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A B S T R A C T

This paper presents the numerical investigation results focusing on the buckling behavior of geometrically
imperfect cylinder-cone-cylinder transition subjected to axial compression. The models are assumed to be made
from unalloyed mild steel. Several initial geometric imperfections techniques such as (i) Eigenmode imperfection
approach, (ii) Axisymmetric outward bulge and (iii) Single Perturbation Load Analysis (SPLA) imperfections
were superimposed on the perfect cylinder-cone-cylinder shell. Reduction of the buckling strength was then
quantified numerically. As expected, the buckling strength of cylinder-cone-cylinder shells was strongly affected
by initial geometric imperfection and the reduction in buckling strength was seen to be strongly dependent on
the approach and the location of imperfection. Eigenmode imperfection is seen to produce the lowest knock-
down factor, followed by axisymmetric outward bulge and SPLA imperfections, respectively. Finally, the lower
bound knockdown factors that can be implemented for design purposes has been proposed for the worst initial
geometric imperfection case, i.e., Eigenmode, imperfections.

1. Introduction

Thin-walled shells such as cylinder, cone or combination of both are
widely used in many industrial applications. When in use, these shells
are often exposed to various type of loading which includes external
pressure, internal pressure, axial compression, bending, torsion etc., or
combination of each load. The shells wall thickness are mostly designed
according to their industrial application. For example, thinner shells are
extensively used in aeronautic/aerospace industry. Thus, their failure is
limited by elastic buckling. While thicker shells are predominantly used
in marine and offshore industries where the mode of failure is largely
due to plastic buckling. Under various loading conditions, the state of
stress in the multi-segment shell of revolution assembly is pre-
dominantly membrane stress away from the intersection, but as the
intersection is being approached from either the top or the bottom, the
state of stress in the shell will change from membrane stress to a
combination of membrane stress and bending stress [1–5]. In general,
the failure of cone-cylinder assembly mostly occurs at the intersection.
This behavior can be attributed to the slope discontinuity in the shell
meridian at the intersection, thereby resulting in local bending and
circumferential stresses at the junction [1]. As a result of the local
weakening effect at the intersection, reinforcement is often used to

strengthen the shell at the junction either by increasing the thickness of
the shell at the junction or by introducing a ring at the intersection [1].
Zingoni [1] developed an equation to quantify the discontinuity effects
at the junction of cone-cone assembly for arbitrary loading. In the
equation, the membrane solution for the shell was taken as the parti-
cular integral of the bending equation. Furthermore, discontinuity ef-
fect was obtained by imposing conditions of geometric continuity and
equilibrium at the shell junction.

It is a general believe that thin-walled structures subjected to var-
ious loading conditions are prone to imperfection. In addition, the
uncertainties are unavoidable for real-world thin-walled structures,
which may cause great influence on the practical load-carrying capacity
[6]. Moreover, the influence of initial geometric imperfection on the
buckling behavior of combined cone-cylinder assembly is still a puz-
zling issue for engineer/designer as it may possibly reduce the buckling
strength of the shell structures. Questions on how it has been defined,
positioned, maximum amplitude, worst shape etc. allow the designer to
prepare for the worst case scenario (e.g., unexpected catastrophic
structural failure [7]). Since most cone-cylinder transition assembly in
practice is susceptible to initial geometric imperfection, the buckling
behavior of imperfect cone-cylinder transition would be beneficial to
the industries. A comprehensive review of the buckling behavior of
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imperfection sensitivity of cone or cylinder under various loading
conditions was reported in Ref. [6].

