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Abstract: Thin-walled conical shells are primary structures in 

offshore application. Presence of imperfection can considerably 

reduce the load carrying capacity of such structures when in use. 

This study examines the buckling behavior of axially compressed 

imperfect steel cones using the multiple perturbation load analysis 

(MPLA). This is both a numerical and experimental study. Eight 

conical shell test models were manufactured in pairs and 

collapsed under axial compression: two perfect, and the 

remaining six with MPLA imperfection amplitude, A, of 0.56, 

1.12 and 1.68 having two equally-spaced dimples on each cones. 

Experimental test results for all the conical shell models and the 

accompanying numerical predictions are given in this paper. 

Repeatability of experimental data was good. The errors within 

each pair were 3%, 13%, 1% and 0%. In addition, there was a 

good comparison between experimental and numerical data. The 

ratio of experimental to numerical buckling loads varies from 

0.91 to 1.13. 

 
Keywords: Buckling, conical shells, axial compression, 

imperfection sensitivity, multiple dimples. 

I. INTRODUCTION 

Presence of imperfection is believed to have significant 

influence on the buckling behavior of thin-walled structures 

such as conical shells. This can be mainly attributed to the 

detrimental consequence of stress concentration in the 

neighborhood of the imperfection, resulting in the localized 

buckling or plastic collapse of such structures. Thereby, 

reducing the load carrying capability of the structural 

components. Hence, a need to better understand the effect of 

imperfection on thin-walled structures. This is not a new 

problem; several work has been carried out over the years of 

different types of imperfection. Review of past researches on 

imperfection sensitivity of conical shells can be found in [1, 

2].  This paper will focus on the influence of multiple dimple 

imperfection on the buckling behavior of cones subjected to 

axial compression. 

Since, the advent of the single perturbation load approach 

(SPLA) by [3] in 2008 for composite cylindrical shells under 

axial compression, there have been growing interest in the use 

of this imperfection approach to estimate the imperfection 

sensitivity of thin-walled structures (i.e., cylindrical and 

conical shells) under axial compression. This is because, the 

simple perturbation load analysis (SPLA) imperfection is  
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seen as one of the most realistic types of imperfection 

commonly observed in shell structures. In the SPLA 

imperfection approach, an initial geometric imperfection via 

single lateral load is introduced to typical model’s surface 

prior to axial compression loading. Dimple will be produced 

(mostly at the middle section) as an effect from the lateral load 

application. Buckling process will initiate at this localized 

dimple [4, 5].  

Several research work have been carried out on 

imperfection sensitivity of cylindrical shell structures using 

the SPLA imperfection approach [6] – [10]. In 2013, three 

independent research work by [6], [7], and [9], presented 

numerical investigations into the behavior of imperfection 

sensitive unstiffened composite cylindrical shells subjected to 

axial compressive loads using ABAQUS finite element 

software. The SPLA imperfection method was used to 

characterize the buckling behavior of the composite 

cylindrical shells. The SPLA imperfection approach was 

extended for axially loaded composite cylindrical shells by 

[10]. In [10], the single boundary perturbation approach 

(SBPA) was used to perform a comprehensive numerical 

study on the influence of length on the buckling load of 

composite cylindrical shells subjected to axial compression. 

Unlike the SPLA approach, the SBPA on the other hand 

induced a single dimple at the top of the shell by means of a 

boundary perturbation under axial compression which causes 

an additional small bending moment. Comparison between 

experimental and numerical predictions on the buckling of 

axially compressed, unstiffened composite cylinders with the 

additional of lateral load was presented in [8]. Results from all 

investigations except [9], were compared with knockdown 

factor prediction (KDF) by NASA SP-8007 guideline [11]. It 

is found that the KDF prediction by NASA SP-8007 is more 

conservative as compared to the SPLA and SBPA 

imperfection approach. Furthermore, [6] benchmarked its 

results with the statistical knock-down factors calculated by 

[12]. Again, it is found that SPLA gives less conservative 

results than [12] 99% probability KDF.  

