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ABSTRACT 

 

 

Nowadays, aluminium honeycomb has become well-known as a good energy absorbing 

cellular structure. Due to its lightweight and high stiffness properties, this structure has been 

more preferable metallic material compared to others in term of producing an energy 

absorbing structure. This study is concerned with the energy absorption characteristics of 

aluminium honeycomb structure. For the crashworthiness of a material research area, this 

study offers more understanding of the behaviour of aluminium honeycomb when subjected 

to quasi-static and dynamic lateral compression. Five different densities of honeycomb 

structure (empty and Oil Palm Trunk-filled with different densities) were introduced to study 

their deformation mode as well as the energy absorption characteristic. Since lateral 

compression is involved, all specimens were compressed in two directions; x1-direction and 

x2-direction. The results show that the honeycomb cores exhibit anisotropic response during 

the compression. Under quasi-static and dynamic loading, honeycomb compressed in the x1-

direction has higher energy absorption characteristics values such as collapse load, mean 

load, plateau load and energy absorption value compared to the honeycomb cores that were 

compressed in the x2-direction. This is due to the cell wall arrangement of double thickness 

wall (2t) in the honeycomb core; the 2t cell wall aligned vertically when compressed in x1-

direction, and horizontally when compressed in the x2-direction. The vertically arranged 2t 

cell wall caused the honeycomb structure to be stronger and has a higher stiffness value. In 

term of deforming modes, all honeycombs show a very different response from each other. 

Besides, the addition of filler element material (Oil Palm Trunk sawdust) into the 

honeycomb core caused the energy absorption values to increase by 83% in x1-direction and 

91% in the x2-direction. Since the honeycomb is a man-made structure, the imperfections 

are randomly distributed in all parts of the structure. This caused the initiation point for the 

deforming mode of the honeycomb which occurred at the weakest point in the structure to 

be started in a random manner. All experimental results were compared by using finite 

element software, and a good agreement between them was shown for the compression of 

empty honeycomb. The main factors that caused the dissimilarity between the experimental 

and simulation results were found to be the imperfections of the honeycomb cores; the 

irregularities of the cell wall and the geometrical imperfections of the honeycomb that 

occurred during the manufacturing process.  
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ABSTRAK 

 

 

Pada masa kini, struktur sarang lebah jenis aluminium semakin terkenal sebagai struktur 

penyerapan tenaga yang baik. Disebabkan oleh sifatnya yang ringan dan mempunyai nilai 

kekakuan yang tinggi, struktur ini adalah lebih diutamakan jika dibandingkan dengan jenis 

bahan besi yang lain bagi menghasilkan struktur penyerapan tenaga. Kajian ini berkenaan 

dengan ciri-ciri penyerapan tenaga yang dipunyai oleh struktur sarang lebah jenis 

aluminium. Dalam bidang kajian yang melibatkan kebolehtahanan kemalangan bagi 

sesuatu bahan, kajian ini menawarkan kefahaman yang lebih untuk sifat  struktur sarang 

lebah jenis aluminium apabila menjalani mampatan sisian dalam keadaan kuasi-statik dan 

dinamik. Lima jenis ketumpatan bagi struktur sarang lebah telah diperkenalkan (yang 

kosong dan yang diisi dengan serbuk batang kelapa sawit dengan nilai kemampatan yang 

berbeza) untuk mengkaji mod ubahbentuk dan ciri-ciri serapan tenaga. Memandangkan 

mampatan jenis sisian telah digunakan, semua spesimen telah dimampatkan dari dua arah 

sisi iaitu arah x1 dan arah x2. Keputusan kajian menunjukkan bahawa struktur sarang lebah 

mempamerkan tindak balas yang anisotropik semasa proses mampatan. Dengan 

mapampatan di bawah keadaan kuasi-statik dan dinamik, struktur sarang lebah yang 

dimampatkan dari arah x1 mempunyai ciri-ciri serapan tenaga yang tinggi seperti beban 

runtuh, beban purata, beban dataran kadar dan nilai serapan tenaga jika dibandingkan 

dengan struktur bahan yang dimampatkan dari arah x2. Ini adalah kerana susunan dinding 

sel yang mempunyai ketebalan sekali ganda (2t) di dalam struktur sarang lebah. Dinding 

sel 2t disusun secara menegak semasa mapatan dari arah x1, manakala disusun secara 

mendatar semasa mampatan dari arah x2. Susunan dinding sel 2t secara menegak telah 

menyebabkan struktur bahan lebah menjadi lebih kuat dan mempunyai nilai kekakuan yang 

lebih tinggi. Dalam bahagian mod ubahbentuk pula, semua struktur sarang lebah 

menunjukkan tindak balas yang berbeza-beza antara satu dengan yang lain. Selain itu, 

penambahan bahan elemen pengisi (serbuk batang kelapa sawit) ke dalam struktur sarang 

lebah telah menyebabkan nilai serapan tenaga meningkat sebanyak 83% pada arah x1 and 

