

Faculty of Electronic and Computer Engineering

BEAM STEERING CONTROL OF MICROSTRIP PATCH ANTENNA USING ELECTROMAGNETIC BAND GAP

Muhannad Kaml Abdulhameed

Doctor of Philosophy

2019

BEAM STEERING CONTROL OF MICROSTRIP PATCH ANTENNA USING ELECTROMAGNETIC BAND GAP

MUHANNAD KAML ABDULHAMEED

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "Beam Steering Control of Microstrip Patch Antenna Using Electromagnetic Band Gap" is the result of my research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	Muhannad Kaml Abdulhameed
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:
Supervisor Name	: Dr. Mohd Sa'ari Bin Mohamad Isa
Date	:

DEDICATION

Dedicated to Allah S.W.T. Almighty and Rasulullah S.A.W. Thanks also

To my father

For earning an honest living for us and for supporting and encouraging me to believe

in myself

To my mother

A strong and gentle soul who taught me to trust in Allah, believes in hard work and thought so much could be done with less

To my brothers and sisters

To my wife and my son

The reason of what I have become today

Thanks for your great support and continuous care

ABSTRACT

The use of a high-performance antenna is very important in any wireless system design. The microstrip patch antenna has been employed commonly for numerous wireless applications because of easy analysis and fabrication. It has many advantages, namely, a low profile, low cost, and light-weight. The compact microstrip patch antennas have been achieved by high and thick dielectric substrates. However, this excites the problem of surface waves, thus antenna performance is diminished, especially when changing the main lobe direction of the radiation pattern (beam steering). Mushroom-like EBG structures have attracted increasing interest because of their desirable properties such as high impedance surface for suppressing surface waves. The main problem of the mushroom-like EBG structure is the manufacturing cost and complexity due to the number of vias connecting between the EBG and the ground plane. By loading the EBGs periodically on the substrate, a band gap can be created for frequencies around the operating frequency of the antenna (6 GHz). Such structure can stop the propagation of surface waves along the high dielectric substrate material. Therefore the integration of the mushroom-like EBG structure with a patch antenna and an array antenna of high dielectric constant substrates have been done to improve their performance. By replacing every four cells of the mushroom-like EBG by the one cell of Triple Side Slotted EBG (TSSEBG), reduction in the number of vias has been achieved. The design of TSSEBG with a microstrip patch antenna array showed an enhancement in the gain (from 10.91 to 14.68) dB, directivity (from 11.65 to 15.3) dBi, efficiency (from 84% to 87%), a reduction in side lobe (from -17.9 to -27.5) dB, and reduce the number of vias from 392 to 92. Additionally, a compact EBG based antennas were proposed by combining a rectangular antenna and ideal switches with a mushroom-like EBG structure and with TSSEBG to conduct the beam steering at the E - plane and H-plane, by using band stop and band pass properties, thereby yielding the beam steering into the band pass sector. The number of vias has been reduced from 164 to 40 in the case of combining the TSSEBG with rectangular antenna and ideal switches. The improvement in gain (10.16 dB), directivity (10.5 dBi), and efficiency (93%) have been realized at 0° main lobe direction. The efficiency is 90.5%, the gain and directivity are 9.67 dB and 10.1 dBi respectively at ±20° E-plane direction. In the H-plane radiation pattern control, the efficiency is 89 %, the gain is 9.5 dB, and directivity is 10 dBi at ±18 °main lobe direction. The simulation results using CST software have illustrated the EBG characteristics of controlling the antenna and array radiation. In order to confirm the simulation results, the antennas are fabricated. The measured results agree well with the simulation data. The proposed antennas can be used in satellite and wireless applications.

