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ABSTRACT 

 

 

Fused Deposition Modelling (FDM) is one of the most popular RP techniques available in 

the market. However, there is still limitation in terms of FDM performance such as surface 

roughness and dimensional accuracy. Creation of a part with good surface roughness and 

dimensional accuracy is critical as it can affect the part accuracy, post-processing cost and 

functionality of the parts. Based on the literature review, it was found that studies on the 

effect of ambient temperature in improving the surface roughness and dimensional 

accuracy of FDM built parts have been limited to certain extend. Environmental factors 

such as temperature and relative humidity have been believed to be the sources of error 

affecting surface finish and dimensional accuracy. Besides, temperature fluctuations during 

production also believed could lead to delamination and higher surface roughness. 

Therefore, this research study aims to investigate the effect of parameter variables such as 

ambient temperature, layer thickness and part angle to the samples fabricated by using 

FDM machine. The response surface methodology (RSM) was employed by using 

historical data in the experiment to determine the significant factors and their interactions 

on the FDM performance. Three levels manipulated factors namely ambient temperature 

(30°C, 45°C, 60°C), layer thickness (0.178 mm, 0.267 mm, 0.356 mm) and part angle 

(22.5°, 45°, 67,5°) have been studied. A total of 29 numbers of experiments had been 

conducted including two replications at center point. The results showed that all the 

parameter variables have significant effects on the part surface roughness and dimensional 

accuracy. Layer thickness are the most dominant factors affecting the surface roughness. 

Meanwhile, ambient temperature was the most dominant in determining part dimensional 

accuracy. The responses of various factors had been illustrated in diagnostic plot and 

interaction graph. Besides, the results also had been illustrated in further surface roughness 

and cross-sectional sample analysis. The optimum parameter required for minimum 

surface roughness and dimensional accuracy was at ambient temperature 30.01°C, layer 

thickness 0.18 mm and part angle 67.38°. The optimization has produced the maximum 

productivity with RaH 2.78 µm, RaV 12.38 µm and RaS 10.92 µm. Meanwhile, 

dimensional accuracy height 3.2%, length 2.1%, width 3.7% and angle 0.39°. 
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ABSTRAK 

 

 

Permodelan Pemendapan Bersatu (FDM) adalah salah satu teknik RP paling popular 

yang terdapat di pasaran. Walau bagaimanapun, masih terdapat batasan dari segi 

prestasi FDM seperti kekasaran permukaan dan ketepatan dimensi. Penciptaan bahagian 

dengan kekasaran permukaan yang baik dan ketepatan dimensi adalah kritikal kerana ia 

boleh menjejaskan ketepatan bahagian, kos pasca pemprosesan dan fungsi bahagian. 

Berdasarkan kajian literatur, didapati kajian tentang kesan suhu ambien dalam 

meningkatkan kekasaran permukaan dan ketepatan dimensi bahagian-bahagian yang 

dibina oleh FDM telah terhad kepada beberapa jangkaan. Faktor alam sekitar seperti 

kelembapan suhu dan relatif dipercayai sebagai sumber kesilapan yang mempengaruhi 

kemasan permukaan dan ketepatan dimensi. Selain itu, turun naik suhu semasa 

pengeluaran juga dipercayai boleh mengakibatkan pengosongan dan kekasaran 

permukaan yang lebih tinggi. Oleh itu, kajian ini bertujuan untuk mengkaji kesan 

pembolehubah parameter seperti suhu ambien, ketebalan lapisan dan sudut bahagian 

kepada sampel yang dibuat dengan menggunakan mesin FDM. Kaedah permukaan respon 

(RSM) digunakan dengan menggunakan data sejarah dalam eksperimen untuk menentukan 

faktor-faktor penting dan interaksi mereka terhadap prestasi FDM. Tiga faktor yang 

dimanipulasi iaitu suhu ambien (30 ° C, 45 ° C, 60 ° C), ketebalan lapisan (0.178 mm, 

0.267 mm, 0.356 mm) dan sudut bahagian (22.5 °, 45 °, 67,5 °) telah belajar. Sebanyak 29 

bilangan eksperimen telah dijalankan termasuk dua replikasi dititik pusat. Keputusan 

menunjukkan bahawa semua pembolehubah parameter mempunyai kesan yang ketara 

pada kekasaran permukaan bahagian dan ketepatan dimensi. Ketebalan lapisan adalah 

faktor paling dominan yang mempengaruhi kekasaran permukaan. Sementara itu, suhu 

ambien adalah yang paling dominan dalam menentukan ketepatan bahagian dimensi. 

Respons pelbagai faktor telah digambarkan dalam plot diagnostik dan graf interaksi. 

Selain itu, hasilnya juga digambarkan dalam kekasaran permukaan dan analisis sampel 

keratan rentas. Parameter optimum yang diperlukan untuk kekasaran permukaan 

minimum adalah pada suhu ambien 30.01 ° C, ketebalan lapisan 0.18 mm dan sudut 

67.38°. Pengoptimuman telah menghasilkan produktiviti maksimum dengan RaH 2.78 μm, 

RaV 12.38 μm dan RaS 10.92 μm. Sementara itu ketinggian ketepatan dimensi 3.2%, 

panjang 2.1%, lebar 3.7% dan sudut 0.39. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of study 

Nowadays, industrial production has become increasingly challenging, the focus of 

industries has changed from conventional method to rapid fabrication techniques. The 

requirement for complex shape with rapid production has becomes a new challenge for the 

manufacturers. Aware of the growing demand of the new design, manufacturers require 

accelerating their product development and cycle time to meet the market demand without 

neglecting the product quality. The requirement of product quality with high accuracy and 

surface finish has become an important criterion in engineering application. Therefore, 

manufacturers need to conduct ongoing studies to meet the standard required. So, products 

would response based on the market demand earlier than their competitors.  