However, is the single perturbation load enough to 

represent the worst geometrical imperfection case or can the 

SPLA provide a conservative enough results to use as a design 

guideline? To answer this question, there is a need to consider 

influence of multiple perturbation load approach (MPLA) on 

the buckling behavior of such structures. Numerical 

investigations into  
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the buckling behaviour of cylindrical shells with multiple 

perturbation load approach (MPLA) can be found in [13, 14]. 

Whilst, [13] is devoted to axially compressed composite 

cylinder with multiple perturbation imperfection, [14] was 

devoted to the aluminium alloy cylindrical shells with 

multiple perturbation imperfection subjected to axial 

compression. Results indicates that the cylindrical shells with 

MPLA imperfection are more sensitive as compared to 

cylinders with SPLA imperfection when subjected to axial 

compression. 

Early study on the effect of dimple imperfection on the 

elastic buckling of axially compressed unstiffened aluminum 

conical shells was presented by [15]. References on the use of 

the SPLA imperfection method for conical shells structures 

can be found in [5], and [16] – [18]. Ref. [16] present a 

semi-analytical study using Ritz method on the non-linear 

behavior of unstiffened composite cylinders and cones 

considering initial geometric imperfections and various loads 

and boundary conditions. A constant perturbation load is 

applied to the middle of the cone. The kinematic equations for 

the model were derived using the Classical Laminated Plate 

Theory (CLPT) and the Donnell-type of non-linear equations. 

The latter was used to solve the full displacement field for 

axial compression using a modified Newton-Raphson 

algorithm.  Ref. [5] present numerical studies on the effect of 

different geometry, lamina and layup of axially compressed 

unstiffened composite conical shells using a Single 

Perturbation Load Analysis. From the implemented study it 

could be concluded that the KDF values obtained using SPLA 

is less conservative than the NASA KDF. Ref. [18] analyzed 

numerically the effect of the SPLA imperfection on the load 

carrying capacity of steel conical shells under axial loading 

having various shell thickness and semi-vertex angles. It is 

found that with increasing semi-vertex angle, the sensitivity of 

the structures to imperfection also reduces. In [19], the Single 

Boundary Perturbation Approach (SBPA) was used to 

investigate the buckling behavior of composite conical shells 

under axial compression. The boundary perturbation is 

applied at the axially compressed edge of the cone. The 

parameter which determines the amplitude of the single 

dimple within the framework of the SBPA is the boundary 

perturbation height. Reference into the buckling of imperfect 

cones with multiple perturbation load imperfection can be 

found in [17]. Ref. [17] presented numerical investigation on 

the influence of dimple-shape imperfections on the 

load-carrying capacity of axially compressed stiffened 

composite conical shells. Several perturbation load 

approaches are used which are SPLA and MPLA. Since the 

stiffness of stiffened conical shells varies along axial 

direction, SPLA was used to examine the effect of axial 

location of dimple on axially compressed stiffened conical 

shells.  In general, the knockdown effect of the position near 

the lower end of cone is found to be greater than that near the 

upper end of cone. It is also noticed that with the increase of 

perturbation load, the discrepancy of imperfection amplitudes 

for different positions becomes remarkable. Furthermore, 

[17] employed the Worst Multiple Perturbation Load 

Approach (WMPLA) which is an improvement of the MPLA 

using an optimization algorithm to find the worst dimple 

location. The WMPLA is used to find the lower bound of the 

collapse load of axially compressed stiffened conical shells, 

and also provides the knowledge to determine the number of 

dimples in the MPLA. The MPLA imperfection is applied by 

assuming equally spaced perturbation loads along 

circumferential direction, and located at the mid-length along 

axial direction. From the numerical investigations, models 

with 6 perturbation loads were seen to produce the worst 

result thereby producing the WMPLA. Although, this is 

slightly different for the WMPLA of 4 perturbation load 

presented for cylinder in [13]. 

