

Faculty of Electronic and Computer Engineering

DEVELOPMENT AND ANALYSIS OF NEAR-INFRARED SPECTROSCOPY TECHNIQUE FOR NON-INVASIVE BLOOD GLUCOSE MONITORING SYSTEM

Nurul Akmal binti Abd Salam

Master of Science in Electronic Engineering

2019

DEVELOPMENT AND ANALYSIS OF NEAR-INFRARED SPECTROSCOPY TECHNIQUE FOR NON-INVASIVE BLOOD GLUCOSE MONITORING SYSTEM

NURUL AKMAL BINTI ABD SALAM

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "Development and Analysis of Near-Infrared Spectroscopy Technique for Non-invasive Blood Glucose Monitoring System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:
Name	NURUL AKMAL BINTI ABD SALAM
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:
Supervisor Name	DR. WIRA HIDAYAT BIN MOHD SAAD
Date	:

DEDICATION

For the sake of Allah, my Creator and my Master,

My great messenger, Muhammad S.A.W who taught us the purposes of life,

my beloved mother and father

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Blood glucose monitoring is necessary for diabetes management therapy, where the common method used is an invasive glucose meter that involves finger prick for blood sample which can cause discomfort and skin injury. Painless monitoring of blood glucose would improve patient's quality of life, therefore the development and analysis of nearinfrared (NIR) spectroscopy technique for non-invasive blood glucose monitoring system was proposed in this research. An appropriate conditional circuit for photodiode was constructed and 3D sensor casing was designed for output signal stability and noise elimination. The NIR light-emitting diode (LED) with wavelengths of 1050 nm, 1200 nm, 1300 nm, 1450 nm, and 1550 nm and Indium Gallium Arsenide (InGaAs) photodiode were employed in the in-vitro analysis and the Dextrose solution with different concentrations was used as samples. Based on the analysis on the result of the in-vitro experiment, the NIR LED with the wavelength of 1450 nm had the best coefficient of correlation (\mathbb{R}^2) and it is used in the development of non-invasive blood monitoring device system. The in-vivo experiment utilises humans as subjects. The different area of the human body has a different absorption capability based on tissue composition and thickness. By considering that, three sensing areas, which are the finger, the area between the thumb and index finger, and earlobe, were selected for measurement. By referring to the measurement of the conventional invasive glucose meter, the earlobe area showed the best consistency of voltage output compared to other areas and this area was used to place the sensor prop for blood glucose measurement. A prototype of non-invasive blood glucose with the algorithm to convert voltage reading to glucose reading was developed based on the acquisition of the experiments that have been carried out. This prototype device has an LED indicator to alert the user about the condition of glucose level and Android application to monitor the blood glucose reading. In addition, this system of non-invasive blood glucose had also been developed with the temperature and motion parameters control for stability during the measurement. The Clarkson Error Grid (CEG) analysis was used to determine the accuracy of the measurement and the highest value of R^2 indicates a good correlation between the measurement of the proposed device system and conventional invasive glucose meter. Based on the tests performed, the algorithms constructed based on a single subject demonstrate a high reading accuracy The developed device system presented here has been proven to show a good correlation between NIR transmittance and blood glucose reading. However, as such an experimental device is not Food and Drug Administration (FDA) approved, it should only be used for academic or informative purposes, and should not be used for any medical decision-making process.