Eigenmode imperfection approach is a popular method that is
widely used by many researchers to introduce structural imperfection.
References [8–14] are devoted to cone, while Refs [15–19] cover Ei-
genmode imperfection of cylinder. The method uses the Eigenmode
shapes with different weighting of imperfection amplitude. Ifayefunmi
and Błachut [13,14] numerically analyzed the influence of Eigenmode
imperfections on the buckling strength of truncated cones subjected to
axial compression, lateral pressure, and combined axial compression
and external pressure. The cones were assumed to be relatively thick,
therefore failing in the elastic-plastic domain. The ratio of the ampli-
tude of imperfection, wo, to the cone wall thickness, t (i.e., wo/t), was
varied between 0.0 and 1.0. Ifayefunmi and Błachut [14] further ex-
amined initial geometric imperfection in the form of (i) axisymmetric
outward bulge (for axial compression only), (ii) a “single wave” ex-
tracted from Eigenmode and a localized smooth dimple (for lateral
pressure only) and (iii) combined axisymmetric outward bulge and a
single wave extracted from Eigenmode (for combined loading). The
influence of initial geometric imperfection sensitivity on cone subjected
to combined axial load and lateral pressure, within the elastic-plastic
regime was numerically analyzed in Refs. [20,21]. In practice, most
imperfections found in structures do not have such buckling mode-
shape. Eventually, the used modeshape would often be on trials to es-
timate the lowest buckling load.

The single perturbation load approach (SPLA) which was proposed
by Hühne et al. [22] is relatively a new method to introduce initial
geometric imperfection. The method uses the influence of a single lat-
eral load applied to the surface of the model (e.g., mostly at midsection)
to simulate the worst geometrical imperfection of typical structure. The
applied lateral load will produce a local-dimple that acts as the im-
perfection. At this local-dimple, buckling will begin which will then
trigger instabilities (i.e., local and global) to the structure. Several re-
searchers [15,16,23] suggest that Single Perturbation Load Analysis
(SPLA) imperfection approach is less conservative in estimating the
buckling load. There have been several investigations on the initial
geometric imperfection sensitivity of (i) cones [24,25] and (ii) cylinders
[8,17,26–28] by adopting the SPLA method. Nonetheless, a correlation
between Eigenmode imperfection and SPLA imperfection techniques
were reported in Refs. [15,29] with many positive reviews towards the
latter.`

In Refs. [30,31], multiple lateral loads along the cylinder cir-
cumference were suggested to demonstrate the worst kind of im-
perfection level. The test was carried out to describe the range of worst
`multiple perturbation load approach (WMPLA). As a result, the MPLA
gives more conservative results than the SPLA and in some extreme
cases, leads the knockdown factor closer to NASA SP 8007 guideline
[32]. In addition, some newly develop methods are (i) Single Boundary
Perturbation Approach (SBPA) [27,33] and (ii) Single Perturbation
Displacement Approach (SPDA) [27].

To-date, there is no new information on the imperfection sensitivity
of cylinder-cone-cylinder transition subjected to axial compression
since the work by Dinkler and Knoke [34]. Therefore, this paper aims to
provide relevant insight into the influence of imperfection amplitude on
the buckling behavior of axially compressed cylinder-cone-cylinder
transition. Three (3) types of imperfection techniques were considered
namely; (a) Eigenmode imperfection, (b) Axisymmetric outward bulge
and (b) Single Perturbation Load Analysis (SPLA). For SPLA imperfec-
tion, first, the lateral perturbation load is applied at (i) top cylinder
mid-section, (ii) cone mid-section and (iii) bottom cylinder mid-section.
Then, the lateral load is applied along the cone slant length to further
analyze the imperfection sensitivity of cylinder-cone-cylinder. The
present work is entirely numerical using ABAQUS finite element (FE)
code and it validates the experimental results reported in Ref. [35], for
perfect unstiffened cylinder-cone-cylinder assembly. Therefore, the
content of the paper will concentrate and be limited to imperfection

sensitivity of unstiffened cylinder-cone-cylinder transition subjected to
axial compression.