ABSTRAK

Penggunaan antena berprestasi tinggi sangat penting dalam sebarang reka bentuk sistem wayarles. Antena tampalan jalurmikro telah digunakan secara umum untuk pelbagai aplikasi wayarles kerana analisis dan fabrikasi yang mudah. Ia mempunyai banyak kelebihan, iaitu, rendah profil, kos rendah, dan ringan. Antena tampalan jalurmikro padat telah dicapai melalui substrat dielektrik yang tinggi dan tebal. Walau bagaimanapun, ini mengujakan masalah gelombang permukaan, oleh itu prestasi antena berkurangan. terutamanya apabila menukar arah aliran utama corak radiasi (haluan pancaran). Struktur EBG seperti cendawan telah menarik peningkatan minat kerana sifatnya yang diingini seperti permukaan impedans yang tinggi untuk menindas gelombang permukaan. Masalah utama struktur EBG seperti cendawan adalah kos pengeluaran dan kerumitan disebabkan oleh bilangan vias yang menghubungkan antara EBG dan permukaan tapak. Dengan memuatkan EBG secara berkala ke atas substrat, jurang jalur dapat dicipta untuk frekuensi disekitar frekuensi operasi antena (6 GHz). Struktur sedemikian dapat menghentikan penyebaran gelombang permukaan di sepanjang bahan substrat dielektrik yang tinggi. Oleh itu integrasi struktur EBG seperti cendawan dengan antena tampalan dan antenna jajaran substrat tetap dielektrik tinggi telah dilakukan untuk meningkatkan prestasi mereka. Dengan menggantikan setiap empat sel EBG seperti cendawan oleh satu sel EBG Tiga Slot Sebelah EBG (TSSEBG), pengurangan bilangan vias telah dicapai. Reka bentuk TSSEBG dengan jajaran antena tampalan jalurmikro menunjukkan peningkatan dalam dapatan (dari 10.91 kepada 14.68) dB, pengarahan (dari 11.65 kepada 15.3) dBi, kecekapan (dari 84% kepada 87%), pengurangan gangguan sisi (dari -17.9 kepada -27.5) dB, dan mengurangkan bilangan pin dari 392 kepada 92. Tambahan lagi, antena berasaskan EBG padat dicadangkan dengan menggabungkan antena segi empat tepat dan suis ideal dengan struktur EBG seperti cendawan dan dengan TSSEBG untuk menjalankan pengimbasan pancaran utama di paksi-E dan paksi-H, dengan menggunakan sifat jalur henti dan jalur lepas, dengan itu menghasilkan haluan pancaran ke dalam sektor jalur lepas. Bilangan vias telah dikurangkan daripada 164 kepada 40 dalam hal menggabungkan TSSEBG dengan antena segi empat tepat dan suis ideal. Peningkatan dalam dapatan (10.16 dB), pengarahan (10.5 dBi), dan kecekapan (93%) telah direalisasikan pada 0° arah aliran utama. Kecekapannya adalah 90.5%, dapatan dan pengarahan adalah 9.67 dB dan 10.1 dBi masing-masing pada ±20° arah paksi-E. Di dalam kawalan corak radiasi paksi-H, kecekapannya adalah 89%, dapatannya adalah 9.5 dB, dan pengarahan adalah 10 dBi pada \pm 18° arah aliran utama. Hasil simulasi menggunakan perisian CST telah menggambarkan ciri-ciri EBG dalam mengawal radiasi antena dan jajaran. Untuk mengesahkan keputusan simulasi, antena telah difabrikasi. Hasil yang diukur sepadan dengan baik dengan data simulasi. Antena yang dicadangkan boleh digunakan dalam aplikasi satelit dan tanpa wayar.

ACKNOWLEDGEMENTS

Alhamdulillah, first and foremost, I would like to praise, to Allah S.W.T, the Almighty for giving me a little strength and granting me the capability to do my thesis. Heartiest gratitude to my supervisors: Dr. Mohd Sa'ari Bin Mohamad Isa and Dr. Imran Bin Mohd Ibrahim for their kind advice, guidance, encouragements, and supports during my doctoral research and study. The achievements and completion of the thesis will be very hard to be possible without their valuable, sincere and relentless supervision. I would like to thank my father, my mother, my wife, and my son for their great support and encourage. Throughout my doctoral research, there have been supporting and assistance of several people who helped me to finish this research. Therefore, it's an opportunity to thank and appreciate these people's great efforts. I want to express my thanks to Mr. Suffian and Mr. Imran, from the laboratory of Faculty of Electronics and Computer Engineering (FKEKK), for their assistance, time and efforts during the measurement and fabrication. Special thanks to UTeM Zamalah Scheme, Universiti Teknikal Malaysia Melaka (UTeM), for their encouragement and support throughout the information and material in the development of this thesis. To all my colleagues and fellow friends, especially Mr. Ali Salih, and Mr. Karrar Alrais, I would like to express my thanks for their support. Lastly, thank you to everyone who supported me directly or indirectly and always remember me and praying for my success. Thank you very much.

