

Faculty of Information and Communication Technology

EFFICIENT ENHANCED ROUTING PROTOCOL AND ACCURATE TRACKING MECHANISM FOR MONITORING ENVIRONMENTAL CHANGES USING MULTIHOP WIRELESS SENSOR NETWORKS

Omar Fouad Mohammed

Doctor of Philosophy

EFFICIENT ENHANCED ROUTING PROTOCOL AND ACCURATE TRACKING MECHANISM FOR MONITORING ENVIRONMENTAL CHANGES USING MULTIHOP WIRELESS SENSOR NETWORKS

OMAR FOUAD MOHAMMED

A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Efficient Enhanced Routing Protocol and Accurate Tracking Mechanism for Monitoring Environmental Changes using Multihop Wireless Sensor Networks" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Omar Fouad Mohammed
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Assoc. Prof. Dr. Abd Samad Hasan Basari
Date	:	

DEDICATION

I would like to present my work to those who did not stop their daily support since I was born, my dear mother and my kindness father. They never hesitate to provide me all the facilities to push me foreword as much as they can. This work is a simple and humble reply to their much goodness I have taken over during that time. I don't forget my sister, my uncles, my aunts, friends and those entire how I love.

Omar Fouad Mohammed

ABSTRACT

The advances in the wireless communication industry have paved the way for wide utilization of Wireless Sensor Networks (WSNs) applications. The main application of WSNs is environmental monitoring where sensors are cooperatively used to monitor physical or environmental events and report their sensed data to a central unit for processing, analysis and decision making. In other words, due to the distinctive capabilities of sensors to monitor different environmental parameters, WSNs can provide better solutions for monitoring abnormal events such as fire incident, gas leak and car accident. However, the existing WSN-based detection and tracking systems still suffer from efficiency and suitability for real-time data traffic control and management issues. These issues include network congestion, high energy consumption and communication overhead. In addition, the systems have poor performance in terms of tracking accuracy and prediction of the event's future location, which means the systems do not provide accurate mechanism for tracking the event's development. In order to deal with the above mentioned issues, this study presents environmental monitoring system to enhance network traffic in the sense of sensed data delivery and to ensure the accuracy of fire event detection and tracking in WSN. The proposed system relies on efficient enhanced routing protocol and accurate tracking mechanism. The enhanced protocol is based on cluster head selection method that aims to reduce the energy dissipation in the cluster construction procedure and prolong the network lifetime. Besides, a dynamic data transmission strategy is also presented by which the load of forwarding the sensed data packets is balanced among the cluster heads and the forwarding nodes in the data transmission procedure. Accordingly, the energy-hole problem is mitigated which in turn the energy efficiency and the throughput of the WSN are improved. By utilizing the communication overhearing in WSNs and some statistical concepts, a tracking mechanism to ensure the accuracy of the monitoring system in estimating the fire spread is thus designed. The simulation results show that, compared with the common routing protocol, the enhanced protocol decreases the energy consumption by about 30%. While in two different simulation tests, the network lifetime is increased by about 30% and 40% respectively. Moreover, more 1.11E+09 bits of data were received by the base station for the last 40 rounds of the network life cycle which indicates that the network throughput is improved. The dynamic data transmission strategy increases the network lifetime by about 22% compared to other existing method and the tracking mechanism is capable of accurately estimating the fire development.