91% pada arah x2. Memandangkan struktur sarang lebah adalah bahan buatan manusia, 

ketidaksempurnaan telah disebarkan secara rawak pada semua bahagain struktur sarang 

lebah. Hal ini menyebabkan mod  ubahbentuk bagi struktur sarang lebah yang dimulakan 

pada titik paling lemah dalam struktur tersebut tersebar secara rawak. Semua keputusan 

eksperimen telah dibandingkan dengan menggunakan perisian unsur terhingga, dan 

keputusan diantara eksperimen dengan simulasi telah menunjukkan persetujuan yang baik 

di dalam mampatan struktrur sarang lebah yang kososng. Faktor utama yang menyebabkan 

perbezaan diantara keputusan eksperimen dengan simulasi adalah ketidaksempurnaan 

struktur sarang lebah iaitu dinding sel yang tidak sekata serta ketidaksempurnnan geometri 

bagi struktur sarang lebah yang telah wujud semasa proses pembuatan.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

Transportation means such as cars, trains and aeroplane has been very demanded in 

the modern world, and the numbers kept increasing. In Malaysia alone, the accumulated 

number of registered vehicles has been recorded as 25101192 in 2014, according to MoTM 

(Ministry of Transportation Malaysia). Comparing the number of vehicles and the 

population for Malaysia in 2014 (30 million people), every ten persons had eight vehicles 

on average. 

 Technological advancements do not only increase the number of vehicles, but it leads 

to a higher speed and more production of massive vehicles such as aircrafts and trucks. These 

bigger structures can cause bigger and more serious effect to the people and environment if 

it involves in an accident. This motor vehicle related accidents proved to be a major health 

problem worldwide, as it creates economic loss to society and killed more people. 

 Generally, a motor vehicle accident can be explained as an impact in which two or 

more bodies (either stationary or moving) collides with each other in a brief time period. An 

average force F which predominate over time t and which arises at the impacting interfaces 

is produced by the need to change momentum (mass and velocity) mv; it is inversely 

proportional to t, F = mv/t. From the equation mentioned, it can be seen that a large value of 

force F can be generated if the time t taken is shorter. The large value of F may lead to more 

serious damage to the occupants and structures. For the occupants, the vehicle crash can 

cause them to be injured (or sometimes lead to death) in which pertains to the physical/ 



2 

 

psychological injury and trauma. As for the structure, vehicle crash can cause damage to the 

structure; referring to the unintentional plastic deformation and fracture of the vehicle’s 

structure and other subsequent parts resulting from the crash. Other than that, vehicle crash 

may also cause environmental damage, such as damage to the roadside object (road divider, 

trees poles, etc.). 

 As mentioned before, the occupant of the vehicle can be injured in the occurrence of 

a crash. According to (Carney III, 1993), the injury can be caused by the four following 

events; unacceptably high deceleration, crushing of the occupant compartment, impact with 

interior part of the vehicle, and ejection. All these events can cause injuries such as head 

injury, chest injury, and even thoracic injury. For many years, head injury (as well as brain 

injury) has been recognized as the most unbearable type of trauma experienced in accidents, 

due to the difficulties in treating them, and commonly result in long term dysfunction. They 

cause a great cost to the society, either because the cost of long span of treatment and loss 

of productivity, or because the losses due to an early death. 

 Due to these events, public has voiced their concern and demand a higher degree of 

protective devices/mechanisms either for personal or public usage. Therefore, the 

mechanical devices in the vehicle especially the energy-absorbing structures must be 

constantly upgraded in order to fulfil the public demand. However, the crashworthy 

performance of the vehicle proved to be very challenging in designing and testing of various 

types of vehicle. By definition, crashworthiness denotes the quality of response of a vehicle 

when it is involved in or undergoes impact. The crashworthiness value of a vehicle can be 

measured by analysing the effect of the impact to the structure’s main body and its occupants. 

The more damage to the vehicle and/or to its occupants and contents after the given occasion, 

the lower the crashworthiness value of the vehicle and it signify the poor its crashworthy 

performance. 
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 In the field of energy absorption, researchers are prone to explore the best Impact 

Energy Absorber (IEA) device; an expendable mechanical structural element when brought 

into collision. IEA device absorbed energy during impact and transfers minimum impact on 

the load and to the surrounding equipment. As the energy absorbed by the IEA device 

increase, lesser impact energy will be transferred to the main structures.  There are two types 

of safety devices which are known as active and passive. An active safety device is where 

certain device will activate in response of abnormal event to avoid accident such as brakes 

and steering. Meanwhile, devices such as airbags, strong body structures and seatbelts are 

some examples of passive safety device which helps to minimize the effects of a collision. 