TABLE OF CONTENTS

				PAGE
DF	ECLA	RATIO	N	
AF	PRO	VAL		
DF	EDICA	ATION		
AF	BSTR	ACT		i
AF	BSTR	AK		ii
A(CKNC	WLED	GEMENTS	iii
TA	BLE	OF CO	NTENTS	iv
LI	ST O	F TABL	JES	vii
LI	ST O	F FIGU	RES	viii
LI	ST O	F ABBR	REVIATIONS	XX
LI	ST O	F SYMI	BOLS	xxii
LI	ST O	F PUBL	ICATIONS	xxiv
CI	IAPT	ER		
1.	INT	RODU	CTION	1
	1.1	Resear	ch background	1
	1.2	Motiva	ation	3
	1.3	Proble	m statement	5
	1.4	Object	ives of the research	6
	1.5	Resear	ch scope	6
	1.6	Flow c	of research	8
	1.7	Contri	bution of the thesis	10
	1.8	Thesis	organization	11
2.	LIT	ERATU	JRE REVIEW	14
	2.1	Introdu	uction	14
	2.2	Anteni	na parameters	17
	2.3	Micros	strip patch antenna	18
	2.4	Electro	omagnetic Band Gap (EBG)	22
		2.4.1	Methods for designing and identification of the EBG properties	23
		2.4.2	Reflection phase	26
		2.4.3	High Impedance Surface (HIS) and Artificial Magnetic	29
			Conductor (AMC)	
		2.4.4	Mushroom-like EBG structure	32
			2.4.4.1 Patch width effect	34
			2.4.4.2 Gap width effect	35
			2.4.4.3 Substrate thickness effect	36
			2.4.4.4 Substrate permittivity effect	37
	a -	Б.,	2.4.4.5 Vias radius effect	37
	2.5	Design	and application of EBG with microstrip patch antenna	38
		2.5.1	Design and development of EBG type	39
		2.5.2	Improved performance of microstrip antennas by using EBG	44
		2.5.3	Radiation pattern control of microstrip antenna by using EBG	58

	2.6	Comparison with related works	73
	2.7	Fabrication and measurement setup	79
		2.7.1 Measurement of reflection coefficient (S_{11})	79
		2.7.2 Measurement of radiation pattern	80
		2.7.3 Measurement of gain	81
	2.8	Summary	82
3.	IMF AN]	PROVED PERFORMANCE OF MICROSTRIP PATCE FENNA USING MUSHROOM-LIKE EBG	I 85
	3.1	Introduction	85
	3.2	Antenna and EBG design specification	87
	3.3	EBG structure and design	89
	3.4	Microstrip patch antenna design and performance with mushroom like EBG	- 91
		3.4.1 Integrated of microstrip patch antenna with EBG	91
		3.4.2 Performance of a microstrip patch antenna design with EBG	ı 95
	3.5	Improved Performance of Microstrip Patch Antenna Array (MPAA) using EBG	y 103
		3.5.1 Microstrip patch antenna array design and configuration with EBG	1 105
		3.5.2 Performance of a microstrip patch antenna array with EBG	107 n
	3.6	Measurement of the one element antenna with EBG	110
		3.6.1 Measurement of reflection coefficient (S_{11})	111
		3.6.2 Radiation pattern measurement	113
		3.6.3 Measurement of gain	116
	3.7	Summary	117
4.	ENH ANT ELH	HANCED PERFORMANCE OF MICROSTRIP PATCE FENNA AND ARRAY USING TRIPLE SIDE SLOTTEI ECTROMAGNETIC BAND GAP	[120)
	4.1	Introduction	120
	4.2	Design of Double Slotted Type EBG (DSTEBG)	121
		4.2.1 Transmission line technique for DSTEBG band gap characteristics	123
		4.2.2 The effect of patch width of DSTEBG structure	125
		4.2.3 The effect of the gap between the DSTEBG elements	126
	4.3	Design of Triple Side Slotted EBG (TSSEBG)	127
		4.3.1 Transmission line technique for TSSEBG band gap characteristics	129
		4.3.2 Slot width effect of TSSEBG structure	131
	4.4	Design of microstrip patch antenna using TSSEBG	133
	4.5	Design of a microstrip patch antenna array using TSSEBG	139
	4.6	Comparison of the antenna and array performance with and without EBG and TSSEBG	1 145
	4.7	Measurement of a microstrip patch antenna array using TSSEBG	147
		4.7.1 Measurement of reflection coefficient (S_{11}) for the antenna with TSSEBG	a 148