ABSTRAK

Kemajuan dalam industri komunikasi tanpa wayar telah membuka jalan untuk penggunaan aplikasi Rangkaian Penderia Tanpa Wayar (WSN). Aplikasi utama WSN adalah pemantauan alam sekitar di mana penderia digunakan secara kolektif untuk memantau peristiwa fizikal atau alam sekitar dan melaporkan data yang dikesan ke unit pusat untuk pemprosesan, analisis dan membuat keputusan. Dengan kata lain, disebabkan oleh keupayaan penderia yang berbeza untuk memantau parameter alam sekitar yang berbeza WSN dapat memberikan penyelesaian lebih baik untuk memantau peristiwa yang tidak normal seperti insiden kebakaran, kebocoran gas dan kemalangan kereta. Walau bagaimanapun, sistem pengesanan dan penjejakan berasaskan WSN yang sedia ada masih mengalami isu kecekapan dan kesesuaian untuk kawalan lalu lintas dan pengurusan data masa nyata. Isu-isu ini termasuk kesesakan rangkaian, penggunaan tenaga yang tinggi dan jumlah pengguna komunikasi. Di samping itu, sistem mempunyai prestasi yang lemah dari segi ketepatan pengesanan dan ramalan lokasi masa depan kejadian, iaitu sistem tidak menyediakan mekanisma yang tepat untuk menjejaki perkembangan kejadian itu. Untuk menangani isu-isu yang disebutkan di atas, kajian ini membentangkan sistem pemantauan alam sekitar untuk meningkatkan trafik rangkaian dalam pengertian penghantaran data yang dikesan dan untuk memastikan ketepatan pengesanan dan penjejakan kejadian kebakaran di WSN. Sistem yang dicadangkan bergantung pada protokol penghalaan yang lebih baik dan mekanisma penjejakan yang tepat. Protokol yang dipertingkatkan adalah berdasarkan kepada kaedah pemilihan kepala kluster yang bertujuan mengurangkan pelesapan tenaga dalam prosedur pembinaan kluster dan memanjangkan jangka hayat rangkaian. Di samping itu, strategi penghantaran data yang dinamik juga dibentangkan di mana beban penghantaran paket data yang sensitif adalah seimbang di antara ketua kelompok dan nod pemajuan dalam prosedur penghantaran data. Sehubungan itu, masalah lubang tenaga dapat dikurangkan dan hasilnya kecekapan tenaga dan daya tampung WSN dapat diperbaiki. Dengan menggunakan komunikasi yang didengar di WSN dan beberapa konsep statistik, mekanisme pengesanan untuk memastikan ketepatan sistem pemantauan dalam menganggarkan penyebaran api itu dapat direkabentuk. Hasil simulasi menunjukkan bahawa, berbanding dengan protokol penghalaan biasa, protokol yang dipertingkatkan dapat mengurangkan penggunaan tenaga sebanyak kira-kira 30%. Sementara itu, dalam dua ujian simulasi yang berbeza, hayat rangkaian meningkat masing-masing sebanyak 30% dan 40%. Selain itu, lebih banyak 1.11E + 09 bit data telah diterima oleh stesen pangkalan bagi 40 pusingan terakhir kitaran hayat rangkaian yang menunjukkan bahawa daya tampung rangkaian telah ditingkatkan. Strategi penghantaran data dinamik meningkatkan jangka hayat rangkaian sekitar 22% berbanding dengan kaedah sedia ada yang lain dan mekanisme penjejakan mampu menganggarkan secara tepat perkembangan kebakaran.

ACKNOWLEDGEMENTS

The best science is neither conceived nor performed in isolation. Because of this truth, it is my great pleasure to thank everyone who helped me in my research journey.

First and foremost, praise is to Allah, for giving me this opportunity, the strength and the patience to complete my thesis finally, after all the challenges and difficulties.

I would like to sincerely thank my supervisors, Professor Dr. Burairah Hussin and Associate Professor Dr. Abd Samad Hasan Basari, for their sound advice, generous support, and careful guidance during the whole process of conducting my research, and I gratefully acknowledge the help and the support they gave me along the way.

Besides my supervisors, all my thanks and regards to my faculty administrative staff for their dedicated support.

I would like to express my heartfelt thanks to my family for their endless love and support throughout my life.

Finally, my sincere thanks also go to my friends for their invaluable help and wonderful encouragement.

