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ABSTRACT 

 

 

Over the past decade, pneumatic muscle actuators (PMA) has been steadily receiving 

much attention not only in the areas of industrial applications as well in promising research 

areas such as robotics and biomedical engineering. The popularity can be much associated 

with the attractive advantages PMA has to offer such as inherent compliant safety, high 

power to weight ratio and compact form factor. Despite the attractive advantages it has to 

offer, PMA exhibits significant nonlinear characteristics such as hysteretic behavior and 

creep phenomenon. Subsequently, these dynamic and time varying behaviors often makes 

modelling and real time motion control a challenging effort. Although many control methods 

have been developed, these controller design procedures frequently require exact model of 

mechanism and deep understanding in modern control theory which leads to their 

impracticability. Henceforth, in this research, a practical control strategy namely the 

Feedforward Compensation with Cascaded Control (FFC) scheme is proposed for the 

trajectory control of the PMA mechanism. The practical control scheme employed heavily 

considers on simple structure and straightforward design framework. Hence, the proposed 

FFC controller includes control elements that are derived from the measured open loop 

responses. The tracking performance is examined and compared to a Proportional Integral 

Derivative (PID) controller through experimental works. Experimental results show that the 

proposed controller can produce zero steady state error in step positioning. Similarly, the 

feedforward compensation with cascaded control scheme performs better in tracking when 

compared to PID controller with a higher tracking accuracy with an average improvement 

of 45 % and 64 % for maximal tracking error and root mean square error respectively. 

Likewise, when evaluated for robustness towards load variations, the proposed control 

strategy provides an ameliorated performance over the PID controller with an error 

improvement of 58 % in terms of maximal tracking error and 44 % in terms of root mean 

square error.  

 

 

  



ii 

 

 

 

ABSTRAK 

 

 

Menelusuri dekad yang lalu, penggerak otot pneumatik semakin mendapat tempat 

bukan sahaja dalam industri malahan dalam bidang-bidang penyelidikan yang prominen 

seperti robotik dan kejuruteraan bio-medikal. Populariti ini boleh dikaitkan dengan 

kelebihan yang ditawarkan oleh penggerak otot seperti ciri-ciri keselamatan, 

kuasa penggerak yang tinggi dan faktor bentuk yang padat. Walau bagaimanapun, 

penggerak otot pneumatik mempamerkan ciri-ciri tidak linear yang ketara seperti fenomena 

hysteresis dan rayap. Justeru itu, kelemahan dinamik dan perubahan tingkah laku dengan 

masa sering kali membuat pencirian sistem dan kawalan gerakan satu usaha yang mencabar. 

Walau terdapat banyak sistem kawalan yang telah dicadangkan, rangka kerja sistem 

kawalan yang dicadangkan memerlukan model yang tepat dan juga pengetahuan yang 

mendalam berkaitan theori sistem kawalan moden di mana sistem kawalan sering kali 

menjadi tidak praktikal. Oleh itu, dalam penyelidikan ini, satu strategi kawalan praktikal 

yang dinamakan sebagai skema pengawal kaskad dengan pampasan suap depan 

dicadangkan untuk kawalan trajektori mekanisme PMA. Skema kawalan praktikal ini 

mempertimbangkan struktur yang mudah dan rangka kerja yang ringkas. Pengawal yang 

dicadangkan mempunyai elemen pengawal yang dibina melalui hubungan antara input dan 

keluaran yang boleh didapati melalui pencirian gelung terbuka. Seterusnya, prestasi 

penjejakan dinilai dan dibandingkan dengan pengawal PID melalui eksperimen. Hasil 

ujikaji menunjukkan bahawa sistem pengawal yang dicadangkan tidak menunjukkan ralat 

dalam keadaan mapan melalui pergerakan titik ke titik. Prestasi FFC lebih baik dalam 

penjejakan trajektori berbanding dengan pengawal PID dengan ralat penjejakan yang lebih 

tinggi di mana terdapat purata peningkatan bersamaan dengan 45 % dan 64 % dalam julat 

penjejakan maksimum dan julat kuadrat rata akar masing-masing. Begitu juga, dalam 

penilaian keteguhan pengawal terhadap perubahan jisim, prestasi pengawal yang 

dicadangkan adalah lebih teguh dengan penambahbaikan julat yang positif di mana 58 % 

dalam julat penjejakan maksimum dan 44% dalam julat kuadrat rata akar berbanding 

dengan pengawal PID.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

This chapter highpoints the background of the study, problem statement, objectives 

and the scopes of the project. Background of study is a brief exposition on the system that 

is being researched and the problem statement dictates the core issue that is to be addressed 

with this research. Meanwhile, the objectives serve as a benchmark while the scopes define 

the limits and boundaries of the project in overseeing the project upon completion. 