ABSTRAK

Pemantauan glukosa darah adalah satu keperluan kepada terapi pengurusan diabetes, dimana kaedah lazim yang digunakan adalah meter glukosa invasif yang melibatkan tusukan jarum pada jari untuk mendapatkan sampel darah yang boleh menyebabkan ketidakselesaan dan. kecederaan pada kulit. Pemantauan glukosa darah yang tidak menyakitkan akan meningkatkan kualiti hidup pesakit kencing manis dan oleh sebab itu, pembangunan dan analisis terhadap teknik spektroskopi inframerah dekat (NIR) untuk sistem pemantauan glukosa darah yang tidak invasif dicadangkan dalam kajian ini. Sebuah litar bersyarat yang sesuai untuk fotodiod dibina dan selongsong pengesan 3D direkabentuk untuk kestabilan isyarat keluaran dan penyingkiran bunyi hingar.. Diod pemancar cahaya (LED) NIR dengan jarak gelombang 1050 nm 1200 nm, 1300 nm, 1450 nm, dan 1550 nm dan fotodiod Indium Galium Arsenide (InGaAs) digunakan dalam analisis in-vitro dan larutan Dextrose dengan kepekatan yang berbeza digunakan sebagai sampel. Berdasarkan analisis keputusan eksperimen, NIR LED dengan panjang gelombang 1450 nm mempunyai pekali korelasi (R^2) terbaik dan ianya digunakan dalam pembangunan sistem peranti pengawasan darah yang tidak invasif. Subjek manusia digunakan dalam eksperimen in vivo sebagai sampel. Kawasan yang berbeza pada tubuh badan manusia mempunyai keupayaan penyerapan berbeza berdasarkan komposisi tisu dan ketebalan tisu. Setelah mengambil kira semua itu, tiga kawasan penderiaan, iaitu jari, kawasan antara jari ibu dan jari telunjuk, dan cuping telinga telah dipilih bagi pengukuran. Dengan merujuk kepada ukuran invasif meter glukosa konvensional, kawasan cuping telinga menunjukkan konsistensi terbaik voltan keluaran dan kawasan ini digunakan untuk meletakkan peralatan pengesan untuk pengukuran glukosa darah. Sebuah prototaip glukosa darah tidak invasif dengan algoritma untuk menukar bacaan voltan kepada bacaan glukosa dibangunkan berdasarkan hasil eksperimen yang telah dijalankan. Peranti prototaip ini mempunyai penunjuk LED untuk memberi amaran kepada pengguna mengenai keadaan aras glukosa dan aplikasi Android untuk memantau bacaan glukosa darah. Sebagai tambahan, sistem ini juga telah dibangunkan dengan kawalan suhu dan pergerakan parameter untuk kestabilan semasa ukuran. Analisis Grid Ralat Clarkson (CEG) digunakan untuk menentukan ketepatan pengukuran dan nilai R^2 yang tertinggi menunjukkan korelasi yang baik antara pengukuran sistem peranti yang dicadangkan dan meter glukosa invasif konvensional. Berdasarkan kepada ujian yang telah dijalankan, algoritma yang dibina berdasarkan subjek tunggal menunjukkan ketepatan bacaan yang tinggi. Sistem peranti yang dibangunkan telah terbukti menunjukkan korelasi yang baik antara kehantaran NIR dan glukosa darah. Walau bagaimanapun, kerana peranti percubaan itu tidak diluluskan oleh Pentadbiran Makanan dan Ubat-Ubatan (FDA), ia hanya boleh digunakan untuk tujuan akademik atau dapatan data, dan tidak boleh digunakan untuk proses membuat keputusan dalam perubatan.

ACKNOWLEDGEMENTS

First and foremost, I would like to give my highest gratitude to the Allah S.W.T for His blessings that I have now completed my Master of Science in Electronic Engineering. Special thanks also dedicated to my supervisors Dr. Wira Hidayat Bin Mohd Saad and Assoc. Prof. Dr. Fauziyah Binti Sallehudin for their supervisions during the duration of my research. They have helped and guided me very well regarding useful information and research techniques in order for me to complete this research project. Special dedications also to the Ministry of Higher Education (MOHE) for MyBrain15 and Universiti Teknikal Malaysia Melaka (UTeM) for short-term grant funding for the financial support throughout this project. The faculty had also provided useful and conductive facilities for me to conduct my research works. Particularly, I would also like to express my deepest gratitude to Mr. Imran Bin Mohamed Ali, the technicians from fabrication laboratory Faculty of Electronic and Computer Engineering (FKEKK) for his assistance and time spent in help me.

Special thanks to all my peers, my beloved late mother, father and sibling for their moral support and financial in completing this study. Lastly, thank you everyone who had been to the crucial parts of realization of this project. Not forgetting, my humble apology as it is beyond my reach personally mentioned those who are involved directly or indirectly one to one.