TABLE OF CONTENTS

i
ii
iii
iv
vii
viii
xi
xiv
xvii

CHAPTER

1.	INT	RODUCTION	1
	1.1	Research background	1
		1.1.1 Overview on Wireless Sensor Networks (WSNs)	1
		1.1.2 Smart environment	4
	1.2	Research motivation	7
	1.3	Research problem	8
	1.4	Research objectives	10
	1.5	Scope of research	11
	1.6	Key research steps	12
	1.7	Key contributions	13
	1.8	Organization of the thesis	15
2.	LIT	ERATURE REVIEW	16
	2.1	Introduction	
	2.2	Characteristics of Wireless Sensor Networks (WSNs)	18
	2.3	Applications requirements in WSNs	19
	2.4	WSNs architectures	22
		2.4.1 Single-hop architecture	23
		2.4.2 Multi-hop architecture	24
		2.4.2.1 Flat architecture	24
		2.4.2.2 Hierarchical architecture	25
	2.5	WSNs applications and categorization structure	27
	2.6	Routing in WSNs	30
	2.7	Event monitoring and tracking in WSNs	41
	2.8	Summary	54

3.	RES	SEARCH METHODOLOGY	56				
	3.1	Introduction	56				
	3.2	Research design	56				
	3.3	.3 Awareness of problem					
	3.4	Suggestion					
	3.5	Development	61				
		3.5.1 Specifications and requirements	62				
		3.5.2 System design objectives	63				
		3.5.3 System components	63				
		3.5.3.1 Detection operation	64				
		3.5.3.2 Routing operation	65				
		3.5.3.3 Tracking operation	66				
	3.6	Evaluation	67				
		3.6.1 Simulation evaluation tool	68				
		3.6.1.1 Network simulator 2	69				
		3.6.2 Performance evaluation metrics	71				
		3.6.3 Simulation scenarios	72				
		3.6.3.1 Evaluation setup for routing process	72				
		3.6.3.2 Evaluation setup for monitoring system	74				
	3.7	Final outcome	75				
	3.8	Summary	75				
4.	DE	VELOPMENT OF THE PROPOSED SYSTEM	77				
	4.1	Introduction	77				
	4.2	Hypothetical preliminaries	77				
		4.2.1 Quantum field theories and statistical concepts	77				
		4.2.2 Theoretical characterization of the proposed system	79				
		4.2.3 Statistical description of event area computation	82				
		4.2.4 Gravity center and mass center	86				
		4.2.4.1 Estimation of gravity center and mass center	87				
		4.2.5 Event modelling	92				
		4.2.6 Sending data transmission	94				
	4.3	1	100				
		4.3.1 Detection and realization	101				
		4.3.2 Location determination	102				
	4.4		103				
		4.4.1 Data dissemination	103				
		4.4.2 Commands and reports delivery	104				
		4.4.2.1 Reports transmission strategy	104				
		4.4.2.2 Clusters construction and heads election	106				
	4.5		113				
		4.5.1 Event evolution perceiving	113				
		4.5.2 Event path tracking	114				
		4.5.3 Operational modelling	115				
		4.5.4 Conceptual analysis	117				
	4 -	4.5.5 Tracking procedure	120				
	4.6	System operation	122				

	4.7	Summary	127
5.	RES	SULT AND DISCUSSION	128
	5.1	Introduction	128
	5.2	Stage one	128
		5.2.1 Cluster head selection with respect to density	129
		5.2.2 Remaining residual energy	130
		5.2.3 Data received (throughput)	131
		5.2.4 Network lifetime	132
		5.2.4.1 Dead nodes number	132
		5.2.4.2 Data transmission	134
	5.3	Stage two	136
	5.4	Stage three	141
	5.5	Summary	145
6.	COI	NCLUSION AND FUTURE WORK	146
	6.1	Conclusion	146
	6.2	Recommendations for future work	150

REFERENCES

LIST OF TABLES

TABLE	TITLE	
2.1	Classification of WSNs routing protocols	30
2.2	Location-based routing protocols with their advantages and disadvantages	31
2.3	Data-Centric routing protocols with their advantages and disadvantages	33
2.4	Hierarchical routing protocols with their advantages and disadvantages	35
2.5	Mobility-based routing protocols with their advantages and disadvantages	37
2.6	Multipath-based routing protocols with their advantages and disadvantages	38
2.7	Heterogeneity-based routing protocols with their advantages and disadvantages	39
2.8	QoS-based routing protocols with their advantages and disadvantages	40
2.9	Event monitoring and tracking systems	52
3.1	Simulation setup	73
5.1	The best ratio of direct data sending obtained in 10 slices network	135

