

Faculty of Electronic and Computer Engineering

NEW SOLUTION FOR ICT/ELV INFRASTRUCTURE PROJECT REPORTING USING DATALINK TECHNIQUE SYSTEM

Hisamuddin bin M Saleh

Doctor of Engineering

2018

NEW SOLUTION FOR ICT/ELV INFRASTRUCTURE PROJECT REPORTING USING DATALINK TECHNIQUE SYSTEM

HISAMUDDIN BIN M SALEH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "New Solutions for ICT/ELV Infrastructure Project Reporting Using Datalink Technique System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

ff sor 5

Name Date

:

:

Signature

Hisamuddin Bin M Saleh 14th September 2018 :

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Engineering.

Not

Signature	:	
Supervisor Name	:	Prof. Dato' Dr. Mohd Nor Bin Hussain
Date	:	14 th September 2018

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved mother and father

ABSTRACT

The main purpose of the research work is to solve the persistent infrastructure project issue such as variation order (VO) issue, and project delay issue. It has been occurring in the project for over quite a long period of time. In infrastructure project, failed to make a reliable project report will lead to an issue on VO and project delay happen. It has become a normal phenomenon in which issue has led to many negative effects such as cases of lawsuits, poor productivity, revenue loss, and contract termination among all parties involved. Therefore, to overcome this problem, the latest solution system known as Datalink Technique System (DTS) has been developed. It has been tested and applied in one of the government projects in Malaysia. It has turned out with positive results as compared to the existing one. It has been able to deliver reliable information, and yet it is still consistent with the current approach to manage the project. There are two main objectives have been achieved in this thesis. The first is to eliminate the loss and save the project cost by reducing the VO issue and project delay issue in the Information Communication Technology (ICT) work and Extra Low Voltage (ELV) work, but it is not limited to that, in future it can be applied to other infrastructure works like mechanical and electrical (M&E), civil works, and etc.. The second objective is to make the project report more transparent in the monthly project reporting that presented to project management. This to prevent the report from being manipulated by contractors as happened to other projects before. A methodology for system approach is proposed and demonstrated for solution purposes. The process began with a comprehensive issue on VO and followed by project delay factor phenomena. The problem and the main factors that caused the issue is identified and data acquisition based on actual problems that happened in the project. The performance and limitations of conventional methods are studied thoroughly to discover solutions with new more effective methods. The system approach is served by implementing the DTS system in one of the selected infrastructure projects. A pilot project has been implemented at Kota Kinabalu Sabah new court complex project is to evaluate the credibility and actual capabilities of the DTS system. It has contributed a good result for the project, and many benefits have been derived from the implementation. From the result, the bad performance that the team can tolerate could be derived from the equation of the percentage of completion versus the duration of working days, $Y = a_1x-b_1$, where b1 is the value of the bad performance of the system which is measured as below 34%. To support the validation of the result, the actual copy of the report is attached together. The new system has several advantages compared to the existing conventional process method. It helps in reducing the loss in project costing, provide a reliable progress report to the client while able to convey information of project tasks instantly and accurately.

