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ABSTRACT 

 
 

Radio Frequency (RF) energy harvesting refers to the concept of harvesting and recycling 
the RF energy in the surroundings that is widely broadcasted by many wireless systems. It 
is a promising technique that can be used to replace batteries or prolong their lifespan. 
Nowadays, mobility and low power consumption has led to small electronic circuitry, thus 
RF Energy Harvesting System (RFEHS) is desired to be miniature so that it can be 
integrated with other small systems as well. However, this will be a challenge as antenna is 
often the largest single component in the system. Furthermore, there are emerging demands  
on building RFEHS on a single silicon chip known as System on Chip (SoC) using 
Complementary Metal-Oxide-Semiconductor (CMOS) technology, but there is currently 
no extensive research that has been published regarding CMOS antenna design for lower 
sub 10-GHz frequency.  Hence, this work presents the study on miniature antenna for 
RFEHS which is further divided into on-board design and on-chip design to consider both 
Printed Circuit Board (PCB) and CMOS technologies. In the on-board design, a high gain 
and miniature size are the main objectives, and the design process is conducted through 
mathematical approximation, followed by modelling and simulations in Computer 
Simulation Technology (CST) and verification through antenna’s fabrication and 
measurement. As a result, two on-board topologies have been evaluated which are the 
staircase shaped Co-Planar Waveguide (CPW) monopole antenna and Dielectric Resonator 
Antenna (DRA). The staircase shaped CPW monopole antenna is shown to have up to 
32.19% improvement in term of received power compared to previous work. To assess the 
improvement of DRA against previous work, a way to find the Figure of Merit (FOM) is 
identified and it is found that the DRA have up to 90% higher FOM than others. The FOM 
takes into account the gain and volume to emphasize high gain and miniature size. 
Meanwhile, the on-chip design is based on 0.13 µm and 0.18 µm CMOS process 
technologies and two antenna topologies have been evaluated which are the spiral-slot 
design and spiral design. Studies involving the thicknesses of metals and substrate in 
CMOS technology have been performed and the results show that thicker metal and 
substrate contribute to an improved gain and bandwidth. The rate of bandwidth increment 
has a mean of 0.65 GHz per 8.25 µm increment of substrate thickness, while gain 
improvement is up to 18.45%. This work has also proposed a technique to transfer antenna 
design between different CMOS process technologies without having major effect on its 
gain and bandwidth through manipulation on the ground planes. The work has been 
fabricated considering the required standard thickness of the CMOS technology defined by 
the selected foundry. The on-chip antenna proposed has an area of less than 4 mm2 and 
thickness of less than 1 mm. Overall, miniature antenna design has been presented for on-
chip and on-board topologies for RFEHS. It is hopeful that the contribution from this work 
can be used to achieve further advancement in miniature and integrated antenna and 
RFEHS development, thus providing a solution for energy issue. 
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ABSTRAK 

 
 

Penuaian tenaga Frekuensi Radio (RF) merujuk kepada konsep penuaian tenaga RF 
daripada persekitaran yang disiarkan secara meluas oleh sistem tanpa wayar. Ia adalah 
teknik yang menjanjikan dan boleh digunakan untuk menggantikan bateri atau 
memanjangkan jangka hayatnya. Pada masa kini, mobiliti dan penggunaan kuasa rendah 
telah membawa kepada litar elektronik bersaiz kecil, oleh itu Sistem Penuaian Tenaga RF 
(RFEHS) dikehendaki menjadi kecil supaya ia boleh diintegrasikan dengan sistem kecil 
lain juga. Namun, ini akan menjadi cabaran kerana antena sering merupakan komponen 
tunggal terbesar dalam sistem. Tambahan pula, terdapat permintaan dalam membina 
RFEHS pada satu cip silikon yang dikenali sebagai Sistem pada Cip (SoC) dengan 
menggunakan teknologi Semikonduktor-Oksida-Logam Pelengkap (CMOS), tetapi pada 
masa ini tidak ada penyelidikan luas yang telah diterbitkan mengenai reka bentuk antena 
CMOS untuk sub frekuensi 10-GHz. Oleh itu, kerja ini membentangkan kajian mengenai 
antena miniatur untuk RFEHS yang selanjutnya dibahagikan kepada reka bentuk pada-
papan dan reka bentuk pada-cip untuk mempertimbangkan kedua-dua Papan Litar 
Bercetak (PCB) dan teknologi CMOS. Dalam reka bentuk pada-papan, gandaan yang 
tinggi dan saiz kecil adalah matlamat utama, dan proses reka bentuk dijalankan melalui 
perkiraan matematik, diikuti dengan pemodelan dan simulasi menggunakan Teknologi 
Simulasi Komputer (CST) dan pengesahan melalui fabrikasi dan pengukuran antena. 
Hasilnya, dua topologi pada-papan telah dinilai yang merupakan monopole antena 
berbentuk tangga Co-Planar Panduan-gelombang (CPW) dan Antena Resonator 
Dielektrik (DRA). Monopole antenna berbentuk tangga CPW menunjukkan peningkatan 
sehingga 32.19% dari segi penerimaan tenaga berbanding kerja sebelumnya. Untuk 
menilai DRA berbanding kerja sebelumnya, satu cara untuk mencari Angka Merit (FOM) 
dikenalpasti dan didapati bahawa DRA mempunyai FOM yang 90% lebih tinggi 
berbanding yang lain. FOM mengambil kira gandaan dan saiz untuk menekankan gandaan 
tinggi dan saiz kecil. Sementara itu, reka bentuk pada-cip adalah berdasarkan pada 
teknologi proses CMOS 0.13 μm dan 0.18 μm dan dua topologi antena telah dinilai iaitu 
reka bentuk lingkaran-berlubang dan reka bentuk lingkaran. Pengajian yang melibatkan 
ketebalan logam dan substrat dalam teknologi CMOS telah dilakukan dan hasilnya 
menunjukkan bahawa logam dan substrat tebal menyumbang kepada peningkatan 
gandaan dan lebar jalur. Kadar kenaikan lebar jalur mempunyai purata 0.65 GHz bagi 
setiap pertambahan ketebalan substrat sebanyak 8.25 μm, sementara kenaikan gandaan 
adalah sehingga 18.45%. Kerja ini juga telah mencadangkan teknik untuk memindahkan 
reka bentuk antena antara teknologi proses CMOS yang berbeza tanpa memberi kesan 
besar ke atas gandaan dan lebar jalurnya melalui manipulasi dataran tanah. Antena 
CMOS telah difabrikasi menurut piawai yang ditetapkan oleh kilang terpilih. Antena 
CMOS yang dicadangkan mempunyai keluasan kurang daripada 4 mm2 dan ketebalan 
kurang dari 1 mm. Secara keseluruhannya, reka bentuk antena miniatur telah 
dibentangkan untuk topologi pada-cip dan pada-papan bagi RFEHS. Diharapkan 
sumbangan dari kerja ini dapat digunakan untuk mencapai kemajuan selanjutnya dalam 
pembangunan sistem antena kecil dan terintegrasi serta pembangunan RFEHS, dengan itu 
menyediakan penyelesaian untuk masalah tenaga. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation for an RF energy harvesting system 