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Wireless sensor network - components and communications	2
1.2	Communications between adjacent sensors	2
1.3	Standardization for different levels of information in WSNs	3
1.4	Smart environment monitoring using WSNs	5
1.5	Research scope	12
2.1	Literature review structure	17
2.2	Basic architecture of WSNs	22
2.3	Single-hop architecture for WSNs	23
2.4	Flat sensor network architecture	24
2.5	Single-hop clustering architecture in WSNs	26
2.6	Multi-hop clustering architecture in WSNs	26
2.7	Potential domains of WSNs usage	27
2.8	Categorization structure of WSNs applications	28
3.1	Research design	58
3.2	Steps of achieving comprehensive awareness of the problem	60
3.3	System design structure	62
3.4	Monitoring system components	64
3.5	Flowchart of the proposed system process	67

4.1	Detection domain and fire event zone where neighboring sensor nodes report higher temperature values	80
4.2	Gradient at the point of fire location	82
4.3	Flat area computation with respect to dx	83
4.4	Computation of the area height with respect to dx over a certain path	84
4.5	Sensing area where sensors are deployed	87
4.6	Zone bounded by two functions	88
4.7	Sensors deployment in a rectangle zone	90
4.8	Different transmission methods according to the distance to the sink	94
4.9	The monitoring area is covered by a disk sector of angle φ , which is divided into <i>m</i> hierarchical slices	95
4.10	Fire detection and realization procedure	102
4.11	Fire location determination procedure	103
4.12	Reports dissemination procedure	104
4.13	General procedure of the reports transmission strategy	106
4.14	Algorithm for computing the mass center and gravity center	107
4.15	Algorithm for selecting the CH	108
4.16	Operation scenario of the enhanced LEACH	109
4.17	Procedure of the cluster head rule	110
4.18	Procedure of electing forwarding node	111
4.19	Direct and indirect reports transmission procedure	113
4.20	CHs and the corresponding H values	116
4.21	Overhearing sensor	116
4.22	WSN of ($7, T_x, M$) and its equivalent RGG $w(S_7, T_x, M)$	118
4.23	Potential sensors overhear the sensed data	120

4.24	Fire tracking procedure	121
4.25	Detection domain and the fire event zone	123
4.26	Cluster Head (CH) assignment according to resources and location	124
4.27	Sensor nodes send their readings directly to their leader	125
4.28	Direction of the fire based on the readings received from sensor nodes	126
4.29	Potential evolution of the fire	126
5.1	Clusters formation	129
5.2	CHs selection	130
5.3	Remaining energy of the nodes with respect to the number of rounds	131
5.4	Data received by the sink	132
5.5	Number of nodes dying during the network operation	133
5.6	Lifetime of the network in terms of number of alive sensors	134
5.7	The improvement of network lifetime using EDRS compared to hop- to-hop	135
5.8	Sensors readings vs. no. of sensing nodes	137
5.9	Number of sensors detecting the fire over time	138
5.10	Amount of readings received by the sink	139
5.11	Representation of fire event readings in 3-D space	140
5.12	Computation of the vertical area with respect to dx over a certain path in 3-D space	140
5.13	Number of sensors with respect to their readings	141
5.14	The event development function	142
5.15	Different views of the evolving event	143
5.16	Two-dimensional contour map for the event function	144

LIST OF ABBREVIATIONS

-	Active Query Forwarding in Sensor Networks
-	Adaptive Periodic Threshold Sensitive Energy Efficient Sensor Network Protocol
-	Bounded Voronoi Greedy Forwarding
-	Base Station
-	Constrained Anisotropic Diffusion Routing
-	Cluster Head
-	Cluster Head Relay Routing
-	Cluster Member
-	Direct-Transmission Advertisement
-	DTA Flag
-	Energy Aware Data Centric Routing
-	Energy-Efficient Data Reporting Strategy
-	Event Evolution Perceiving
-	Event Path Tracking
-	Fire Growth Rate
-	Forwarding Node
-	Forwarding Request Packet
-	Geographic Adaptive Fidelity