TABLE OF CONTENTS

DECI APPI DEDI ABST ACK TABI LIST LIST LIST LIST LIST	LARAT ROVAL ICATIO FRACT FRAK NOWLE LE OF C OF TA OF FIG OF API OF API	ION N EDGEME CONTEN BLES FURES PENDICE BREVIAT BLICATI	ENTS TS ES FIONS CONS	i iii iv vii ix xv xvi xvi xviii
CHA	PTER			
1.	INTRO	DUCTIO	DN	1
	1.1	Project b	background	1
	1.2	Problem	statement	4
	1.3	Objective	e	5
	1.4	Scope of	project	6
	1.5	Contribu	ition of work	6 7
	1.0	Thesis of	rganization	/
2.	LITER	ATURE	REVIEW	10
	2.1	Introduct	tion	10
	2.2	Blood gl	ucose measurement methods	14
	2.3	History of	of blood glucose monitoring systems development	15
		2.3.1	First generation (invasive)	16
		2.3.2	Second generation (invasive)	18
		2.3.3	Third generation (minimally invasive)	20
		2.3.4	Fourth generation (non-invasive)	22
	2.4	Technolo	ogies of non-invasive blood glucose monitoring	26
		2.4.1	Near-infrared spectroscopy	30
		2.4.2	Mid-infrared spectroscopy	31
		2.4.3	Thermal emission spectroscopy	32
		2.4.4	Raman spectroscopy	33
		2.4.5	Optical coherence tomography	33
		2.4.6	Fluorescence	34
		2.4.7	Occlusion spectroscopy	35
		2.4.8	Polarimetry	30
		2.4.9	Motobolia bost conformation	30 20
		2.4.10	Pio impedence energiacony	38 20
		2.4.11	Bio-impedance specifoscopy	38 20
	25	2.4.12 Fundame	Nevelse ioniopholesis	39 11
	2.5	251	Detector	41 /1
		∠.J.1		41

		2.5.1.1 Modes of detector operation	43
		2.5.1.2 Dark current	45
	2.5.2	Main limitation and challenges	45
2.6	Experin	nental and analysis methods	46
	2.6.1	In-vitro sensing experiment of glucose	47
	2.6.2	In-vivo sensing experiment of glucose	47
	2.6.3	Analysis method	48
2.7	Relevar	nt reviews of existing studies on NIR spectroscopy technique	49
	for non-	-invasive blood glucose measurement	
2.8	Summa	ry	54
RESE	EARCH M	1ETHODOLOGY	55
3.1	Introdu	ction	55
3.2	Block d	liagram of the project	56
3.3	Hardwa	re design and development	59
	3.3.1	Near-infrared and photodiode circuit design	61
	3.3.2	Thermistor sensor circuit	67
	3.3.3	Vibration sensor circuit	69
	3.3.4	Schematic combination circuit	71
	3.3.5	Sensor casing design	73
3.4	Glucose	e sample preparation	74
3.5	In-vitro	glucose concentration measurement experiment	76
3.6	In-vivo	NIR non-invasive glucose measurement experiment	79
	3.6.1	Targeted areas for NIR non-invasive experiment	79
	3.6.2	Development of algorithms for NIR non-invasive glucose measurement	81
		3.6.2.1 Single subject algorithm development	82
		3.6.2.2 Multiple subjects algorithm development	83
	3.6.3	The invasive blood glucose measurement using glucose meter	83
3.7	Prototy	pe device testing and data verification	84
3.8	Develop experim	pment of prototype non-invasive blood glucose measurement nent	85
3.9	Summa	ry	91
RESI	ULT AND	DISCUSSION	92
4.1	Introdu	ction	92
4.2	In-vitro	experiments	92
	4.2.1	Transmittance sensor configuration respond	94
	4.2.2	Reflectance sensor configuration respond	96
4.3	Results	and discussions of in-vivo NIR non-invasive glucose	100
	measure	ement experiment	
	4.3.1	Targeted areas for NIR non-invasive experiment	102
	4.3.2	Algorithms development for non-invasive glucose	104
	~	detection	
4.4	Glucose	e prediction accuracy based on non-invasive prototype device	108
15	NIR no	rasive) and glucose mentoring prototype system	116
+. J	1011 1101	m-measure blood glucose monitoring prototype system	110

3.

4.

		4.5.1	Temperature sensor calibration	118
		4.5.2	Prototype device function	119
	4.6	Summa	ary	121
5.	CON	CLUSION	N AND FUTURE WORK	123
	5.1	Conclu	sion	123
	5.2	Future	work	125
REI API	FEREN(PENDIC	CES CES		126 139

