A., 2018. N170 Wave Amplitude Analysis on Driving Performance on Highway Road. *Journal of Telecommunication, Electronic and Computer Engineering*, 10 (2-6), pp.145–148. Also presented in International Conference on Telecommunication, Electronic and Computer Engineering (ICTEC '17). [Scopus] [Published]
- Aminuddin, M.M.M. and Nasir, H.M., 2017. Loudness Perception Differentiation Using Repeating Sinus Rhythm. *MALTESAS Multi-Disciplinary Research Journal* (*MIRJO*), 2(3), pp.47-54. [Published]

xviii

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Research background

Driving is a complex task that requires sensory, motor and higher-level cognitive components which will analyze decision to prioritize the information, predict the scenarios and coordinate movement responses (Uc and Rizzo, 2008). While attention is a shifting process within the central nervous system that can be detected focally in certain regions of the brain through electrical activity using electroencephalography (EEG).

Loss of attention during driving may lead to serious injuries and fatalities. With the increase of road accidents due to the lack of alertness during driving, this research is crucial, especially in Malaysia. Transport Minister of Malaysia reported that a total of 521,466 accidents were recorded in 2016. This is an increment from 489,606 in 2015, 80.6% of the fatal accidents were due to human error including speeding, drowsiness, driving distraction and loss of attention (Babulal, 2017). Table 1.1 shows the statistical report of road accidents in Malaysia, based on the latest report by Malaysian Institute of Road Safety Research (MIROS) (Malaysian Institute of Road Safety Research (MIROS), 2017). The numbers revealed are quite worrying as road accidents are gradually increasing every year. This situation is not only a problem in Malaysia, but it is a worldwide issue. The fatal crash statistic in the United States which was reported by the National Highway Traffic Safety Administration (NHTSA) shows that an increment of 1900 accidents from 2015 to 2016 (National Highway Traffic Safety Administration, 2018).