It appears that there has been only limited research into the 

buckling of cones with multiple dimple imperfections. In fact, 

to the authors’ amazement, there is no experimental data on 

buckling behavior of conical shells with multiple perturbation 

load subjected to axial compression. Hence, there is still a 

large gap of knowledge that must be explored which brought 

about the production of this paper. The current paper seeks to 

examine the effect of MPLA imperfection dimple amplitude 

on the buckling behavior of axially compressed mild steel 

conical shells. This is both numerical and experimental study. 

First, details of experimental test results on eight conical 

models (two perfect and six imperfects with two dimples 

imperfection amplitude of 0.56, 1.12 and 1.68) manufactured 

in pairs and its accompanying numerical results were 

presented. Then, experimental results were benchmarked with 

numerical prediction using ABAQUS FE code [20]. 

II.  METHODOLOGY  

A. Method and Material 

Eight conical models were manufactured by using the 

conventional rolling and welding process. Two models were 

assumed perfect shells, while the remaining six models were 

imperfect shells with multiple (2) dimple imperfections. To 

ensure repeatability of experimental data, all the conical 

specimens were manufactured in pairs. Fig. 1 depicts the 

geometry of conical shell with two opposite dimple 

imperfections having cone small radius, r1, cone big radius, r2, 

cone axial length, L, cone slant length, Lslant, cone angle, β, 

constant wall thickness, t, and dimple amplitude, A. The 

model is subjected to axial force, F and perturbation load, PL. 

The nominal geometric parameters of the shells were set to: 

r1/t = 50, r2/r1 = 2.0, L/r2 = 2.24, β = 12.6°. Cones were 

assumed to have a constant wall thickness, t, of 0.5 mm. 

Specimen were labelled as CM1 - CM8. CM1 and CM2 were 

perfect cones, CM3 and CM4 were imperfect cones with 0.56 

mm dimple imperfections, CM5 and CM6 were imperfect 

cones with 1.12 mm dimple imperfections, while CM7 and 

CM8 were imperfect cones with 1.68 mm dimple 

imperfections.  

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-5, January 2020 

 

 

1024 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E6102018520/2020©BEIESP 

DOI:10.35940/ijrte.E6102.018520 

 

Fig. 1. Geometry of the analyzed cone with multiple 

perturbation load imperfection. 

To manufacture the conical models, several manufacturing 

processes were employed. First, the steel plate was cut into 

desired dimension using a laser cutting machine. Next, the 

specimens were rolled into conical shape using a conventional 

slip-roll machine by manipulating the angle of one end of the 

machine to create the small radius of the cone. After that, 

Metal Inert Gas (MIG) welding was used to weld the seam of 

each rolled specimens. More detailed discussion of the 

manufacturing processes can be found in [21]. During the 

manufacturing process, dimple imperfections of different 

amplitude were introduced on the cones through a manual 

pressure from a conventional milling machine. The dimples 

are located at the mid-length of cone’s meridional surface and 

uniformly spaced. Fig. 2 shows typical samples for perfect 

and imperfect cones with imperfection amplitude, A, 0.56 

mm, 1.12 mm and 1.68 mm after manufacturing. To better 

illustrate multiple number of dimples on the conical shells, 

Fig. 3 depicts the (a) front view and (b) side view of a typical 

cone with imperfection amplitude, A = 1.68.  

 

Fig. 2. Typical photograph of conical specimens with 

different dimple amplitude. 

 

Fig. 3. Typical photograph of conical specimens having 

two dimples (a) front view, and (b) side view. 

The material used to manufacture all model is JIS G 3141 

mild steel. To obtain the specific properties of the material 

used for manufacturing the conical shells, six tensile coupons 

(three in horizontal direction –H1, H2, H3 and three in 

vertical direction –V1, V2 and V3) were made according to 

the British standard [22]. The materials of these tensile 

coupons and the conical shell models were the same as they 

were cut from the same plate. The coupons were tested at the 

rate of 1mm/min until failure using INSTRON testing 

machine. The average material properties obtained were as 

follows: Young’s modulus E = 166.228 GPa, Poisson's ratio ν 

= 0.3, and the yield stress based on 0.2% offset, σyp = 194.6 

MPa. This data will be used for numerical analysis latter in 

this paper.  