It is well known from the first law of thermodynamics which states that energy can 

neither be created nor destroyed in a closed system (Bett, Rowlinson and Saville, 2003). 

The universe itself is a closed system, thus the total amount of energy is constant. 

However, the forms of energy are constantly changing. Over the centuries, researchers 

have gained better understanding on the forms of energy thus new ways for energy to 

convert from one form to another is revealed. This enables vast development in industrial 

and technology that leads to modern lifestyles nowadays. However, in every industrial 

process and everyday technology, a small amount of energy is being unintendedly loss into 

the environment in the form of heat, light, sound, vibration, or electromagnetic waves. The 

energy leaked into the environment is referred to as ambient energy. The ambient energy is 

usually very low and in a form that is not readily available for use. It needs to be harvested, 

collected, and stored into a form that can be readily used for an intended application 

through a specialized method referred to as energy harvesting (Bogue, 2015). 

Energy harvesting generally refers to the collection, conversion, and storage of 

ambient energy into electrical energy. In this study, the focus is on the harvesting of 

electromagnetic energy, also known as radio frequency (RF) energy. RF energy originates 

from the RF signals emitted in wireless communication systems, as radio waves can 

simultaneously carry information and energy. RF energy harvesting can be classified into 

two categories as follows: 

1 
 



a) Ambient RF source: Ambient RF source are not actually dedicated RF energy 

transfer, and this RF energy is freely available. The frequency range of ambient RF 

transmission is 0.2 to 5.8 GHz, and this includes most of the radiations from 

domestic appliances such as television, Bluetooth, mobile telecommunication 

services and Wi-Fi. 

b) Dedicated RF source: This on-demand supply generally has a relatively higher 

power density due to directional transmission, and it is used to recharge nodes that 

requires predictable and high amounts of energy. The energy transfer is done in the 

license-free industrial, scientific, and medical (ISM) frequency bands. 

RF energy harvesting is a type of wireless power harvesting (WPH) method. Other 

sources for WPH includes solar power, wind energy, thermal energy, kinetic energy, and 

so on. Nowadays, wireless communication system has become so essential that it is no 

longer possible to separate it from our daily life. In accordance to Industrial Revolution 

4.0, massive ranges of electronic devices are being interconnected through wireless 

communication system which give rise to the Internet of Things which we are experiencing 

today. The main advantage of RF energy harvesting is that the RF source is continuously 

available throughout the day, unlike the other sources (sun, wind, movement, etc.) that are 

only available at a certain time and condition for a limited period. However, the main 

constrains in ambient RF energy harvesting is the very low power level which was caused 

by various losses, including path loss, energy dissipation, shadowing, and fading. Along 

with this problem, several other factors such as the low energy reception sensitivity, 

restriction of maximum RF energy radiation due to human health hazards, and sharply 

decreasing RF-to-DC conversion efficiency at low received power is making it more 

challenging for the development of ambient RF harvesting system (Mishra et al., 2015). 
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A basic RF power harvesting system consists of four main modules; the antenna, 

impedance matching network, voltage multiplier and energy storage, as shown in Figure 

1.1. Each of the individual module needs to be optimized in order to improve the system 

(Tran, Cha and Park, 2017). Since the antenna is the first module of the system, it can be 

considered as the foremost element as it can determine the sensitivity of the whole system. 

Thus, this thesis focuses on the antenna design for RF energy harvesting system. The 

antenna design is further divided into two categories which are on-board and on-chip. On-

board design is currently the typical way antenna are being deployed, however other 

approach is needed when miniaturization and highly integration are the main requirements, 

and on-board design can only achieve so much in this term. Therefore, on-chip design is 

proposed as an alternative due to the possibility to design antenna in micrometer-scale 

using CMOS technology. A further elaboration on the research problem, objectives, scopes 

and contribution, as well as the organization of this thesis is presented in the following 

sections of this chapter. 

 

Figure 1.1: Block diagram of an RF energy harvesting system 
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