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Recommended target blood glucose level ranges for non-diabetes, pre-	12
	diabetes and diabetes (Holt et al., 2011)	
2.2	Non-invasive glucose monitoring devices in the market (So et al.,	23
	2012)	
2.3	Characteristics in different wavelength region (Frederick Chee and	31
	Tyrone Fernando, 2007) (Yadav et al., 2015)	
2.4	Types of near-infrared light detector	42
2.5	The design review on the previous researcher	52
2.6	The previous studies that used combination other technique in the	53
	development	
3.1	Near-infrared LED Thor Labs electrical specifications (Thorlabs, 2007)) 63
3.2	Hamamatsu InGaAs photodiode specifications (Hamamatsu Photonics,	65
	2015)	
3.3	Types of amplifier used in the photodiode circuit	67
3.4	Thermistor specification and descriptions	69
3.5	The concentration of glucose solution samples	76
4.1	The output voltages of NIR transmittance configuration sensor based	94
	on different glucose concentrations	

4.2	Line of linear regression equations and prediction correlation	96
	coefficient (R ²) regressions based on graph Figure 4.2	
4.3	The output voltage of NIR reflectance configuration sensor based on	97
	different glucose concentrations	
4.4	Line of linear regression equations and prediction correlation	99
	coefficient (R ²) regressions based on graph Figure 4.3	
4.5	The measurements of glucose level before and after the meal based on	102
	three target areas	
4.6	The measurements of prototype output voltage and invasive glucose	104
	meter based on samples from a single subject	
4.7	The measurements of the proptotype output voltage and invasive	106
	glucose meter based on samples from multiple subjects	
4.8	Summary of the experiments results for algorithms testing	115

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	The major complication of diabetes to the body	2
1.2	Block diagram of a simplified of light detector	3
2.1	The human system based on three conditions; (a) Normal condition	11
	(b) Type 1 diabetes (c) Type 2 diabetes	
2.2	Trends and projections prevalence of diabetes in Malaysia by years	13
	2020 (Ministry of Health Malaysia, 2011)	
2.3	Overview of blood glucose measurement technologies (Ferrante do	14
	Amaral and Wolf, 2008)	
2.4	Blood glucose monitoring approach using a FreeStyle glucose meter;	15
	(a) Finger pricking (b) Blood test by glucose meter (c) Self record	
2.5	The revolution of the blood glucose monitoring device	16
2.6	The first portable blood glucose meter; Ames Reflectance Meter. This	17
	image from (David Mendosa, 2005)	
2.7	The YSI 23A model of the glucose analyser. This image from	18
	(Newman and Turner, 2005)	
2.8	Conventional devices of blood glucose meter with different size and	19
	design (ACCU-CHEK, FreeStyle, ONETHOUCH, Precision, MaxPlus	,
	GlucoDr.)	

2.9	Blood glucose meter test kit for blood glucose test; (a) Alcohol Pad	20
	(b) Needle Pen (c) Test Strip (d) Test Meter	
2.10	The minimally invasive (CGM) device with insulin pump	20
2.11	Brands and models of CGM device available in market	21
2.12	GlucoTrack TM non-invasive glucose monitoring device	22
2.13	Overview on non-invasive glucose monitoring techniques	27
2.14	The diagram of different measurement configurations; a) Transmission	28
	b) Diffuse reflectance c) Transflectance d) Photoacoustic (Cunningham	
	and Stenke, 2010)	
2.15	The graph of the relation between Absorbance (A) and	29
	Transmittance (T) toward sample concentration	
2.16	Basic system of optical non-invasive blood glucose monitoring	30
2.17	Schematic of OCT experiment set up by using arm	34
2.18	Fluorescence resonance energy transfer (FRET) fluorescence with	35
	ConA. (Oliver et al., 2009)	
2.19	Basic setup of photoacoustic spectroscopy	37
2.20	Prototype using metabolic heat conformation blood sugar monitoring	38
	device from Hitachi	
2.21	Schematic illustration of the principle of reverse iontophoresis showing	40
	an iontophoresis extraction device supplying a constant	
2.22	GlucoWatch® biographer using reverse iontophoresis technique	40
2.23	A basic op amp trans-impedance amplifier	43
2.24	Connection of a photodiode to the trans-impedance amplifier in mode	44
	of photoconductive	