B. Specimen Measurement 

Prior to testing, several measurements such as wall 

thickness, diameter, axial length and slant length of all the 

specimens were taken to investigate the 

manufacturing-caused imperfection. First, micrometer screw 

gauge, with accuracy of 0.01 mm, was used to measure the 

thickness of eight samples to verify the accuracy of the 

geometries of the fabricated conical shells. The specific 

measurement method was as follows: eleven points along the 

circumferential direction of the cones were measured, along 

with eleven points along the slant length direction; each 

conical shell had a total of 121 measuring points. The 

minimum thickness, tmin, average thickness, tavg, maximum 

thickness, tmax, and standard deviation, tstd, are provided in 

Table 1. It is evident from Table 1, that model CM4 has the 

largest thickness deviation, while model CM1 has the lowest 

deviation from the nominal thickness value. Next, Vernier 

caliper was used to measure the inner and outer diameter of 

both top and bottom ends of each of the manufactured conical 

shells. Five diameter spaced at equal interval were used as 

measuring points. The average measured mid-surface 

diameter for all of the conical models are listed in Table 2. 

Then, the axial height of the manufactured cones was 

measured using a digital height gauge while Vernier caliper 

was used to measure the cones slant length. The average 

measured axial height and slant height for all of the conical 

models can be found in column 6 and 7 in Table 2.  Lastly, 

Vernier caliper was used to measure the dimple magnitude for 

all the tested cones as given in Table 3. It must be mentioned 

here, that because of the method of introducing the dimple, it 

was relatively difficult to obtain the same dimple amplitude 

required on both sides of the cones. Hence, a need for better 

way of introducing the dimple in the future.  
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Table- I: Measured wall thickness of tested cones 

Model  N A 
tmin  tmax  tave 

tstd  
(mm) 

M1 0 0 0.480 0.490 0.482 0.00400 

M2 0 0 0.480 0.500 0.484 0.00568 

M3 2 0.56 0.480 0.500 0.490 0.00485 

M4 2 0.56 0.470 0.500 0.483 0.00575 

M5 2 1.12 0.470 0.500 0.487 0.00541 

M6 2 1.12 0.470 0.500 0.481 0.00514 

M7 2 1.68 0.480 0.500 0.489 0.00539 

M8 2 1.68 0.480 0.500 0.488 0.00549 

Table- II: Measured mid-surface diameters at small 

and big ends and average lengths of tested cones 

Model  N A 
2r1 2r2 L Lslant  

(mm) 

M1 0 0 50.430 99.399 111.992 114.630 

M2 0 0 52.655 98.918 112.507 114.911 

M3 2 0.56 50.379 99.068 112.079 114.677 

M4 2 0.56 50.166 99.101 112.127 114.626 

M5 2 1.12 51.168 98.921 112.113 114.718 

M6 2 1.12 50.599 98.189 112.075 114.566 

M7 2 1.68 50.650 99.178 112.389 114.672 

M8 2 1.68 50.034 99.901 112.100 114.697 

C. Axial Collapse Test  

After the pre-test measurement, compression test was 

conducted on the eight samples to obtain their maximum load 

carrying capacity and investigate their buckling behavior. 

INSTRON universal testing machine was used to apply axial 

compression on all of the specimens. The axial testing is 

carried out at a rate of 1mm/min, which is the same as the rate 

of loading used for the material testing. A top and bottom 

plate were used to cover the small and big radius ends of the 

cone respectively as exemplified in Fig. 4 for (a) perfect cone 

and (b) cone with two dimples having imperfection 

amplitude, A of 1.68. The covering plates is to help provide 

the necessary boundary conditions at both ends. The axial 

compressive load and the corresponding axial shortening of 

the conical models are recorded by machine controller during 

the experiment.   

 

 

Fig. 4. Experimental setup for conical shells with different 

imperfection amplitude, A = 1.68. 

