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ABSTRACT 
 

 

Pneumatic Artificial Muscle (PAM) is a new type of pneumatic actuator that duplicates the 
behaviour of skeletal muscle, where it contracts to generate a pulling force via pressurised 
air and retracts passively when air is depressurised. The PAM has the characteristics that 
meet the need of robotic applications, such as lightweight, high power-to-weight ratio 
performance, and safe in use characteristic. However, the PAM exhibits strong nonlinear 
characteristics which are difficult to be modelled precisely, and these characteristics have 
led to low controllability and difficult to achieve high precision control performance. This 
research aims to propose and clarify a practical controller design method for motion 
control of a pneumatic muscle actuated system. A nominal characteristic trajectory 
following (NCTF) control is proposed, and this controller emphasises simple design 
procedure, which it is designed without the exact model parameters, and yet is able to 
demonstrate high performance in both point-to-point and continuous motions. The NCTF 
control is composed of a nominal characteristic trajectory (NCT) and a PI compensator. 
The NCT is the reference motion trajectory of the control system, and the PI compensator 
makes the mechanism motion follows the constructed NCT. The NCT is constructed on a 
phase plane using the deceleration motion of the mechanism in open-loop positioning 
condition. However, the conventional NCTF control does not offer a promising positioning 
performance with the PAM mechanism, where it exhibits large vibration in the steady-state 
before the mechanism stopping and tends to reduce the motion accuracy. Therefore, the 
main goal of this study is to improve the conventional NCTF control for high positioning 
control of the PAM mechanism. The conventional NCTF control is enhanced by removing 
the actual velocity feedback to eliminate the vibration problem, added an acceleration 
feedback compensator to the plant model and a reference rate feedforward to solve the low 
damping characteristic of the PAM mechanism in order to improve the tracking following 
characteristic. The design procedure of the improved NCTF control remains easy and 
straightforward. The effectiveness of the proposed controller is verified experimentally and 
compared with the conventional NCTF and classical PI controls in positioning and tracking 
motion performances. The experimental results proved that the improved NCTF control 
reduced the positioning error up to 90% and 63% as benchmarked to the PI and 
conventional NCTF controls respectively, while it reduced up to 92% (PI) and 95% (NCTF) 
in the tracking error. In the robustness evaluation, the comparative experimental results 
demonstrated that the improved NCTF control has higher robust against the irregular 
signals than the PI and the conventional NCTF controls. This can be concluded that, the 
improved NCTF control has demonstrated high positioning accuracy and fast tracking 
performance at different working range and frequencies as well as high robustness against 
the irregular signals. Overall, the improved NCTF control has showed the capability in 
performing high precision motion and offered promising results for the PAM mechanism. 
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ABSTRAK 
 

 

Penggerak otot tiruan pneumatik (PAM) ialah penggerak baru yang menduplikasi 
kelakuan otot rangka, ia mengecut untuk menjana kuasa tarikan melalui udara bertekanan 
dan menarik balik secara pasif apabila dinyahtekanan. PAM mempunyai ciri-ciri yang 
memenuhi keperluan aplikasi robotik, seperti ringan, prestasi tinggi untuk nisbah kuasa 
kepada berat, dan selamat digunakan. Sebaliknya, PAM mempamerkan ciri-ciri tidak 
linear yang ketara menyebabkan ia sukar dimodelkan dengan tepat, dan ciri-ciri tersebut 
telah membawa kepada kebolehkawalan rendah dan sukar untuk mencapai prestasi 
kawalan kejituan tinggi. Kajian ini bertujuan untuk mencadangkan dan menjelaskan 
kaedah reka bentuk pengawal praktikal untuk mengawal pergerakan meja didorong oleh 
otot-otot tiruan pneumatik. Pengawal mengikut trajektori ciri nominal (NCTF) 
dicadangkan, dan pengawal ini menekankan prosedur reka bentuk mudah, iaitu ia direka 
tanpa parameter model yang tepat tetapi dapat menunjukkan prestasi tinggi dalam 
gerakan titik ke titik dan gerakan berterusan. Pengawal NCTF terdiri daripada trajektori 
nominal (NCT) dan pemampas PI. NCT ialah gerakan rujukan trajektori sistem kawalan 
dan pemampas PI membuat gerakan mekanisme mengikut NCT yang dibina. NCT dibina 
pada satah fasa dengan menggunakan gerakan nyahpecutan mekanisme dalam keadaaan 
kedudukan gelung buka. Bagaimanapun, pengawal konvensional NCTF tidak menawarkan 
prestasi kedudukan terjamin bagi mekanisme PAM, di mana ia mempamerkan getaran 
besar dalam keadaan mantap sebelum mekanisme henti dan cenderung dalam 
mengurangkan ketepatan gerakan. Oleh itu, matlamat utama kajian ini adalah 
mempertingkatkan pengawal konvensional NCTF untuk kawalan berketepatan tinggi bagi 
sistem dorongan otot pneumatik. Pengawal konvensional NCTF dipertingkatkan dengan 
mengeluarkan maklum balas halaju sebenar untuk menghapuskan masalah getaran, 
menambah pemampas maklum balas pecutan pada sistem model dan menambah suapan 
maklum awal kadar rujukan untuk menyelesaikan redaman rendah daripada mekanisme 
PAM supaya mempertingkatkan sifat penjejakan. Prosedur reka bentuk pengawal 
tambahbaik NCTF kekal mudah dan langsung. Keberkesanan pengawal yang dicadangkan 
itu disahkan secara eksperimen dan dibandingkan dengan pengawal konvensional NCTF 
dan pengawal klasik PI dalam prestasi-prestasi gerakan kedudukan dan gerakan 
penjejakan. Keputusan eksperimen membuktikan bahawa pengawal tambahbaik NCTF 
mengurangkan ralat kedudukan sehingga 90% dan 63% berbanding dengan pengawal PI 
dan pengawal konvensional NCTF, manakala ia mengurangkan sehingga 92% (PI) dan 95% 
(NCTF) dalam ralat penjejakan. Dalam penilaian keteguhan, keputusan perbandingan 
eksperimen menunjukkan bahawa pengawal tambahbaik NCTF mempunyai keteguhan 
lebih tinggi terhadap isyarat tidak teratur berbanding pengawal-pengawal PI dan 
konvensional NCTF. Ini dapat disimpulkan, pengawal tambahbaik NCTF menunjukkan 
berketepatan tinggi dan prestasi penjejakan pantas pada jarak kerja dan kekerapan 
berlainan serta keteguhan tinggi terhadap isyarat tidak teratur. Secara keseluruhan, 

ii 
 



pengawal tambahbaik NCTF menunjukkan keupayaan dalam melaksanakan gerakan 
kejituan tinggi dan keputusan yang memberangsangkan bagi mekanisme PAM.  
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