The significance of IEA device cannot be underestimated as it involved the safety of human 

being especially in automotive and aircraft industry. 

 There are some general principles in designing a good energy-absorption device 

made by previous researcher (Lu and Yu, 2003) and engineers. The principles are as follows: 

• Irreversible energy conversion: The material/structure should be able to convert most 

of the input kinetic energy into inelastic energy by plastic deformation or other 

dissipation processes, rather than storing it elastically. 

• Restricted and constant reactive force: The peak reaction force (also known as peak 

load) of an energy absorber must be kept lower than the threshold value; and should 

remain constant throughout the large deformation process of the structure. 

• Long stroke: Since the energy absorption value of the structure is defined by the 

product of work done by the force and the total displacement experienced along the 

acting line of the force, the displacement stroke should be long in order to enable the 

structure to absorb more energy. The longer stroke and a constant reactive force (as 

mentioned above) will produce the best combination for the energy-absorbing 

structure. 
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• Stable and repeatable deformation mode: To ensure the reliability of the structure to 

deal with very unclear working loads, the deformation mode and energy-absorbing 

capacity of the designed structure should be stable and repeatable. 

• Lightweight and high specific energy absorption capacity: The component of the 

energy-absorbing structure should be light itself and possess the high specific energy 

absorbing capacity (energy absorption capacity per unit weight) which is very 

important to carrier-vehicles especially trains and aircrafts. 

• Low cost and easy installation: The manufacture, installation and maintenance of the 

energy-absorbing structure should be easy and cost effective, because they are 

usually one-shot item; one that must be discarded or replaced once deformed. 

These principles are very important in helping engineers to design a good energy-

absorbing structure since the designing and analysis of the energy-absorbing structure is very 

different to the conventional structure design (the structure only undergo a small elastic 

deformation). The energy-absorbing structures have to withstand forceful impact loads, so 

that their deformation and failure involve large geometry changes, strain-hardening effects, 

strain-rate effects, and various interactions between diverse deformation modes such as 

bending and stretching. 

 Cellular aluminium honeycomb is one of the popular materials that are being 

investigated in recent years. Known for its lightweight and high stiffness, there are many 

structures that used the honeycomb as its core material. In fact, sandwich panel which 

usually require the best stiffness to weight ratio also used the aluminium honeycomb as its 

core materials. The models of structures in which the sandwich panel are mostly seen are 

roofs, facades, floors and partition. In order to improve the energy absorbing capacity or the 

strength of metallic structures, filler elements such as foam and wood are used. Reticulated 

foams (open-cell-structured foam) and closed-cell- structured foams such as polyurethane, 
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polyethylene and polystyrene are usually used when the structures prioritize the importance 

of surface area, low density and porosity.  Many engineering applications used wood as its 

filler element due to the wood’s properties; low density, high specific strength, low in 

thermal conductivity, low cost of production and most importantly, environmentally 

friendly. However, woods are also highly combustible and cannot be used in high 

temperature application. 

 By comparison to other countries, Malaysia is the second largest producer of oil palm 

in the world. Due to the import and export marketing, the importance of oil palm is highly 

regarded as it offers incomes for the country financially. However, the oil palm tree is usually 

produced only to extract the oil palm. The other parts of the tree such as trunk and leaf are 

usually scrapped as it cannot be used in other application, and this situation can be viewed 

as loss cost to the country. Oil palm trunk (OPT) has higher water content compared to the 

other kind of wood such as plywood, and thus offers lower strength to be used in the 

structural application. Though (OPT) cannot be used as main structures for houses alike, it 

can be processed to be charcoal and fuel. 

 Compression test is one of the most popular types of experiment in determining the 

behaviour and energy absorption capacities of certain specimens. There are many types of 

compression test condition such as static, quasi-static and dynamic loading. These three 

conditions are differed by their respective compression speed. As for the direction of 

compression, two most common direction of compression are known as axial loading (out-

of-plane) and lateral loading (in-plane). The axial loading usually offers more strength and 

stiffness compared to lateral loading. In the axial compression of honeycomb, the collapse 

progression is started by initializing the linear-elastic deformation which involves substantial 

axial or shear distortions of the cell wall. The linear-elastic regime is shortened by buckling 

either elastic (for elastomer) or plastic (for metal or rigid polymer) and the final failure 