Х

2.25	Connection of a photodiode to the trans-impedance amplifier in mode	44
	of photovoltaic	
2.26	Skin structure	48
2.27	Clarke Error Grid Analysis	49
2.28	Basic reflectance sensor arrangement (Yadav et al., 2014)	50
2.29	Ring-shape reflectance sensor arrangement	50
2.30	Basic transmittance sensor arrangement (Unnikrishna Menon et al.,	51
	2013)	
2.31	Multi sensor transmittance sensor arrangement (Zeng et al., 2013)	51
3.1	Illustrates the block diagram of the flow in the methodology part. The	57
	block diagram shows from starting of the first step this project	
	proposed to finish	
3.2	The flowchart of circuit designing	60
3.3	The flowchart of custom 3D casing design	61
3.4	Block diagram of emitter and detector circuit	62
3.5	NIR conditional circuit	62
3.6	Near-infrared LED	62
3.7	Package of Indium Gallium Arsenide (InGaAs) photodiode	64
3.8	Photodiode circuit conditional (Hamamatsu Photonics, 2015)	65
3.9	The negative temperature coefficient (NTC) thermistor circuit	68
3.10	Vibration sensor circuit	69
3.11	HDX vibration sensor available position	70
3.12	The combination of the all circuits with Arduino processing board port;	71
	1) Photodiode conditional circuit 2) LEDs indicator circuit 3) NIR LED	

circuit 4) Thermistor circuit 5) Vibration sensor circuit 6) Switch

7) Arduino ports

3.13	Proteus PCB layout	72
3.14	The 3D view of circuit board in Proteus software	72
3.15	The casing design for in-vitro experiment used; (a) 3D view	73
	(b) Transmittance sensor configuration (c) Reflectance sensor	
	configuration	
3.16	The clipper casing design for in-vivo experiment used	74
3.17	Step of glucose concentration sample preparation	75
3.18	Flowchart of the in-vitro analysis	77
3.19	Cuvette fused quartz used for place the sample	78
3.20	Block diagram of transmittance configuration experiment	78
3.21	Block diagram of reflectance configuration experiment	78
3.22	Block diagram of in-vivo analysis	79
3.23	The targeted areas used in the experiment; (a) Earlobe (b) Finger	80
	(c) Between thumb and index finger	
3.24	The flow chart of the in-vivo analysis using the prototype device	81
3.25	Invasive glucose meter equipment	83
3.26	Steps of blood glucose measurement using a glucose meter	84
3.27	The Bluno microcontroller board	86
3.28	Block diagram connection on microcontroller board	86
3.29	The flow chart of the microcontroller system (switching part)	88
3.30	The continuity of the microcontroller system flowchart (temperature	89
	and movement part)	

3.31	The continuity of the microcontroller system flowchart (glucose and	90
	LED indicator)	
4.1	In-vitro experiment; (a) In-vitro experiment setup (b) Transmittance	93
	sensor configuration (c) Reflectance sensor configuration	
4.2	The relationship between voltage outputs of NIR transmittance	95
	configuration and glucose concentrations based on wavelengths;	
	(a) 1050 nm (b) 1200 nm (c) 1300 nm (d) 1450 nm (e) 1550 nm	
4.3	The relationship between voltage outputs of NIR reflectance	98
	configuration and glucose concentrations based on wavelengths;	
	(a) 1050 nm (b) 1200 nm (c) 1300 nm (d) 1450 nm (e) 1550 nm	
4.4	Experiment setup; a) In-vivo experiment setup (b) Clipper casing for	100
	sensor holder	
4.5	The skin undertone spectrum (Sison, 2017)	101
4.6	The change pattern before and after the meal based on the targeted area	103
4.7	Line of linear regression graph of output glucose meter against output	105
	voltage non-invasive prototype device based on samples from single	
	subject	
4.8	Line of linear regression graph of output glucose meter against output	107
	voltage non-invasive prototype device based on samples from multiple	
	subjects	
4.9	The glucose measurement algorithm coded in Arduino microcontroller	109
4.10	Clarke Error Grid of single subject algorithm tested by same single	111
	subject	
4.11	Clarke Error Grid of single subject algorithm tested by different single	111

xiii

subject

4.12	Clarke Error Grid of multiple subject algorithm tested by multiple		
	subjects		
4.13	Clarke Error Grid of multiple subject algorithm tested by single subject	113	
4.14	Clarke Error Grid of multiple subject algorithm tested by using	114	
	multiple subjects		
4.15	The prototype of PCB board of the NIR non-invasive blood glucose	116	
	monitoring		
4.16	Bluno microcontroller processing board	117	
4.17	The overall prototype system of NIR non-invasive blood glucose	117	
	monitoring		
4.18	The measurement test of skin temperature	119	
4.19	The motion indicator LED	120	
4.20	The normal blood glucose indicator LED	120	
4.21	The hyperglycaemia blood glucose indicator LED	121	
4.22	The hypoglycaemia blood glucose indicator LED	121	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The experiments data based on a single subject algorithm	139
В	The experiments data based on a single subject algorithm	144
С	Near-infrared LED Data Sheet	148
D	Indium Gallium Arsenide Photodiode Data Sheet	150
Е	Bluno Microcontroller Board	154
F	Ethic of conduct form for human health related research	156
G	Research subject information and consent form	157