2. Numerical modeling

A configuration of combined cylinder and cone shells subjected to
axial compression was considered in the analysis. The combined shell
configuration is made from two (2) different size of cylinders (i.e., rcyl
top and rcyl bot), with a cone (rcone) as transition medium in between the
two cylinders. The shell consists of slant length of the cone, Lslant, length
of two (2) different cylinders, (i.e. Lcyl top and Lcyl bot) and cone angle, β,
as illustrated in Fig. 1. Two (2) different shell thickness were considered
in the study (i.e. t = 0.5 mm and t= 1mm). The shell is assumed to
have a uniform wall thickness. Constant cone angle was considered, i.e.,
β=20○. The shell geometric parameters are given in Table 1. Speci-
mens were presumed to be made from mild unalloyed steel Stl 2 (Ma-
terial-No. 1.0330) with material properties given in Table 2.

First, preliminary numerical calculations were carried out to
benchmark the experimental data presented in ECCS [35] part C for
perfect cylinder-cone-cylinder shells (ZKZ-XV50 and ZKZ-XV10
models). This seems necessary to confirm the appropriateness of the
numerical approach adopted in this paper. Non-linear static analysis
was carried out using the modified Riks method algorithm which is
implemented in ABAQUS. The algorithm is based on Lagrangean for-
mulation for moderately large deflections. The finite element analysis
was carried out using axisymmetric shell element (SAX2 in ABAQUS
element library) and four-node shell element with six degrees of
freedom (S4R in ABAQUS element library). Five integration points
across the shell wall were used to estimate the spread of plastic strain
along the shell wall. Table 3 present the result of the convergence study
of the FE models. The result shows that 24192 elements are sufficient
for the analysis. Under axial compression, the boundary conditions
applied to the bottom end of the assembly are
ux= uy=uz=фx=фy=фz = 0. The same boundary condition was

Fig. 1. Geometry of cylinder-cone-cylinder transition subjected to axial com-
pression.
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applied at the top end of the assembly except for uy ≠ 0. Furthermore,
at the cylinder-cone junction, the equation of continuity of displace-
ment is given by: ux(cyl) = ūx(con); uy(cyl) = ūy(con) and uz(cyl) = uz(con).
The notation used above assumes: u ≡ displacements (ux, uy, uz are
local coordinate and ūx, ūy are global coordinate), and ф≡ rotations. In
the finite element calculations, the material is modeled as elastic per-
fectly plastic using J2 flow plasticity theory. Although, it has been
found that the flow theory gives higher buckling loads than deforma-
tion theory but the difference is appreciable only at low values of the
power exponents [36,37]. However, numerical calculation for cylinder-
cone-cylinder shells (ZKZ-XV50) shows that the J2 flow plasticity
theory is sufficient.

Validation of experimental results for all models (i.e., ZKZ-XV50
and ZKZ-XV10) with their corresponding buckling loads are given in
Table 4. The ratio of experimental to numerical buckling load for model
ZKZ-XV50 and ZKZ-XV10 are 0.996 and 1.244 respectively. Evidently,
the predicted buckling load by ZKZ-XV10 model recorded a reasonable
discrepancy against the experiment results by nearly 20%. Nonetheless,
the recorded discrepancy of ZKZ-XV10 model is expected, as the issue
was previously addressed by means of having six (6) independent study
to further benchmark the tested model. In addition, the given six (6)
independent results are in agreement with the current numerical result
within differences of 1.5%–6.5% as reported in Ref. [35]. Therefore, it
can be suggested that the numerical model is appropriate for this
analysis.

2.1. Failure mechanism of cylinder-cone-cylinder

A typical plot of axially compressed cylinder-cone-cylinder models
against axial shortening is shown in Fig. 2, indicating the first yield
load, FYield and collapse load, FColl. It is apparent that the cylinder-cone-
cylinder transitions reached their first yield load, FYield, at 16.094 kN
and 34.913 kN for ZKZ-XV50 and ZKZ-XV10 models. The collapse loads,
FColl were found to be 31.339 kN and 78.134 kN for both models. It can
be seen that as the shell thickness increases, the load carrying capacity
of the cylinder-cone-cylinder transition also increases accordingly. This
agrees very well with available design codes which suggest that shell's
buckling load are highly dependent on their thickness [32,35]. From
Fig. 2, it can be seen that the plotted buckling load is nearly linear up to
yield and collapse loads. A smooth drop of buckling load is observed
once the collapse load is reached, in which a similar trend is observed
for both models. The analysis also indicates that the buckling behavior
of the cylinder-cone-cylinder is controlled by plastic buckling – the
elastic analysis predicts higher buckling load than the elastic-plastic
analysis as exemplified for perfect cylinder-cone-cylinder model ZKZ-
XV50 in Fig. 3.