III. RESULT AND DISCUSSION 

Experimental results from the testing and its accompanying 

numerical predictions for all the conical models is discussed 

in this section. Fig. 5 presents the plot of average load against 

imperfection amplitude for all the tested conical specimens. 

The corresponding magnitude of buckling load for each 

specimen is given in column 5 of Table 3. From Fig. 5, it can 

be seen that there is a good repeatability of experimental data. 

The percentage errors within each pairs are 3%, 13%, 1% and 

0% for A = 0, 0.56, 1.12 and 1.68, respectively. The small 

error recorded for models CM7 and CM8, can be attributed to 

the small deviation of the wall thickness between the samples 

as provided in Table 1. Although, there is large discrepancies 

observed for cones with imperfection amplitude, A = 0.56, the 

reason for this is not entirely clear. The combination of 

thickness and dimple amplitude deviation from the nominal 

value could be responsible. Fig. 6 presents a typical plot of 

experimental load versus axial shortening for perfect cones 

(model CM1) and imperfect cones with two dimples having 

amplitude of A = 1.68 (model CM8). It can be seen from Fig. 

6, that both curve follow the same pattern. The curve is linear 

up to collapse and then a sudden drop in the load deflection 

curve at the post-collapse region.  

However, for the imperfect cone (CM8) with two dimples 

having imperfection amplitude, A, of 1.68, local instability (at 

about 11 kN) was observed prior to the global buckling (at 

about 13 kN) in the load deflection curve. This phenomenon 

was also observed by [5], where it was stated that this will 

occur within a certain range of perturbation load.  

Table- III: Comparison of experimental and numerical 

collapse load of perfect and imperfect cones. N = number 

of dimple (Exptl ≡ experimental). 

Model N 

Dimple amplitude 

(mm) 
Collapse load (kN) Exptl 

/ABAQUS 

Nominal Measured Exptl ABAQUS 

CM1 0 0 0 14.67 15.25 0.96 

CM2 0 0 0 15.15 15.35 0.99 

CM3 2 0.56 
0.86 

14.39 15.32 0.94 
0.62 

CM4 2 0.56 
0.81 

16.52 15.12 1.09 
0.61 

CM5 2 1.12 
1.29 

15.45 14.95 1.03 
1.37 

CM6 2 1.12 
1.30 

15.58 14.75 1.06 
1.40 

CM7 2 1.68 
1.72 

13.07 14.74 0.89 
1.65 

CM8 2 1.68 
1.70 

13.05 14.97 0.87 
1.65 

To validate the experimental results, numerical 

calculations have been carried out for both the perfect and 

imperfect cones with dimples imperfection. The models were 

generated using ABAQUS finite element code with 3D 

deformable body. Four noded shell elements with six degree 

of freedom (S4R) were employed in the numerical 

calculations. To mimic the experiment set-up, a rigid plate is 

assembled together with the conical models to represents the 

top platen of the INSTRON machine used in experimental 

testing. Two equally-spaced nodes located along the 

mid-circumference of the cone were selected to be the dimple 

application points where the perturbation load were applied. 

Surface-to-surface contact interaction between the top nodes 

of the small radius of the cone and the internal surface of the  

plate was created and is assumed to have a frictionless 

tangential behavior. Static general method was used for 

dimple applications while nonlinear static Riks analysis was 

used to apply axial loading onto 

the reference point located in the 
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middle of the horizontal plate. The bottom of the cone is 

assumed to be fixed and at the top of the cone, the same 

condition was applied except allowing movement in the axial 

direction. The buckling behavior, i.e., collapse load and 

deformed shape between experimental testing and numerical 

analysis is explored.   

 

Fig. 5. Plot of average axial compression load against 

imperfection amplitude, A, for conical models with 

radius-to-thickness ratio, r1/t = 50. 

 

Fig. 6. Typical plot of experimental load versus axial 

shortening curve for perfect and imperfect cones. 