ABSTRAK

Tujuan utama kerja penyelidikan adalah untuk menyelesaikan masalah isu projek infrastruktur yang berterusan seperti isu pesanan variasi (VO), dan isu kelewatan projek. Ia telah berlaku dalam pengurusan projek infrastruktur untuk tempoh masa yang agak lama. Dalam projek infrastruktur, kegagalan membuat laporan projek yang boleh dipercayai akan menyebabkan isu VO dan kelewatan projek berlaku. Ia telah menjadi fenomena biasa di mana isu tersebut telah membawa kepada banyak kesan negatif seperti kes tuntutan undang-undang, produktiviti yang lemah, kerugian hasil, dan penamatan kontrak di kalangan semua pihak yang terlibat. Oleh itu, untuk mengatasi masalah ini, satu sistem penyelesaian terbaharu yang dikenali sebagai Sistem Kejuruteraan Kaitan Data (DTS) telah dibangunkan. Ia telah diuji dan diterapkan ke dalam salah satu projek kerajaan di Malaysia. Ia telah menghasilkan keputusan positif berbanding dengan sistem yang sedia ada. Ia dapat menyampaikan maklumat yang boleh dipercayai, namun ia tetap konsisten dengan pendekatan semasa untuk menguruskan projek tersebut. Terdapat dua objektif utama yang telah tercapai di dalam tesis ini. Yang pertama ialah menghapuskan kerugian dan menjimatkan kos projek dengan mengurangkan isu VO dan kelewatan projek dalam kerja-kerja Teknologi Komunikasi Maklumat (ICT) dan Kerja-Kerja Voltan Lebih Rendah (ELV) tetapi ianya tidak terhad kepada itu sahaja, pada masa akan datang, ia boleh digunakan untuk kerja-kerja infrastruktur lain seperti kerja-kerja mekanikal dan elektrik (M & E), kerja-kerja sivil, dan lain-lain. Objektif kedua adalah untuk membuat laporan projek lebih telus dalam laporan projek bulanan yang dikemukakan kepada pengurusan projek. Ini untuk mengelakkan laporan daripada dimanipulasi oleh kontraktor seperti yang berlaku kepada projek-projek lain sebelum ini. Kaedah untuk pendekatan sistem dicadangkan dan ditunjukkan untuk tujuan penyelesaian. Proses ini bermula dengan isu komprehensif mengenai VO dan diikuti oleh fenomena faktor kelewatan projek. Masalah dan faktor-faktor utama yang menyebabkan isu itu dikenalpasti dan pengambilalihan data berdasarkan masalah sebenar yang berlaku dalam projek. Prestasi dan batasan kaedah konvensional dikaji dengan teliti untuk mencari penyelesaian dengan kaedah baharu yang lebih berkesan. Pendekatan sistem dilaksanakan dengan melaksanakan sistem DTS di salah satu projek infrastruktur terpilih. Satu projek perintis telah dilaksanakan di projek kompleks mahkamah baru Kota Kinabalu Sabah adalah untuk menilai kredibiliti dan keupayaan sebenar sistem DTS. Ia telah menyumbang hasil yang baik untuk projek itu dan banyak manfaat telah diperolehi daripada pelaksanaannya. Dari hasil kajian penyelidikan, prestasi buruk pasukan yang boleh ditolak ansur boleh diperolehi dari persamaan peratusan siap berbanding tempoh hari kerja, Y = a1x-b1, di mana b1 adalah nilai prestasi buruk sistem yang diukur sebagai di bawah 34%. Untuk menyokong pengesahan hasil kajian kes, salinan laporan sebenar dilampirkan bersama. Sistem baharu mempunyai beberapa kelebihan berbanding dengan kaedah proses konvensional sedia ada. Ia membantu mengurangkan kerugian kos projek, menyediakan laporan kemajuan yang boleh dipercayai kepada pelanggan sambil dapat menyampaikan maklumat tugas projek dengan serta-merta dan tepat.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Dato' Dr. Mohd Nor Bin Husain, as my supervisor, for his guidance, time, a stimulating environment, support and the freedom to do my thesis, New Solutions For ICT/ELV Infrastructure Project Reporting Using Datalink Technique System. I appreciate his sacrifice in order to ensure my thesis going well and achieve its objectives.

Next, I would like to thank Assoc. Prof. Dr. Azmi Bin Awang Md Isa as my cosupervisor, who has also give his time and guidance to complete this thesis.

I also would like to thank Universiti Teknikal Malaysia Melaka (UTeM) for the opportunity that they offer for me to do and present this research study on the DTS system reporting method.

In the other hand, I would like to thank also the Kementerian Pengajian Tinggi (KPT) for providing me the scholarship to materialize this thesis and to ensure that it is a successful doctorate study in the end.

Finally, I would like to thank my wife for her support and assistance to ensure this thesis meet objectives and well presented.

iii

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF PUBLICATIONS	xvi
CHAPTER	

1.	INTI	RODUCTION	1
	1.1	Research Background	2
	1.2	Problem Statement	4
	1.3	Objective Of The Research Work	6
	1.4	Scope of The Thesis	6
	1.5	Contribution of The Thesis	7
	1.6	Thesis Organization	10

2.

3.

LITE	RATU	RE REVIEW	12
2.1	Introdu	uction	12
2.2	Under	standing of Project Delay Issue	12
	2.2.1	Common Causes of Project Delay	13
	2.2.2	Effects of Project Delay	15
2.3	Under	standing of Project VO Issue	15
	2.3.1	Common Causes of Project VO Issue	16
	2.3.2	Effects of Variation Orders	17
2.4	Towar	ds A Solution: DTS Approach Theories	19
2.5	Infrast	ructure Project Management Review	20
	2.5.1	Performance and Limitations of the Current Practice	20
	2.5.2	Case Study Compilation	21
	2.5.3	Case Study Evaluation and Solution Approach Strategies	23
		2.5.3.1 Evaluation on Project Delay Case Issue	24
		2.5.3.2 Solution Approach on Relevant Case	27
		2.5.3.3 Evaluation on VO Case Issue	27
		2.5.3.4 Solution Approach on Relevant Case	28
2.6	Summ	ary	30