GEAR	_	Geographic and Energy-Aware Routing
GeRaf	_	Geographic Random Forwarding
GPS	-	Global Positioning System
HEED	-	Hybrid Energy-Efficient Distributed Clustering
HRR	-	Heat Release Rate
IDSQ	-	Information Driven Sensor Query
KW	-	Kilowatts
LEACH	-	Low-Energy Adaptive Clustering Hierarchy
MECN	-	Minimum Energy Communication Network
NS-2	-	Network Simulator version-2
OR	-	Overlapping region
OTcl	-	Object Tool Command Language
PLE	-	Path-Loss Exponent
QoS	-	Quality of Service
RE	-	Residual Energy
RES	-	Response Packet
RGG	-	Random Geometric Graph
RR	-	Rumor Routing
SAR	-	Sequential Assignment Routing
SEAD	-	Scalable Energy-Efficient Asynchronous Dissemination
SHA	-	Single-Hope Advertisement
SHAF	-	SHA Flag
SMECN	-	Small Minimum Energy Communication Network
SPIN	-	Sensor Protocols for Information via Negotiation
TBF	-	Trajectory-Based Forwarding

TDMA	-	Time Division Multiple Access
TEEN	-	Threshold Sensitive Energy Efficient Sensor Network Protocol
TH	-	Total Heat Release
W	-	Watt
WSN	-	Wireless Sensor Network

LIST OF SYMBOLS

α	-	The energy dissipation over the operational amplifier (op-amp) during data transmission
arphi	-	Angle of a sector
\bigtriangledown	-	The gradient
ε_0	-	The initial energy of sensors
î	-	The unit vector in the <i>x</i> -direction
Ĵ	-	The unit vector in the y-direction
ƙ	-	The unit vector in the <i>z</i> -direction
l	-	The length of data packet in bits
B_{direct_si}	-	The number of bits sent directly by s_i to BS
B _{relay_si}	-	The number of bits relayed by s_i
B _{sensed_si}	-	The number of sensed bits in slices i
C and C'	-	Overlapped circles
C°	-	Celsius degree
D_t	-	The amount of data (in bits) that need to be forwarded directly from sensors in s_i to the BS
d	-	Transmitter-receiver distance
d (i,j)	-	Euclidean distance between sensor i and sensor j
E_{elec}	-	The electronic energy of the sensor

$E_{i,j}$	-	Edge connecting every two sensors (vertices) i and j
E_{rx}	-	The reception energy needed for receiving one bit of data
E _{si_txd}	-	The energy required to send data from s_i directly to the BS
E_{si_rx}	-	The energy needed for receiving the relayed data
E_{tx}	-	The energy required to send one bit of data
EC_{si}	-	Energy consumption in any slice
G	-	Geometric graph
Gʻ	-	Sub-graph of <i>G</i>
Н	-	Number of hops to reach the controller
i.i.d.	-	independently and identically distributed
k	-	Number of sensors in the network
L	-	Number of levels the monitoring area is divided
Ls_i	-	The lifetime of slices <i>i</i>
М	-	Uniform sensors in the area of monitoring
М	-	Particular region of the monitoring area
m	-	Number of slices in a sector
m	-	Number of communication links
$m^2 B N_{si}$	-	The total data bits sent where BN_{si} is the data bits generated by sensors in s_i
N _{si}	-	Number of sensors in i^{th} slice
P_f	-	Probability of sensed data cannot be forwarded over i to j link
Povr	-	Probability of sensed data forwarded by the overhearing sensors