The spread of plastic strain through the shell wall thickness at yield
and collapse for both models is illustrated in Fig. 4. The spread of
plastic strain was observed to begin from the outer surface at both in-
tersections and further continue to grow through the wall thickness. As
expected, this can be attributed to membrane stress discontinuity at the
intersection, reflecting the localized and rapidly changing behavior of
bending disturbances [1]. As the magnitude of the axial force increases,
the plastic strains progressively extend through the wall thickness of the
shell and along the intersection length. Evidently, the results demon-
strated that the smaller the radius-to-thickness ratio (r/t), the higher
the spread of plastic strain in the shell. Similar to those reported in the
past literature [38,39], the largest plastic strain was noticed to appear
at the outer surface of the cylinder-cone-cylinder's top intersection. The
bending-disturbance stresses at the top intersection is believed to be
greater than those at the lower intersection because the larger axial

Table 1
Geometrical properties of analyzed models in referring to Ref. [30].

Model no. rcyl top rcyl bot rcone Lcyl top Lcyl bot Lcone t β (○) rcyl bot/t

(mm)

ZKZ-XV50 152 225 152 300 500 200 0.5 20 450
ZKZ-XV10 152 225 152 300 500 200 1 20 225

Table 2
Material properties used in the analysis in referring to Ref. [30].

Model no. E [GPa] σYield [MPa] υ

ZKZ-XV50 211 225 0.3
ZKZ-XV10 201 206 0.3

Table 3
Results of the mesh sensitivity for the benchmarked models.

No. of element ZKZ-XV50 ZKZ-XV10

Fcoll [kN]

5226 38.793 89.773
11817 34.113 82.841
18688 32.244 79.617
24192 31.339 78.134

Table 4
Comparison of experimental and numerical results for the axially compressed
cylinder-cone-cylinder transition. The number in parenthesis is Fextpl/Fcoll.

Model no. Fexptl ECCS [30] Fnum

[kN]

ZKZ-XV50 31.2 54.401 (0.574) 31.339 (0.996)
ZKZ-XV10 97.2 153.801 (0.632) 78.134 (1.244)

Fig. 2. Plot of load versus deflection of axially compressed cylinder-cone-cy-
linder intersections for perfect model.
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compression in the top intersection results in larger membrane de-
formation incompatibilities, thereby inducing larger bending stresses at
the top junction [2]. It is worth noting here that the spread of plasticity
for both structures agreed well with the buckling modeshape produced
by bifurcation analysis (see Fig. 5 (a)). The entire structure failed due to
material plasticity instead of structural stability as suggested by Ref.
[34].

3. Imperfect cylinder-cone-cylinder transition – Eigenmode shape,
axisymmetric inward/outward bulged and SPLA imperfection

It is widely accepted that most thin-walled structures are affected by
the presence of initial geometric imperfections. The presence of initial
geometric imperfection is inevitable due to the manufacturing process
or accidental damage [34]. Normally, knockdown factors are used to
estimate the structural load carrying capacity under the influence of
initial geometric imperfection. The knockdown factor is define as a
normalized magnitude between the imperfect and perfect shell loads
(i.e. Fimp/FColl). The knockdown factors are derived from the known
worst case scenario the shells may experience (Eigenmode imperfec-
tions, SPLA, MPLA, GNA, etc.). To examine the influence of initial
geometric imperfection on shells buckling strength of cylinder-cone-
cylinder transition, three (3) types of imperfections were considered
using ABAQUS finite element analysis namely; (i) Eigenmode (Fig. 5
(a)), (ii) SPLA imperfection at cone midsection (Fig. 5 (b)), bottom
cylinder midsection Fig. 5 (c)), top cylinder midsection Fig. 5 (d)) and
(iii) Axisymmetric outward bulged (Fig. 5 (e)). These imperfections
were distinctly superimposed on the perfect model and the range of
imperfection amplitude, wo, were investigated. The imperfection am-
plitude to wall thickness ratio, wo/t, was varied between 0 and 4. The
following sub-section provides a detailed study on the effect of Eigen-
mode, Axisymmetric outward bulge and SPLA imperfections on the
buckling load of cylinder-cone-cylinder transition. It must be noted that
only ZKZ-XV50 model was analyzed for the imperfection study due to
its close agreement of buckling load between the experimental and
current numerical results.