DTS	INDUC	TION	33
3.1	Introd	uction	33
	3.1.1	Power of user-friendly system (DTS)	35

	3.1.2 How DTS solution meets the need	35
	3.1.3 Program used	36
3.2	Section Link Page Program (SLPP)	37
3.3	Very Early System Program Alarm (VESPA)	43
3.4	Tabulation Detail Project Reporting (TDPR)	51
3.5	Summary	53

4.	MET	HODOLOGY FO	DR SYSTEM APPROACH STRATEGY – DTS	
	APPR	COACH IN PRO	JECTS	54
	4.1	Introduction		54
	4.2	Case Study: Usin	ng a Methodology for DTS System Development	58
		4.2.1 Case Stu	dy #1 – Project Delay Issues	58
		4.2.1.1	Part I – On-going Project: Kompleks	59
			Mahkamah Baru Kota Kinabalu, Sabah Project	
		4.2.1.2	Part II – Politeknik Muadzam Shah Project	111
		4.2.2 Case Stud	ly #2 – VO Issues	115
		4.2.2.1	Part I – Penang International Airport (PIA)	115
			Project	
		4.2.2.2	Part II – Politeknik Muadzam Shah Project	128
	4.3	Summary		134

RES	ULT AND DISCUSSION	1.
5.1	Introduction	13
	5.1.1 Implications on Financial Work Progress Claim From Unreliable Reports	13
	5.1.2 Projects Implications from EOT	14
	5.1.3 Application and Effectiveness of DTS	14
	5.1.3.1 Analysis of Relevance and Realistic Aspect of the DTS System	14
	5.1.4 Study on the Generality of the Equation of Performance Evaluation and Criteria needed for a Project to be	15
	Characterized as Feasible, Manageable and Realistic	
5.2	Economical Impact Analysis	1:
	5.2.1 Causes of VO and Project Delay and how DTS could	
	Mitigate this Problem Economically	1:
	5.2.2 Analysis of Cost Saving Study for Economical Impact usi	ing
	DTS System	1:
53	Summary	15

6.	CON	CLUSION AND RECOMMENDATIONS FOR FUTURE WORK	161
	6.1	Conclusion	161
	6.2	Recommendation	162

REFERENCES

5.

164

APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Main Factors Generating Construction Project Delays	14
2.2	Project Profile Successfully Completed	21
2.3	Project Profile for an on-going Project	22
4.1	Range level setting for the Alert System Program	102
	Pahang project	
4.2	Summary percentage of Work done from the CPM Report	108
4.3	Summary Financial Report for November 2016 for Work	109
	Progress Claim #3	
4.4	Valid factors of Project Delay	112
4.5	Variation Order (VO) detail for Penang International Airport,	116
	(PIA) Project	
4.6	Project cost for VO work based on Table 4.5 (item#14)	119
4.7	Summary of variation order issues for Politeknik Muadzam	128
	Shah, Pahang	
4.8	Listed part of the some area in Zone A that involved with	129
	Variation order work	
4.9	Listed part of the some area in Zone B that involved with	130
	Variation order work	
4.10	Listed part of the some area in Zone C that involved with	131

Variation Order work

4.11	Main factor caused VO for Politeknik Muadzam Shah, Pahang	132
	project	
5.1	Summary of Work Done percentage report by Contractor	137
5.2	Financial report based on Contractor versus DTS System	139
5.3	Table of Comparison 'before' and 'after' the use of DTS	147
	system	
5.4	The linear trend line equations of actual results compared	148
	to scheduled expected result	
5.5	Main causes of VO and Project Delay from different journal	155
5.6	Work progress claim report by using CPM (Conventional	157
	Method)	
5.7	Work progress claim report after using DTS system	158

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Overall Process of Interconnection Data	8
1.2	Conventional Method	9
1.3	New Design & Built Concept	9
2.1	Process of Evaluation and Solution Approach strategies for	23
	Project Delay case study issue	
2.2	Process of Evaluation and Solution Approach strategies for VO	24
	Case study issue	
3.1	DTS Diagram of the whole process	34
3.2	Microsoft Excel Visual Basic Application used in the SLPP	38
	Program	
3.3	SLPP Program for L1.1 Link Section completely developed	43
3.4	Server Room in red (critical stage) and percentage of work report	45
3.5	Percentage of Fiber Optic Cable Work at that particular date and	46
	time	
3.6	Image/Picture of Underground Telephone Cable Ducting Work	47
	at that particular date and time	
3.7	Location is associated with the SLPP program on the drawing	48
3.8	Detail Typical Layout Diagram for the JRC7 Manhole for the area	49
3.9	Technical Specification Requirement & Compliance Statement	50