R	-	Transmission Range
R`	-	The smallest integer not less than the fraction of the sensor's distance from the BS (d) over R
R^2	-	Two-dimensional monitoring area
<i>rD</i> _t	-	The ratio of direct data sending to one-hop sending
Si	-	Slice in a sector
S_k	-	Number of sensors that are independently and identically distributed in a particular region M of the monitoring area
t	-	Time
TS	-	Total number of neighboring sensors within the overlapping region <i>OR</i>
Tx	-	Sensor transmitting range
V	-	Vertex in the network graph
v_x , v_y , and v_z	-	Scalar factors of <i>v</i>
$ar{x}_{mass}$ and $ar{\mathcal{Y}}_{mass}$	-	The coordinates of mass center
$ar{x}_{gravity}$ and $ar{y}_{gravity}$	-	The coordinates of gravity center

LIST OF PUBLICATIONS

Indexed Peer-Reviewed international Journals

- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2017. On the Probability of Detection Ability in Observing Dynamic Environmental Phenomena Using Wireless Sensor Networks. *International Journal of Advanced Computer Science and Applications*, 8(5), pp.531-536.
- 2- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2017. Efficient Cluster Head Selection Method to Improve the Lifetime in Wireless Sensor Networks. *International Journal of Networking and Virtual Organisations*, 17(1), pp.17-31.
- 3- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2017. Statistical Analysis of Sensed Data of Environmental Changes Using Wireless Sensor Networks. *Journal of Theoretical and Applied Information Technology*, 95(4), pp.969-974.
- 4- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2017. Development and Evaluation of Event Detection System in Wireless Sensor Networks. *International Journal of Electrical and Computer Engineering*, ISSN: 2088-8708. To Appear.
- 5- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2016. Event Tracking Approach Using Overhearing in Wireless Sensor Networks. *International Journal on Communications Antenna and Propagation*, 6(6), pp.362-368.
- 6- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2016. Operational Design and Modelling of Fire Event Tracking System in Wireless Sensor Networks. *ARPN Journal* of Engineering and Applied Sciences, 11(13), pp.8525-8531.
- 7- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2015. Energy-Efficient Data Reporting Strategy (EDRS) for Multilayer Clustering WSN. *International Review on Computers and Software*, 10(5), pp.458-466.

- 8- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2015. The Effect of Routing on Data Traffic Control in Environmental Event Monitoring Using Wireless Sensor Networks. *Journal of Theoretical and Applied Information Technology*, 77(3), pp.451-462.
- 9- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2015. Reliable Enhanced LEACH Protocol for Controlling Data Traffic in Event Tracking Systems. *International Journal on Communications Antenna and Propagation*, 5(3), pp.144-153.

International Refereed Proceeding

1- Mohammed, O. F., Hussin, B., and Basari, A. S. H., 2015. Theoretical Approach to Improve LEACH Protocol for Event Tracking Using Wireless Sensor Networks. *Proceedings of the International Workshop on Graph Algorithms (IWGA2015)*, Penang, Malaysia, 13 May 2015, pp.140-151.

CHAPTER 1

INTRODUCTION

1.1 Research background

This research requires combined knowledge of the characteristics and applications of wireless sensor networks. This section lays out an overview of the most significant and concerning concepts.

1.1.1 Overview on Wireless Sensor Networks (WSNs)

Nowadays, Wireless Sensor Networks (WSNs) have been widely recognized as one of the most important technologies deployed in a physical area and networked through wireless links and the Internet since they provide unprecedented opportunities for a variety of civilian and military applications (Nikookar and Ligthart, 2016; Kocakulak and Butun, 2017). WSN is defined as a combination or network of the sensor nodes (few to thousands sensors) that are used for sensing the environment, collecting information such as seismic, infrared, acoustic or magnetic information, and communicating the sensed or control data whether directly or via multi-hop connections to a sink node (also called Base Station (BS)) which in turn reports to the party that interested in the information (see Figure 1.1), provided that the forwarding nodes in the network are within the transmission range of each other (Zheng and Jamalipour, 2009; Younis et al., 2014) as shown in Figure 1.2. Sensor's data make use of the radio transmission. These data can be of different forms including digital and analogue, spatial and temporal, alphanumeric or image, fixed or moving. As the sensor nodes are limited in computational and memory capacities, the