3.1. Eigenmode shape imperfection and axisymmetric outward bulged

This section examines geometrically imperfect (i.e. eigenmode) cy-
linder-cone-cylinder transition subjected to axial compression. In the
numerical calculation, four-noded shell element with six (6) degrees of
freedom (S4R) was used. In order to obtain the Eigenmodes, eigenvalue
buckling procedure using subspace solver was carried out first. A

number of Eigenmodes were considered in the finite element analysis
and the effect of them being superimposed with different range of im-
perfection magnitude. The range of imperfection amplitude considered
for the analysis are chosen to be 0<wo/t < 4. The modes were varied
between n=1 and 7, as shown in Fig. 6. The reason for using several
Eigenmodes shape is necessary in order to estimate the shell's lowest
knockdown factor. In this study, the selection of tested mode shapes
was based on their worst buckling mode appearance. Following this, a
non-linear static analysis using modified Riks method were carried out
to obtain the collapse buckling load of axially compressed cylinder-
cone-cylinder transition. The use of non-linear static Riks method to

Fig. 3. Plot of elastic and elastic-plastic load versus deflection of axially com-
pressed cylinder-cone-cylinder intersections for perfect model ZKZ-XV50.

Fig. 4. Spread of plastic strain at yield and collapse for cylinder-cone-cylinder
transitions under axial compression.
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compute the magnitude of the collapse load of the cylinder-cone-cy-
linder transition is appropriate – since there was no bifurcation between
zeros to the collapse load (Riks method) as shown in Fig. 3.

Fig. 7 illustrates the effect of Eigenmode imperfection amplitude on
the buckling strength of the cylinder-cone-cylinder model using Riks
method. From the given results, it can be seen that mode shape, n= 5
produced the lowest knockdown factor. From the analysis, it is evident
that the first mode shape may not serve as the worst-case geometrical
imperfection and its consistent with references [17,29]. The estimated
knockdown factor is recorded to be 0.789 at wo/t= 2 for Eigenmode
approach. Furthermore, the cylinder-cone-cylinder transition can only
support about 79% of the load carrying capacity of the perfect shell
with the presence of Eigenmode imperfection that is twice of the shell's
thickness (i.e., wo/t= 2). Beyond this imperfection amplitude, the ef-
fect of Eigenmode imperfection on the buckling strength of the shell is
steadily depleting. For example, at wo/t= 4, the cylinder-cone-cylinder
transition can only withstand approximately 68%, of the load carrying
capacity of the perfect shell. The obtained results clearly demonstrated

that Eigenmode imperfection approach is capable of estimating the
lower-bound knockdown factor but greatly reliant on the selected mode
shape and the imperfection amplitude.

Fig. 8 shows the effect of Axisymmetric outward bulge with varied
imperfection amplitude on the buckling strength of cylinder-cone-cy-
linder. A comparison was made between worst Eigenmode imperfection
approach and Axisymmetric outward bulge. The Axisymmetric outward
bulge was executed by taking the perfect shell's buckling deformation
from the non-linear static Riks analysis to be the imperfection shape.
Once suitable buckling deformation is found, which in this case, at
22nd increment (i.e., peak load), the shape is retained and varied with
given imperfection amplitude in the subsequent analysis. As compare to
Eigenmode imperfection, a similar trend was observed, the plotted
curve of knockdown factors against imperfection amplitudes steadily
reduced in the range of 0<wo/t < 4. At wo/t= 2, the cylinder-cone-
cylinder transition reduces its load carrying capacity of the perfect shell
by 10%, and further decreases by 19% at wo/t= 4. It is worth noting
that a conservative knockdown factor was estimated by Eigenmode