for that particular work of scope

3.10	Sample of CPM format for electrical work for Sabah Court	
	Project, Kota Kinabalu	
3.11	Process workflow between TDPR and CPM	52
3.12	Sample work distribution level in TDPR program	53
4.1	Process Flow comprises five essential stages in the Methodology	
	Process	
4.2	Work Schedule for ICT works	59
4.3	Sample summary Percentage Report for the month of December	61
	2016	
4.4	Sample detail breakdown report for Electrical works	62
4.5	Detail Information of Work Task Status on the specific location	63
4.6	Step 1 and Step 2 on how to open the Approval List Report	64
	Documentations by using SLPP program tools	
4.7	MPDP program page pop-up after user clicks the button on the	65
	SLPP program page	
4.8	Status report of drawing approval list	66
4.9	Status report of material approval list	67
4.10	Sample of TDPR Reporting Program System	69
4.11	The same total amount reported in CPM and Project	70
	Financial Report	
4.12	Block Diagram of Pilot Project System Architecture	72
4.13	Block Diagram of System Development	73
4.14	Phase #1: Work flow Process	75
4.15	Area highlighted with red circle has been identified	77

Х

4.16	SLPP L1.1 is representing Link Section for Area 1 at Level 1	78
4.17	Tools software used to create SLPP model	79
4.18	Process to create Multiple-layer Userform associated with	80
	Module 5 using Assign Macro	
4.19	Multiple – layer Userform created by clicking the command	81
	Button	
4.20	Interconnection between SLPP and Project drawing	82
4.21	Datalink process flow from SLPP model to each individual	83
	folder document	
4.22	Additional button object created after user click on the button	87
	called Add CommandButton in MPDP program	
4.23	Process flow of attached additional button object to file folder	88
	document	
4.24	Sample work task for A1.1 structured cabling work in ICT/ELV	89
	Infrastructure Sabah Court Project	
4.25	Sample of TDPR Reporting Program System for Structured	90
	Cabling Work	
4.26	Window Form in VB Application for Image Viewer	92
4.27	Window Form 1 with image drawing attached	92
4.28	Process #1 of creating image on Window Form 1	93
4.29	Process#2 of creating image on Window Form 1	94
4.30	Process of creating command button for Tools Box Menu	95
4.31	ToolsBox Menu with the command button	96
4.32	Active Drawing Object in ToolsBox Menu	97
4.33	Straight line tools is applied on fiber optic cable route	98

4.34	Detail work progress status inside the Info Tab	100
4.35	Data in Info Tab originated from CPM	101
4.36	Server Room status red – indicate the room is in the critical	103
	stage	
4.37	IF and ELSE statement flow diagram	105
4.38	Block Diagram of the three stages of System Deployment	106
4.39	TDPR Program for Sabah Court Project Kota Kinabalu	107
4.40	CPM Report for ICT Works for the November 2016	108
	Project Monthly Report	
4.41	Sample copy of Letter Head for ICT Work Progress Claim #3	110
4.42	Sample copy of BOQ for ICT work Progress Claim#3	111
4.43	Item #14 VO work sample for case study analysis	118
4.44	Location of variation work required in item#14	120
4.45	IDs from Tabulation Detailed or SOA was completely recorded	124
	Into the TDPR program system for this project	
4.46	Room unit with nine set of entities	125
5.1	Monthly project progress report for Mahkamah Kota Kinabalu	136
	Project	
5.2	Actual Contractor's Completion percentage versus days of	137
	project	
5.3	Ahead/Delay of Contractor work percentage versus days of	138
	Project	
5.4	Curves on Contractor's Financial Report and DTS Financial	140
	Report	
5.5	Manpower Expenses for Month of March, 2017	141

xii

5.6	Manpower Expenses for Month of April,2017 to October,2017	142
5.7	EOT Contractor's expenses per month	143
5.8	Summary percentage of Work Done for DTS system	144
5.9	Comparison of Actual percentage of completion of the one from	145
	Contractor and DTS system	
5.10	Figure of Ahead/Delay percentage of work done reported by	146
	Contractor and DTS System	
5.11	Figure representative of linear part of completion percentage	147
	Versus days of the project from the three curves, Scheduled DTS,	
	Actual Contractor and Actual DTS system	
5.12	General pattern of completion percentage curve versus days	153
	of the project	