LIST OF ABBREVIATIONS

CGMS	-	Continuous Glucose Monitoring System
NIR	-	Near-infrared
UI	-	User Interface
BLE	-	Bluetooth Low Energy
3D	-	Three-Dimensional
LED	-	Light-Emitting Diode
InGaAs	-	Indium Gallium Arsenide
WHO	-	World Health Organization
ISF	-	Interstitial Fluid
FDA	-	US Food and Drug Administration
CE Mark	-	European Commission
CO2	-	Carbon Dioxide
MIR	-	Mid-infrared
IR	-	Infrared
OCT	-	Optical Coherence Tomography
ConA	-	Concanavalin A
MHC	-	Metabolic Heat Conformation
Hb	-	Haemoglobin
SNR	-	Signal-to-Noise Ratio

xvi

Ge	-	Germanium
Si	-	Silicon
PbS	-	Lead Sulfide
Insb	-	Indium Antionide
PbSe	-	Lead Selenide
FGT	-	Fasting Glucose Test
OGTT	-	Oral Glucose Tolerance Test
RMSEP	-	Root-Mean Square Error of Prediction
R2	-	Prediction Correlation Coefficient
Ge	-	Germanium
Si	-	Silicon
PbS	-	Lead Sulfide
SEP	-	Standard Error of Predictions
EGA	-	Error Grid Analysis
PCB	-	Printed Circuit Board
PLA	-	Polylactide
DC	-	Direct Current
PTC	-	Positive Temperature Coefficient
NTC	-	Negative Temperature Coefficient
UV	-	Ultraviolet
IDE	-	Integrated Development Environment
SMBG	-	Self-Monitoring Blood Glucose
ADC	-	Analogue to Digital Converter
IC	-	Integrated Circuit

xvii

LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

- Salam, N.A.B.A., bin Mohd Saad, W.H., and Salehuddin, F., Manap, Z.B., Karim, S.A. and Radzi, S.A., 2017. Comparative Study of Different Near-Infrared (NIR) Wavelengths on Glucose Concentration Detection. Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 10(1), pp.2-6.
- Saad, W.M., Salam, N.A., Salehuddin, F., Ali, M.A. and Karim, S.A., 2017. Study on Different Range of NIR Sensor Measurement for Different Concentration of Glucose Solution. International Journal of Human and Technology Interaction (IJHaTI), 1(1), pp.13-18.
- Salam, N.A.B.A., bin Mohd Saad, W.H., Manap, Z.B. and Salehuddin, F., 2016. The Evolution of Non-invasive Blood Glucose Monitoring System for Personal Application. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(1), pp.59-65.

Attended conference:

- International Conference on Telecommunication, Electronic and Computer Engineering (ICTEC) 2017
- International Conference on Telecommunication, Electronic and Computer Engineering (ICTEC) 2015

xviii

CHAPTER 1

INTRODUCTION

1.1 Project background

Diabetes is described as a syndrome of metabolism diseases due to abnormal blood glucose levels in the body. Among Malaysians nowadays, diabetes has become one of the most common diseases (World Health Organization (WHO), 2016). Diabetes is a lifelong illness as the patient is fully dependent on medicines that should be taken on the advice of the doctor to help supply or improve insulin function in the body itself. It can also cause many other diseases that can lead to several complications to the patients. Diabetes is a condition where there is an abnormal level of glucose in the human blood. In the human organism, glucose is the main carrier of the energy and the recommended glucose level varies from 4.9 mmol/L to 5.9 mmol/L within two to three hours after a meal for a healthy individual (Frederick Chee and Tyrone Fernando, 2007). Normally, blood glucose level increases slightly after the meal is taken and the abnormal increases of glucose level in the blood may be caused by the body that loses the ability to produce sufficient insulin or the failure of the body to respond properly to the insulin that has been produced by the pancreas.

In the long term, diabetes can affect other health complications to the patients. Diabetes-related complications include damage to large and small blood vessels, which can lead to heart attack and stroke, and problems with the kidneys, eyes, feet, nerves, and skin as illustrated in Figure 1.1. The risk of most diabetes-related complications can be reduced