Fig. 5. Illustration of imperfection shape for (a) Eigenmode, (b) SPLA-cone midsection, (c) SPLA bottom cylinder midsection, (d) SPLA-top cylinder midsection and
(e) Axisymmetric outward bulged.
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imperfection approach in comparison to Axisymmetric outward bulge.
Fig. 9 on the other hand, shows the load-deflection curve for point
marked ‘A’ and ‘B’ (i.e., wo/t= 2) in Fig. 8. This may not be generally
true for all material behavior. Depending on the material behavior of
the structures (i.e., elastic behavior and/or elastic-plastic behavior), the
response to imperfection is very different. Hence, the predicted
knockdown factor will be different as shown in the load versus de-
flection curve for cylinder-cone-cylinder structure with eigenmode
imperfection (n= 5 and wo/t= 2) for elastic behavior (Fig. 10) and
elastic-plastic behavior (Fig. 11). Here the cylinder-cone-cylinder
structure with elastic material behavior predicts a knockdown factor of
0.62 as compared to the same structure having elastic-plastic material
behavior with knockdown factor of 0.79.

3.2. Single pertubation load analysis (SPLA) imperfection

The SPLA imperfection approach was considered to be the worst,
realistic and stimulating imperfection technique when considering the
imperfection sensitivity of axially compressed cylinders [22]. The axi-
ally compressed cylinder-cone-cylinder transition is examined in this
section. In general, as highlighted by Hühne et al. [22], the procedure
of the SPLA in the finite element analysis has three steps. First, lateral
perturbation load, PPerturb is applied at the mid-section of the shell. This
is intended to produce a single buckle or a local dimple on the shell. The
magnitude of lateral perturbation load, PPerturb is linearly increased until
consistent buckling load is accomplished. Then, the shell is driven by
axial compression until the buckling load is reached.

Fig. 6. Buckling mode shapes, n=1, …, 7, for cylinder-cone-cylinder transition subjected to axial compression.
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Fig. 5 (b) – (d) depict the SPLA imperfection shape considered in
this section. The lateral perturbation load is applied at three different
locations, they are: (i) cone midsection (Fig. 5 (b)), (ii) bottom cylinder
mid-section (Fig. 5 (c)), and (iii) top cylinder midsection (Fig. 5 (d)).
The analysis is then followed by executing the axial compression load
until the shell reached collapse state. The bottom of the shell is fully
clamped, during the application of lateral load in order to extract the
worst possible deformation that might occur. Subjected to axial com-
pression, the cylinder-cone-cylinder intersection's top end (cylinder
section) is allowed to move in the axial direction while the other di-
rection is fully clamped.

The sensitivity of buckling load to SPLA imperfections is depicted in
Fig. 12 for cylinder-cone-cylinder transition under axial compression.
From the given result, it is seen that buckling strength is not affected at
all for dimples at both cylinder midsections. On the other hand, cone
midsection appears to be more sensitive to imperfection amplitude from
1<wo/t < 4. Apparently, at wo/t= 2, the load carrying capability of
shell drop by 3%. The buckling load further reduces to 13% once the
magnitude of imperfection amplitude reached wo/t= 4.