Comparison between experimental results and numerical 

predictions are given in Table 3. The numerical predictions 

are satisfactory to their experimental collapse load. The ratio 

between experimental data and numerical results varied 

between 1% to 13%. Results demonstrate that, for the conical 

models, an introduction of two perturbation loads having 

dimple amplitude of 0.56 mm, will slightly increase the load 

carrying capacity of an axially compressed conical shell. 

However, it is obvious that as the magnitude of the dimple 

increases, the load carrying capacity decreases.  

Further computations were carried out to explore the worst 

multiple perturbation load for conical models with 

imperfection amplitude, A, ranging from 0.28 to 1.68. The 

number of dimple on the cones was varied between 1 and 8. 

Table 4 gives the perturbation load required to produce the 

different dimple imperfection. It is clear that the perturbation 

load increases as the dimple magnitude is increased from 0.28 

to 1.68. The collapse load for perfect and imperfect conical 

shells with different dimple magnitude having different 

number of dimples is summarized in Table 5. The number in 

bracket is the ratio of collapse load of imperfect cone to 

perfect cone, F/Fcoll. From Table 5, results indicate that steel 

conical shells with multiple perturbation load (MPLA) 

imperfection are more sensitive as compared to cones with 

single perturbation load (SPLA) imperfection when subjected 

to axial compression. This is consistent with the result of [17] 

for composite cones, [13] for composite cylinders and [14] for 

aluminium alloy cylinders. Furthermore, in contrary to the 

suggestion by [17], where models with 6 perturbation loads 

were said to produce the worst result thereby producing the 

WMPLA for axially compressed stiffened composite conical 

shells, it can be seen that conical models with 2 multiple 

perturbation load (two dimples) gives the worst result thereby 

producing the worst multiple perturbation load (WMPLA) for 

all the dimple amplitude considered, except for A = 0.28, 

where 4 multiple perturbation load (four dimples) gives the 

worst result.  

Table- IV: Perturbation loads applied on cones with 

corresponding dimple amplitude 
Imperfection 

amplitude, A (mm) 
0.28 0.56 1.12 1.68 

Perturbation load, PL 

(kN) 
0.519 0.541 0.75 0.835 

 

Table- V: Collapse load (kN) of cones with t = 0.5 mm 

using MPLA approach  

No of 

Dimple(s), N 

Collapse load (kN) for different magnitude of dimple 

(mm) 

0.28 0.56 1.12 1.68 

0 
15.8289 

(1.0) 

15.8289 

(1.0) 

15.8289 

(1.0) 

15.8289 

(1.0) 

1 
15.786 

(0.997) 

15.7153 

(0.993) 

15.5423 

(0.982) 

15.4103 

(0.974) 

2 
15.7765 

(0.997) 

15.7143 

(0.993) 

15.5358 

(0.981) 

15.338 

(0.969) 

4 
15.7461 

(0.995) 

15.7227 

(0.993) 

15.5717 

(0.984) 

15.406 

(0.973) 

8 
15.7555 

(0.995) 

15.7456 

(0.995) 

15.5125 

(0.980) 

15.6446 

(0.988) 

IV. CONCLUSION 

Experimental and numerical axial compressive test results 

for eight conical samples with multiple perturbation load 

imperfection were presented in this paper. Repeatability of 

experimental results was good. It is proven that presence of 

imperfection (such as dimple) has significant influence on the 

load carrying capacity of the conical shells. From the 

foregoing results, the following conclusions can be drawn: (i) 

steel conical shells with multiple perturbation load (MPLA)  

imperfection subjected to axial compression is seen to 

produce a more conservation lower bound curve as compared 

to cones with single perturbation load (SPLA) imperfection 

when subjected to axial compression, and (ii) axially 

compressed conical models with 2 multiple perturbation load 

(two dimples) produce the worst 

result thereby producing the 

worst multiple perturbation load 
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(WMPLA) for all the dimple amplitude considered, except 

for small dimple amplitude, A = 0.28, where  four multiple 

dimples gives the worst result.  
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