		4.7.2	Measurement of the radiation pattern for the antenna with TSSEBG	149
		4.7.3	Measurement of gain for the antenna with TSSEBG	150
	4.8	Measu	rement of microstrip patch antenna array using TSSEBG	151
		4.8.1	Measurement of reflection coefficient (S_{11}) for the antenna array with TSSEBG	152
		4.8.2	Measurement of the radiation pattern for the antenna array with TSSEBG	153
		4.8.3	Measurement of gain for the antenna array with TSSEBG	155
	4.9	Summ	ary	155
5.	RAI	DIATIO	N PATTERN CONTROL OF A COMPACT	158
	AN	ΓENNA	USING ELECTROMAGNETIC BAND GAP	
	5.1	Introdu	action	158
	5.2	Antenr	a beam steering using mushroom-like EBG structure	160
		5.2.1	Radiation pattern control of antenna in elevation (E) plane using EBG	165
		5.2.2	Radiation pattern control of antenna in horizontal (H) plane using EBG	167
	5.3	Antenr	ha beam steering using Triple Side Slotted EBG structure	171
		(TSSE	BG)	
		5.3.1	Radiation pattern control of antenna in elevation (E) plane using TSSEBG	174
		5.3.2	Radiation pattern control of antenna in horizontal (H) plane using TSSEBG	176
	5.4	Measu structu	rement of the antenna beam steering in E-plane using EBG re	180
		5.4.1	Measurement of the EBG antenna radiation pattern	180
		5.4.2	Measurement of the EBG antenna gain	184
	5.5	Measu TSSFF	arement of the antenna beam steering in H-plane using	185
		5 5 1	Measurement of the TSSEBG antenna radiation pattern	185
		552	Measurement of the TSSEBG antenna gain	189
	56	Comp	arison between the EBG-antenna and TSSEBG-antenna for	107
	5.0	radiati	on pattern control in E and H planes	170
	5.7	Summ	ary	193
6.	CO	NCLUS	ION AND FUTURE WORKS	195
	6.1	Conclu	ision	195
	6.2	Future	works	198
REFERENCES 2				200

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of different past research studies of related works	75
	(antenna with EBG)	
2.2	Comparison of different past research studies of related works	77
	(radiation pattern control using EBG)	
3.1	Characteristic of Rogers RT/Duroid 6010 substrate	88
3.2	Antenna and EBG design specifications	88
3.3	The performance results of antenna with and without configuration	103
	of EBGs	
4.1	Different EBGs performance in lower cut-off frequencies (LCF),	133
	higher cut-off frequencies (HCF), and bandwidths (BW)	
4.2	Comparison of antenna's performance with and without EBG and	147
	TSSEBG	
5.1	Antenna's radiation pattern control performance using EBG	171
5.2	Antenna's radiation pattern control performance using TSSEBG	179
5.3	Beam steering of the antenna by using EBG and TSSEBG and ideal	192
	switch	