 

1.2 Background 

Predominantly, servo control in industrial applications has been limited to the usage 

of electrical and hydraulic actuators. However, in recent years, mechanical systems demands 

actuators of clean, compact form factor yet capable of yielding large power density. While 

electrical drives offers clean, reliable operation usually under high speed and low torque 

conditions, necessary transmision elements are needed to convert the power to a more 

suitable form. Hydraulic actuators, on the other hand provides a high power to weight ratio, 

however is subjected to leakage. Failure in catering to such criterias, leaving many 

researchers and users to consider pneumatic actuators. Lots of research work on novel 

actuators has been presented and among which is the pneumatic muscle actuators (PMA) 

shows a promising attributes that conforms with the requirements. PMAs have different 

nomenclature throughout past literatures such as braided muscle, McKibben muscle, netted 
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muscle, paynter hyperboloid muscle and pneumatic artificial muscle (Kelasidi et al., 2011). 

In this thesis context, the actuator used would be known as the pneumatic muscle actuator.  

Pneumatic muscle actuator is a contractile device manufactured with the inflatable 

pneumatic bladder of usually long synthetic or natural neoprene tube wrapped inside 

artificial mesh at a pre-defined angle (Kelasidi et al., 2011). The working principle of this 

actuator is similar to that of an inverse bellow (Repperger et al., 2006). During pressurisation, 

the pneumatic bladder expands and as a result from the expansion, the diameter of the mesh 

and bladder changes in the radial direction promoting shortening of the muscle in the 

longitudinal direction (Chang et al., 2006). Therefore, contraction or pulling force is 

generated upon inflation of the actuator. When operated, this fluid-driven actuator is capable 

of providing a striking resemblance to that of muscle-like properties notably the compactness 

and high power to weight ratio (Repperger et al., 2005). Apart from that, the operation of 

PMA can be done with minimal pressurized air consumption indirectly from the small and 

compact size of PMA alongside with the low costing of implementation and maintenance 

(Wickramatunge and Leephakpreeda, 2010). Besides, PMA offer a lower level of safety 

breach in the event of human interactions permitted by its inherent compliant behaviour 

(Coined as “soft actuator”) in which it is consider safer than electric or hydraulic drives 

producing the same force level (Tsagarakis and Caldwell, 2003). As a result, an increase in 

the deployment of this driver mechanism in industrial machinery(Zhu et al., 2008, 2009), 

medical applications (Chakravarthy et al., 2013), rehabilitation devices (Wong et al., 

2012;  Hussain et al., 2013) and robotics (Hosoda et al., 2008;  Narioka and Hosoda, 2011).  

Despite the advantages, there are few disadvantages where the usage of PMA is 

concerned. PMA intricately exhibits significant non-linear characteristics, creep 

phenomenon and hysteresis in which is attributed to the compressibility of operating medium, 
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intrinsic properties of construction material and the geometric behaviour of PMA external 

mesh. These factors induce dynamic and time varying disturbances in the pressure response 

and thus cause vibratory motion to occur. Henceforth, these detriments limit the real time 

motion control of pneumatic muscle actuator in which deemed as a challenging effort and 

often inaccurate.  

 At present, numerous control methods have been proposed and established for PMA 

based mechanisms. Through classical control, the proportional-integral-derivative is widely 

used as it has simple design procedures and high applicability well suited for industry-based 

applications. However, they could not provide a robust performance in a highly nonlinear 

mechanism due to their linear structure. On the other hand, model-based control can yield 

an ameliorated result if only an accurate model is obtained. Henceforth, various model-free 

controller such as intelligent and hybrid control has been proposed and employed. This is 

because the complexity of control architecture can be simplified as well as system 

uncertainties and variations were accommodated. However, there is still a need for sufficient 

knowledge in control theory and the determination of exact model parameters has led to 

tedious and time-consuming design procedures. Therefore, in this research, a control strategy 

that employs a simple and practical framework will be put forward. The proposed control 

strategy will then be validated experimentally through a single degree of freedom vertical 

based antagonistic pneumatic muscle actuated system.  

 

  



 

4 

 

1.3 Problem Statement 

 PMA inherently possesses and exhibits substantial non-linear characteristics. These 

nonlinearity stems from the compressibility of operating medium, intrinsic properties of 

construction material and the geometric behaviour of PMA external mesh. While, these 

factors generally contribute to the difficulty in modelling and real time control, the different 

configuration of PMA used may include other factors such as the characteristics of the servo 

valve used as well as the infinite combination of forces that both muscles might exert for the 

same displacement in the case of an antagonistic construction. The above-mentioned factors 

are of more commonly known disadvantages of PMA. Specifically, in this research, few 

other issues were found and highlighted as follow. Figure 1.1 and Figure 1.2 shows the open 

loop system response and close loop uncompensated system response to multiple rectangular  

step input respectively through experimental works. In Figure 1.1, an asymmetric response 

can be observed. This indicates the muscles exhibits different dynamics during inflation and 

deflation process attributed with the high charging rate and low discharging rate of the 

proportional servo valve used. Also, the monotonous system response with the lack of 

overshoot indicates the system is rigid in nature. On the other hand, in Figure 1.2, the 

uncompensated system is incapable of reaching the desired reference input. These factors 

are detrimental to the system in which may induce a slow response during trajectory tracking 

that further degrades the positioning accuracy. 
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Figure 1.1: Open loop system response to rectangular input 

 

 

Figure 1.2: Uncompensated system response to different step input 

Experimental
Line