Since cone is more sensitive to shell buckling load, it was decided to
further investigate the sensitivity of buckling load by applying the
perturbation load along the cone slant length. Fig. 13 illustrates the
location of the applied perturbation load along the cone slant length.
The sensitivity of buckling load to SPLA imperfections along the cone
slant length is depicted in Fig. 14 for cylinder-cone-cylinder transition
under axial compression. From the given result, an identical curve was
found by applying the SPLA at top and midsection of cone separately.
Although the cone at midsection produced much lower buckling load
than the later, as the SPLA moves towards the intersection between the
lower cone and top big cylinder – the buckling strength starts to drop at
smaller imperfection amplitude (wo/t < 2). Conversely, beyond the
range of imperfection amplitude of 2<wo/t < 4, the plotted knock-
down factors are marginally increased, and this is experienced by both
analyses. A noticeable similarity of the situation was encountered in
externally pressurized composite prolate ellipsoid reported in Ref. [40].
Nonetheless, the results explicitly showed that buckling load is more
affected by applying the SPLA at cone low bottom in comparison to the
other tested locations at wo/t≤ 2. However, for wo/t > 2, there is a
transition in the region where the cylinder-cone-cylinder buckling load
is more sensitive to SPLA imperfection. The knockdown factors, at wo/
t= 4, were found to be (i) SPLA – cone midsection (0.871), (ii) SPLA –
cone top (0.953), (iii) SPLA – cone bottom (0.922) and (iv) SPLA – cone
low bottom (0.912). The drop of shells buckling strength was computed
to be in the range of 5%–13% at wo/t= 4, in comparison to the perfect
shell. The plot of load versus displacement for point ‘C’ in Fig. 14 in-
dicates that the cylinder-cone-cylinder structure with SPLA imperfec-
tion exhibit a local buckling phenomena as shown in Fig. 15. This trend
is consistent with that presented for composite conical structures in Ref.
[25].

4. Comparison between Eigenmode shape, axisymmetric inward
bulged and SPLA imperfection

A comparison of knockdown factor estimated by worst Eigenmode
imperfection, Axisymmetric outward bulge and SPLA imperfection for
ZKZ-XV50 model is presented in this section. Fig. 16 illustrates the
comparison of the effect of imperfection amplitude on worst Eigenmode
(n= 5), Axisymmetric outward bulge and SPLA – cone mid-section for
axially compressed cylinder-cone-cylinder transition. From Fig. 16, it
can be seen that at relatively small wo/t, the axisymmetric outward
bulge produces the greatest drop in the buckling strength of the cy-
linder-cone-cylinder assembly. However, as the wo/t increases, the Ei-
genmode imperfection produces the worst knockdown factor. Overall,
the obtained results indicated that Eigenmode imperfection gives the
lowest reduction of buckling strength (i.e., knockdown factor) followed
by Axisymmetric outward bulge and SPLA – cone mid-section. The

Fig. 7. Effect of imperfection amplitude and Eigenmode on the buckling
strength of the cylinder-cone-cylinder transition.

Fig. 8. Reduction of buckling strength as a function of imperfection amplitude,
wo/t. Comparison of imperfection amplitude between the worst imperfection
approaches: Eigenmode Analysis and Axisymmetric outward bulged curves.

Fig. 9. Load-deflection curves for point (A) and (B) in Fig. 8 with perfect cy-
linder-cone-cylinder shell.
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results indicated that Eigenmode imperfections approach are more
conservative against the SPLA and Axisymmetric outward bulge im-
perfections curves. This finding is consistent with earlier work in the
literature [15,23] for cylindrical shells. The knockdown factor pre-
dicted using the SPLA approach remains important for benchmarking
purpose. Although, studies have shown that the use worst multiple
perturbation load approach (WMPLA) may result in a much lower
knock-down factor as compared to the dimple produced by a single
perturbation load [32]. Moreover, from Ref. [30] models with 4 per-
turbation loads were seen to produce the worst result thereby produ-
cing the WMPLA. Hence, the use of WMPLA having 4 perturbation load
at equidistance across the circumference on the cone mid-section was
employed as an extension of the SPLA approach. It is assumed that the
perturbation value is the same for all the 4 perturbation loads. The plot
of knockdown factor from the WMPLA analysis is depicted in Fig. 16.
From the analysis of this results it becomes clear that the WMPLA gives
more conservation knock-down factor than the SPLA but less con-
servative than the eigenmode imperfection.