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Research flowchart	9
2.1	Taxonomy of research literature on the structure of EBG	16
	metamaterial with microstrip patch antenna	
2.2	Microstrip patch antenna with a probe feed (Pozar, 2012)	20
2.3	Patch enlargement due to the fringing field (Pozar, 2012)	21
2.4	Reflection phase for identification of bandgap of EBG surface	25
	(Alam and Misran, 2013)	
2.5	Suspended microstrip line for identification of bandgap of EBG	26
	surface (Alam and Misran, 2013)	
2.6	EBG surface with plane wave (Sievenpiper, 1999)	27
2.7	Cross section of a radiating antenna with a high-impedance surface	30
	structure (Sievenpiper et. al., 1999)	
2.8	The capacitance and inductance in the high-impedance surface	31
	(Sievenpiper et. al., 1999)	
2.9	Mushroom-like electromagnetic band gap (EBG) structure	33
	(Sievenpiper, 1999)	
2.10	LC model for the mushroom-like EBG structure: (a) EBG	33
	parameters; (b) LC model (Sievenpiper, 1999)	

viii

- 2.11 The effect of patch and gap width (a) The effect of patch width (W) 36 on the EBG reflection phase; (b) The effect of gap width (g) on the EBG reflection phase (Yang and Rahmat, 2009)
- 2.12 The effect of substrate thickness and permittivity (a) The effect of 37 substrate thickness (*h*) on the EBG reflection phase; (b) The effect of substrate permittivity (ϵ_r) on the EBG reflection phase (Yang and Rahmat, 2009)
- 2.13The effect of vias radius (r) on the EBG reflection phase38(Li et. al., 2008)
- 2.14 Uni-planar EBG. The dashed line indicates the periodic boundary 40 condition (Alam and Misran, 2013)
- 2.15 Geometry of proposed UCEBG structure (Dabas et. al., 2018) 41
- 2.16 Square EBG unit cell (a) EBG unit cells with shorting pin vias; (b) 42
 The simulated S11 and S21 of the EBG unit cells (Dewan et. al., 2017)
- 2.17 Dual-band SRS-EBG: (a) EBG structure; (b) Transmission 43 responses (S_{21}) (Alam et. al., 2012)
- 2.18 A triple band EBG: (a) Unit cell; (b) Transmission characteristics 44 (S_{21}) (Phuong et. al., 2013)
- 2.19 Antenna with mushroom-like EBG structures: (a) Front view; (b) 46
 Radiation pattern of mushroom-like EBG structure patch antenna
 (Cason and Lee, 2013)
- 2.20 EBG structure with a hexagonal patch (Srivastava and Kumar, 47 2013)

ix

- 2.21 Antenna gain with and without EBG: (a) Antenna surrounded by
 20EBG; (b) Gain of antenna without EBG; (c) Gain of antenna
 with 2DEBG (Rao et. al., 2018)
- 2.22 Integrated microstrip antenna with EBG and superstrate: (a) The
 49 prototype microstrip antenna with EBG; (b) The prototypemodified superstrate layer; (c) The side view of the EBG
 integrated microstrip antenna (Arnmanee et. al., 2018)
- 2.23 EBG-antenna with multi-sources excitation: (a) Antenna structure; 50
 (b) Radiation pattern at 5.8GHz (Kaabal et. al., 2018)
- 2.24 Improved antenna gain by using different shapes of EBG: (a) 51
 Structure of the fabricated antenna; (b) Different shapes of EBG (H,
 I, and star); (c) The gain response for different shapes of EBG with array antenna at 5.2 GHz (Iskander et. al., 2010)
- 2.25 Array antenna with different number of EBG columns: (a) 8 52 elements microstrip antenna with EBG slots; (b) Comparison between without EBG and 1 column EBG located at slot #1; (c) Comparison of results with (3mmx3mm) EBG located at different slot and different number of column (Tan et. al., 2012)
- 2.26 Microstrip array antenna with EBG structure: (a) Return loss versus 53 frequency of microstrip array antenna (TRMSAA) and (TRMSAAEBG); (b) Array antenna structure with EBG; (c) Radiation pattern of the antenna structure (Rat et. al., 2014)
- 2.27 The geometry of a two-element antenna array with EBG slot 54 (Vani et. al., 2018)