 Since 1999, the automotive industry has shown that rapid prototyping (RP) can be 

used to reduce the lead time in the development process (Wiedemann and Jantzen, 1999). 

RP or additive manufacturing is referred as a technology used to produce a physical model 

or a prototype directly from three-dimensional computer-aided-design (3D CAD) data in a 

very short time (Boejang et al., 2013). The potential of the technique is seemed to be 

widespread as the technique helps to optimize the product development cost and time to 

the market and creating complex parts with precise dimension. 

Taking advantage of the flexibility, cost and time saving, RP has been extensively 

used by manufacturers from different industries such as automotive, consumer products, 

business machines, medical and aerospace industry to accelerate their product cycle to the 

market (Chua et al., 2003; Ivanova et al., 2013). The use of RP technology in a production 

is able to reduce the development time by 30-50 percent (Thrimurthulu et al., 2004) due to 
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minimum human intervention including the use of traditional tool such as jigs and fixture 

(Boschetto and Bottini, 2015). Besides, the used of RP also able to minimize the used of 

wastage materials compared than subtractive method such as milling and lead (Peng et al., 

2014).  

The estimated breakdown of worldwide 3D printing has shown that motor vehicles 

and consumer products are the biggest contributor in the worldwide 3D printing use. 

Followed by business machines, medical, academic and aerospace industry (Vashishtha, 

2011). RP has been applied in automotive and consumer product industry to manufacture 

multiple plastic parts via investment casting process. Since many years, investment casting 

has been used to produce complex shape with good surface finish such as producing intake 

manifold in automotive parts. However, the conventional investment casting process is 

time consuming and required higher cost as it involves the use of injection molding for 

pattern preparation (Singh and Singh, 2016). Besides, the used of wax in conventional 

investment casting process susceptible to shrinkage (Taşcioǧlu and Akar, 2003). Injection 

molding has accuracy ups to 0.005 inches.  

Therefore, the possibility of manufacturing plastic parts through fused deposition 

modelling (FDM) within minimum cost has opened a new field of rapid tooling (Pal and 

Ravi, 2007). FDM as a one of the most popular RP technique has provided an alternative 

method for producing investment casting patterns with lower cost within shorter time. 

FDM is selected due to cheaper and low maintenance cost compare than the other RP 

machine available in the market (Jain and Kuthe, 2013). Research study by Stratasys has 

shown that FDM process able to save up cost from 75 to 94% and the time taken can be 

enhanced in 98% faster than the conventional method (Stratasys, 2016b). Besides, the 

advantages of FDM such as easy material change, compact size and low temperature 

operation has make it more popular among the other RP machine (Galantucci et al., 2009).  
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1.2 Problem statement 

Surface quality is a main problem facing in RP. The improvement of surface 

roughness and dimensional accuracy are key issues that need to be addressed for successful 

implementation of RP technology (Rosochowski and Matuszak, 2000; Hopkinson et al., 

2006). As RP is moving towards rapid manufacturing there is an increasing demand on 

obtaining good quality parts with good surface roughness and accuracy. Rapid 

manufacturing is the process of using RP process to construct parts that directly used as a 

finished product or components. Therefore, creation of a part with good surface roughness 

and dimensional accuracy is critical as it can affect the part accuracy, post-processing costs 

and functionality of the parts (Vijay et al., 2012).  

 RP has been used as a master pattern for a broad range of manufacturing process. 

However, the application of RP as a master pattern is limited due to the bad surface 

roughness and dimensional accuracy. The surface roughness value for FDM by using ABS 

material is ranged between 9 µm and 40 µm (Campbell et al., 2002). Meanwhile, the 

percentage of accuracy for FDM is between 0.03 % to 2.21 % in length and 0.32 % to 5.86 

% in width (Akande, 2015). The nature of investment casting will duplicates whatever kind 

of surface condition that the master pattern presents (Bakar et al., 2010). Therefore, the 

quality of RP as a master pattern need to be improved. Investment casting generally 

provides better accuracy with 0.127 mm with normal tolerances and surface finish of 3.125 

µm compared than other casting process (Stratasys, 2016b).  

 Since the past few years, several studies have been made by numerous researches to 

improve the RP performance by using proper adjustment of parameters and post-

processing technique. However, the used of post-processing technique is cost and time 

consuming as it adds more steps in the final process. Meanwhile, the parameters 

optimization is more flexible, less time consuming and cheaper compared to the post-
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processing technique. The  technique involves the controlling various input parameters to 

the fabricated part and it is believed to have significant effect on the RP performance 

(Shojib Hossain et al., 2014). 

 Several parameters have been studied by previous researchers to improve the FDM 

performance. However, to the best of author’s knowledge studies on the effect of ambient 

temperature in improving the surface roughness and dimensional accuracy of FDM built 

parts have been limited to certain extend. Environmental factors such as temperature and 

relative humidity have been believed to be the sources of error affecting surface finish and 

dimensional accuracy  (Gajdoš and Slota, 2013; Mohamed et al., 2015). Besides, 

temperature fluctuations during production also believed could lead to delamination and 

higher surface roughness (Anitha et al., 2009; Galantucci et al., 2009). Therefore, this 

research wants to study and demonstrates how optimizing these parameters can improve 

FDM performance. 

 

1.3 Research objectives 

The objectives of the research are as follows: 

a) To study the effect of layer thickness, ambient temperature and part angle on FDM 

performance such as surface roughness and dimensional accuracy. 

b) To identify the optimum value parameter for layer thickness, part angle and ambient 

temperature as to obtain the lowest surface roughness and high dimensional 

accuracy. 

c) To generate the mathematical prediction model on each part of the FDM 

performance studied. 

 

 