To widen the range of applicability of knockdown factor presented
in this paper for practical application, numerical analysis was carried

out for cylinder-cone-cylinder assembly having different cone angles,
i.e., 10°, 20° and 30° for the worst imperfection case in Fig. 16, i.e.,
eigenmode imperfection. The effect of imperfection amplitude on the
load carrying capacity of cylinder-cone-cylinder assembly with dif-
ferent cone angles using Riks method, is shown in Fig. 17. From Fig. 17,
it is apparent that cylinder-cone-cylinder transition with cone angle of
10° produce the lowest knockdown factor as compared to the same
structure having cone angle of 20° and 30°. Further analysis was carried
out in order to obtain the lower bound knockdown factor for design
purpose. To this end, it was decided to examine the influence of ei-
genmode imperfection (worst imperfection case) having imperfection
amplitude-to-thickness ratio, wo/t= 3, on the buckling behavior of
cylinder-cone-cylinder transition with different cone radius-to-thick-
ness ratio, rcone/t, and different cone angles. Fig. 18 depicts the plot of
knockdown factor against the several cone radius-to-thickness ratios,
thereby presenting a lower bound knockdown factor for design re-
commendation purposes. Although, the Eigenmode imperfection are
usually too conservative [41], it is believed that this will be practically
useful in design purposes as a safe and conservative method. The lower
bound knockdown factor curve presented in this paper for cylinder-
cone-cylinder transition is similar to that presented in NASA SP-8007
[32] guideline for isotropic cylindrical shells which was published
several years ago but still relevant in most of the aerospace industries
for preliminary design, since all the aerospace regulation agencies
adopted this procedure as a safe and conservation approach. In the case
of NASA SP-8007 guideline, NASA carried out a huge investment for
about 5 years in the 60s on a project called ‘Shell Buckling Knockdown
Factor’ in order to develop a new guideline to calculate the knockdown
factor of isotropic cylinder subjected to buckling.

5. Conclusion

The results of finding following the numerical investigation on im-
perfection sensitivity of axially compressed cylinder-cone-cylinder
transition are presented in this paper. For the foregoing analysis, the
following conclusion can be drawn: (i) the buckling strength of cy-
linder-cone-cylinder shells was strongly affected by initial geometric
imperfection and the reduction in buckling strength was seen to be
considerably dependent on the approach and location of imperfection,
(ii) the Eigenmode imperfection is seen to produce more conservative
knockdown factor, followed by Axisymmetric outward bulge and SPLA
imperfections, (iii) introducing the SPLA at cone low bottom sig-
nificantly reacts with the highest sensitivity on small imperfection
amplitude, and (iv) buckling strength is not affected at all for dimples at

Fig. 10. Plot of perfect and imperfect load versus deflection curve of axially
compressed cylinder-cone-cylinder intersections using elastic material mod-
eling behavior.

Fig. 11. Plot of perfect and imperfect load versus deflection curve of axially
compressed cylinder-cone-cylinder intersections using elastic perfectly plastic
material modeling behavior.

Fig. 12. Effect of imperfection amplitude and SPLA on the buckling strength of
the cylinder-cone-cylinder transition.
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Fig. 13. (a) Full structure assembly with boundary condition and (b) location of applied lateral load along the cone slant length.

Fig. 14. Imperfection sensitivity of buckling load to the SPLA along the cone
slant.

Fig. 15. Load-deflection curve for point (C) on Fig. 14 for cylinder-cone-cy-
linder transition with SPLA imperfection having imperfection amplitude, wo/
t= 4.

Fig. 16. Reduction of buckling strength as a function of imperfection ampli-
tude, wo/t. Comparison of imperfection amplitude between the worst
Eigenmode imperfections, axisymmetric outward bulged, MPLA and SPLA
curves.

Fig. 17. Effect of imperfection amplitude and Eigenmode on the buckling
strength of cylinder-cone-cylinder transition with different cone angles.
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both cylinder (i.e., top and bottom) midsections. To conclude, the lower
bound knockdown factors curve that can be implemented for the design
guideline for cylinder-cone-cylinder transition has been proposed for
the worst imperfection case (Eigenmode imperfections).
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