Х

- 2.28 Different prototype shapes of 2x2 MPAA with different EBG 55 configurations: (a) Conventional array; (b) Array with SAMC ground plane; (c) Embedded (LSAMC) at h₁; (d) Embedded (SSAMC); and (e) Embedded (ESEBG) at h₁ with vias in dielectric (Nashaat et. al., 2011)
- 2.29 Patch antenna array covered with EBG cells (Panda and Ghosh, 56 2013)
- 2.30 Microstrip antennas with mushroom-like EBG: (a) EBG between 58 and both sides of antenna; (b) The simulated radiation patterns in E-plane; (c) Radiation patterns in H-plane (Chen et. al., 2013)
- 2.31 Circular patch antenna above EBG surface sectors (Mohamad et. 59 al., 2010)
- 2.32 Radiation pattern at 2.2 GHz when the vias switched out: 60
 (a) Sector A; (b) Sector F (Mohamad et. al., 2010)
- EBG with switch board: (a) Switch board under the EBG; (b) 61Switch ON and OFF (Isa et. al., 2011)
- 2.34 Radiation pattern at 2.2 GHz when the switch board is OFF: 61
 (a) Sector A; (b) Sector F (Isa et. al., 2011)
- 2.35 Patch antenna at the centre of sectorized square EBG (Isa et. al., 62 2012)
- 2.36 Antenna power pattern at 2.2 GHz for sector A without pin vias 63 (Isa et. al., 2012)
- 2.37 Radiation pattern reconfigurable antenna: (a)The overall shape of 64 antenna; (b) A unit cell of the EBG (Bostani and Denidni, 2009)

- 2.38 A cylindrical millimeter wave antenna with EBG (a) Top view of 65 the antenna and EBG; (b) View of the circular EBG structure with metallic veins (Hasan et. al., 2013)
- 2.39 Simulated of different EBG sectors combinations for radiation 65 patterns in the azimuth plane (Hasan et. al., 2013)
- 2.40 Rectangular patch antenna combined with EBG structures: (a) A 66 front view of the designed antenna with diode model in; (b) Back view (Ismail et. al., 2017)
- 2.41 Radiation pattern for the condition of connecting vias in the side 67 and disconnecting it on the other side (Ismail et. al., 2017)
- 2.42 Birds-eye view of tunable HIS (1) Circular patch antenna; (2) 67
 Microstrip feeder; (3) HIS unit-cell; (4) PIN diode used for tuning
 HIS structure; (5) PIN diode connecting (1) and (2) (Liu et. al., 2012)
- 2.43 Miniaturized EBG structure integrated with the microstrip patch 69 array antenna (Isa et. al., 2013)
- 2.44 Normalized azimuth radiation pattern for the array elements (Isa et. 70 al., 2013)
- 2.45 A steerable square loop antenna: (a) Perspective view; (b) Top and 71 side views; (c) Prototype of 6x6 hybrid HIS; (d) Prototype of antenna on hybrid HIS (Deo et. al., 2010)
- 2.46 Beam steering for four feeding configurations of a square loop 72 antenna (Deo et. al., 2010)