LIST OF APPENDICES

APPENDIX	TITLE	
А	Sample Source Code	173
В	Monthly Progress Report for Sabah Court, Kota Kinabalu	197
	(22 nd Disember 2016)	
С	Actual Copies Report (TDPR Program) for Cabling Work	201
	Implemented in Sabah Court, Kota Kinabalu Project	
D	Actual Copies CPM Report for Work Progress Claim #3	206
	Implemented in Sabah Court, Kota Kinabalu Project	
Е	Actual Copies of Submission Letter Head for Work Pogress	208
	Claim #3 for Sabah Court, Kota Kinabalu Project	
F	Variation Order for ICT Services in Sabah Court, Kota	213
	Kinabalu	
G	TDPR Report for Sabah Court, Kota Kinabalu	216
	(Novembre, 2016 & January, 2017)	
Н	CPM Report for Sabah Court, Kota Kinabalu	217
	(Novembre, 2016 & January, 2017)	
Ι	Variation Order for ICT Services in Politeknik Muadzam	219
	Shah	

LIST OF ABBREVIATIONS

ASP	-	Alert System Program
BoQ	-	Bill of Quantity
CCC	-	Completion Compliance Certificate
СРМ	-	Critical Path Method
DCC	-	Document Control Centre
DTS	-	Datalink Technique System
EOT	-	Extension Over Time
ELV	-	Extra Low Voltage
ICT	-	Information Communication Technology
JKR	-	Jabatan Kerja Raya
M&E	-	Mechanical & Electrical
MPDP	-	Main Page Datalink Program
РМО	-	Project Management Office
RE	-	Resident Engineer
RFI	-	Request For Information
SLPP	-	Section Link Page Program
SOA	-	Schedule Of Accommodation
TDPR	-	Tabulation Detail Project Reporting
VB	_	Visual Basic

XV

- VBA Visual Basic Applications
- VESPA Very Early System Program Alarm

LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

 H. M. Saleh, M. N. Husain, A. A. M. Isa, 2017. New Solution for ICT/ELV Infrastructure Project Reporting Using Datalink Technique System, *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, 10(1), pp. 57-62.

xvii

CHAPTER 1

INTRODUCTION

Issue on Variation Order (VO) and project delay in the infrastructure project industry in Malaysia are a well-known menace that has tarnished the reputation of construction professionals across the country. This phenomenon brings major implications, such as higher construction costs and the termination of the contract. This is especially in the case of government related project. Construction industry is one of the key industries in Malaysia. Unfortunately, the industry is facing many problems in its projects. One of the major problems faced by the construction project is the issue of the variation order occurring during the construction phase (Ibb, *et.al*, 2001) which results in delaying projects, overruns the cost and causes other negative effects. Hence it is very important to control variation orders. Taxpayers are constantly puzzled by the persistent delays in most government-approved construction projects. This problem indicates the need to develop an effective method to avert such issues in the future. The study focuses on the issues in an infrastructure project, such as the variation work during construction at the site and on the time that elapses beyond the date for completion.

VO and project delay are costly to a project especially the time lapse, over expenditure, litigation, disputes, and abandoned projects. A change of schedule during the project construction phase may result in a major reallocation of resources (Fisk, 1997; O'Brien, 1998). In most cases, projects which are delayed beyond the time specified in the project schedules goes a long way to endure hardship, loss of revenue, and a bad

1

reputation. Further consequences resulting from the delay of a project in terms of its cost includes labor cost of non-productive workers, supervisors, leased equipment and machinery, material delivery schedules and additional overhead costs. This gives a clear indication that in the cause of a delay, not only the contractor suffers loss but also the government.

1.1 Research Background

Variation Order (VO) issues, budget overrun, and project delay are contributing to a big amount of project losses and project delay. There are considered as part of major issues (Dubem, et.al, 2014) that still persist in construction.

Existing Design and Built concepts in infrastructure projects are very common to see project owners getting very limited information, inadequate data and unreliable project reporting because the methods used are ineffective. It ends up with project delay issue and variation order issue (Ali, et.al, 2010) and it causes the project cost burst by spending more money on the unnecessary item.

Other studies, (Mokhtar, *et.al*, 2000) identified that the most important methods to control of variation order such as clarity of variation order procedures in construction stage is an integral part of effective management of variation orders, use of project scheduling/management techniques in the construction stage, and utilize work breakdown structure.

The most important methods to control of variation order are clarity of variation order procedures in construction stage would help in reducing the processing time, and other mishandling issues, a well-defined scope can assist the professional team in recognizing and planning, variation logic and justification for implementation,