xii

2.47	Switched beam parasitic antenna array combined with EBG: (a)	73
	Front view of the array and EBG; (b) Cross section and array layers	
	(Chamok and Ali, 2016)	
2.48	Radiation pattern and S_{11} of the parasitic antenna with EBG (a) S_{11} ;	73
	(b) Radiation pattern in the azimuth plane (Chamok and Ali, 2016)	
2.49	Reflection coefficient measurement setup connection	80
2.50	Measurement method of radiation pattern for AUT	81
2.51	Equipment connection for the measurement of gain	82
3.1	Flow chart of the work progress in this chapter	87
3.2	Design structure: (a) EBG with microstrip transmission line; (b)	91
	Band gap characteristics of the suggested EBG structure	
3.3	A rectangular patch antenna surrounded by mushroom-like EBG	94
	structures	
3.4	Reflection coefficient of the microstrip antennas surrounded by	96
	different columns of EBG structures	
3.5	Directivity performance of the antenna using different numbers of	97
	EBG columns	
3.6	Gain performance of the antenna using different numbers of EBG	97
	columns	
3.7	Radiation pattern improvement of the antenna with and without	99
	EBG and vias	
3.8	Increase gain and directivity with reduced beam width of main lobe	100
	radiation by using EBG	
3.9	Increased bandwidth of the antenna by using EBG	100

xiii

3.10	Efficiency of the antenna with and without using EBG	102
3.11	Efficiency of the antenna with and without using different numbers	102
	of EBG columns	
3.12	Microstrip patch antenna array surrounded by EBG structures	107
3.13	Reflection coefficient of the array antennas with and without EBG	108
3.14	Directivity of an array antenna with and without mushroom-like	109
	EBG	
3.15	Gain of an array antenna with and without mushroom-like EBG	109
3.16	Antenna efficiency improvement by using mushroom-like EBG	110
3.17	Photograph of the fabricated antenna surrounded by EBG structures	111
3.18	Measured and simulated reflection coefficient using EBG without	112
	vias	
3.19	Measured and simulated reflection coefficient using EBG with vias	113
3.20	Measurement of the radiation pattern in an anechoic chamber (a)	114
	Side view of the antenna; (b) Front view of the antenna	
3.21	Measured and simulated normalize maximum radiation pattern of	115
	the antenna without vias	
3.22	Measured and simulated normalize maximum radiation pattern of	116
	the antenna with EBG and connecting vias	
3.23	Gain measurement setup for the prototype antenna	116
3.24	Measured and simulated gain of the microstrip antenna with EBG	117
4.1	Scheme of the fractal iteration structure: (a) 0th iteration; (b) 1st	121
	iteration; (c) 2nd iteration	
4.2	Unit element of DSTEBG	122

xiv

4.3	Four cells of a mushroom-like convert to one cell of DSTEBG	123
4.4	DSTEBG microstrip transmission line	124
4.5	Microstrip transmission line characteristics of the triple bands of	125
	DSTEBG	
4.6	Patch width effects of DSTEBG	126
4.7	Gap width effect between the elements of DSTEBG	127
4.8	Unit element of TSSEBG	128
4.9	Four cells of mushroom-like EBG convert to one cell of TSSEBG	129
4.10	TSSEBG microstrip transmission line	130
4.11	Microstrip transmission line characteristics of the triple bands of	131
	TSSEBG	
4.12	Slot width effect of TSSEBG	132
4.13	Microstrip patch antenna surrounded by TSSEBG structures	134
4.14	Reflection coefficient of the microstrip antennas with and without	135
	TSSEBG	
4.15	Directivity of the antenna with and without TSSEBG	136
4.16	Gain of the antenna with and without TSSEBG	136
4.17	Antenna efficiency improvement by using EBG and TSSEBG	137
4.18	Reflection coefficient of the microstrip patch antennas with and	138
	without EBG and TSSEBG	
4.19	Improved patch antenna directivity using both of EBG and	139
	TSSEBG	
4.20	Array antenna surrounded by TSSEBG structures	140

XV

- 4.21 TSSEBG band gab (bandstop) covering the resonant frequency of 141 the antenna (S_{11})
- 4.22 Reflection coefficient of the array antenna with and without 141 TSSEBG
- 4.23 Simulated directivity of an array antenna with and without 142 TSSEBG
- 4.24 Simulated gain of an array antenna with and without TSSEBG 143
- 4.25 Improved directivity for array antenna using both of EBG and 144 TSSEBG
- 4.26 Improved efficiency for array antenna by using EBG and TSSEBG 145
- 4.27 Photograph of the fabricated rectangular patch antenna surrounded 148 by TSSEBG structures
- 4.28 Measured and simulated reflection coefficient of the rectangular 149 patch antenna using TSSEBG
- 4.29 Measurement of the radiation pattern in an anechoic chamber (a) 149Front view of the antenna; (b) Side view of the antenna
- 4.30 Measured and simulated the normalize maximum radiation pattern 150 of a rectangular patch antenna with TSSEBG
- 4.31 Measured and simulated gain of the microstrip antenna with 151 TSSEBG
- 4.32 Fabrication of array antenna surrounded by TSSEBG structures 152
- 4.33 Measured and simulated reflection coefficient of the array antenna 153 with TSSEBG

xvi

4.34	Measurement of the radiation pattern in an anechoic chamber (a)	154
	Side view of antenna array; (b) Front view of antenna array	
4.35	Measured and simulated the normalize maximum radiation pattern	154
	of a microstrip patch antenna array with TSSEBG	
4.36	Measured and simulated gain of the microstrip antenna array with	155
	TSSEBG	
5.1	Reflection phase of the EBG unit cell	162
5.2	Front view of a rectangular patch antenna surrounded by EBG	163
	structures	
5.3	Back view (ground plane) of a rectangular patch antenna	163
5.4	Simulated directivity of the antenna with and without EBG at 0 $^\circ$	165
	main lobe direction	
5.5	Antenna radiation pattern control in the E-plane by using EBG and	166
	ideal switch: (a) 3D radiation pattern; (b) Radiation patterns in the	
	elevation plane	
	$(theta = +20 ^{\circ})$	
5.6	Antenna radiation pattern control in the E-plane by using EBG and	167
	ideal switch (a) 3D radiation pattern; (b) Radiation patterns in the	
	elevation plane	
	$(theta = -20 ^{\circ})$	
5.7	Antenna radiation control in the H-plane by using EBG and ideal	168
	switch: (a) 3D radiation pattern; (b) Radiation patterns in the	
	horizontal plane (theta = $+18$ %)	

xvii

5.8	Antenna radiation control in the H-plane by using EBG and ideal	169
	switch: (a) 3D radiation pattern; (b) Radiation pattern in the	
	horizontal plane (theta = -18 °)	
5.9	Antenna efficiency improvement by using EBG	170
5.10	Front view of the patch antenna surrounded by TSSEBG structures	172
5.11	Back view (ground plane) of the patch antenna	173
5.12	Directivity of the patch antenna with and without TSSEBG	174
5.13	Radiation pattern of TSSEBG antenna in the direction of elevation	175
	plane (theta = $+17$ °)	
5.14	Radiation pattern of TSSEBG antenna in the direction of the	176
	elevation plane (theta = -17 $^{\circ}$)	
5.15	Radiation pattern of TSSEBG antenna in the direction of horizontal	177
	plane (theta = $+150$)	
5.16	Radiation pattern of TSSEBG antenna in the direction of horizontal	178
	plane (theta = -150)	
5.17	Antenna efficiency improvement by using TSSEBG	179
5.18	Photograph of the fabricated rectangular patch antenna surrounded	180
	by mushroom-like EBG structures	
5.19	Measurement of the radiation pattern in an anechoic chamber	181
5.20	Measured and simulated normalize maximum gain of antenna at 0 $^\circ$	181
	main lobe direction	
5.21	Measured and simulated normalize maximum gain at (x-z) plane	182
5.22	Measured and simulated normalize maximum gain at -(x-z) plane	183
5.23	Measured gain of the microstrip antenna with EBG	184

xviii

5.24	Photograph of the fabricated rectangular patch antenna surrounded	185
	by TSSEBG structures	
5.25	Measurement of the radiation pattern in an anechoic chamber	186
5.26	Measured and simulated normalize maximum gain of antenna at 0 $^\circ$	187
	main lobe direction	
5.27	Measured and simulated normalize maximum gain at (y-z) plane	188
5.28	Measured and simulated normalize maximum gain at -(y-z) plane	189
5.29	Measured gain of the microstrip antenna with TSSEBG	190

xix