

Faculty of Manufacturing Engineering

DESIGN OF CASCADE NP/PI CONTROLLER FOR CUTTING FORCE COMPENSATION OF BALL SCREW DRIVEN SYSTEM

Nur Amira binti Anang

Master of Science in Manufacturing Engineering

2018

DESIGN OF CASCADE NP/PI CONTROLLER FOR CUTTING FORCE COMPENSATION OF BALL SCREW DRIVEN SYSTEM

NUR AMIRA BINTI ANANG

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Design of Cascade NP/PI Controller for Cutting Force Compensation of Ball Screw Driven System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	NUR AMIRA BINTI ANANG
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Supervisor Name	:	IR. DR. LOKMAN BIN ABDULLAH
Date	:	

DEDICATION

Thank you Allah for giving me strength to finish this research and thesis. For my parents, Norriza Kasah and Anang Mohamad, who have been loved me since day one, who taught me trust in Allah, encouraging me to believe myself, very supportive and worked so hard for earning an honest living for me and brothers.

For my husband, Muhammad Syahid Hasan, who always give full supports and love. The one who pushes me to be the best of me, responsible and always taking care of me.

For my parents in law, Jamaliah Saibot and Hasan Sirun, who are very understanding, loving and love myself as their own daughter.

ABSTRACT

This research explores control strategies for compensation on effect of cutting forces on accuracy of positioning table of a milling machine using a controller named cascade NP/PI. The control structure of cascade NP/PI controller was based on the conventional cascade P/PI controller with an add-on module of a nonlinear function. The system stability was guaranteed before the nonlinear parameters such as rate of variation of nonlinear gain (KO) and maximum value of error (e_{max}) were determined. Cutting forces exist during milling cutting process, exert additional force on the drive system of the positioning table that if left uncompensated would impact on the accuracy and precision of the system. Therefore, it is crucial that the negative effect of these cutting forces are damped so as to retain the positioning accuracy and precision of the drive system. Cutting forces contain harmonics frequencies depending on the spindle speed rotations. An efficient controller that is able to damp these harmonics content is then desired. In this research, another two controllers were designed, namely, PID controller and cascade P/PI controller to compared the results with the proposed cascade NP/PI controller. The controllers' performances were analysed numerically and validated experimentally on the X-axis of an XY ball screw driven positioning table using cutting forces measured at depth of cut of 0.2mm and 1mm and spindle speed rotations of 1500rpm, 2500rpm and 3500rpm. Analyses were performed on each of these controllers in terms of maximum tracking error, Root Mean Square (RMS) of tracking error and Fast Fourier Transform (FFT) of errors. Results of maximum tracking error showed that cascade NP/PI controller produced the lowest percentage error 0.25% compared to PID and cascade P/PI controller with 0.26% and 0.61% respectively whilst results on error reduction based on RMS of error showed that the proposed cascade NP/PI controller outperformed PID and cascade P/PI controller by as much as 62.1% and 6.3% respectively. Furthermore, spectrum analysis showed that cascade NP/PI controller has successfully compensated the negative effect of the cutting forces with the highest error reduction in term of damping of the peak frequencies by as much as 42.53% and 27.54% compared to PID and cascade P/PI controller respectively. As the research outcome, a review on precise positioning control strategy has been published in 2017. In 2018, the study on the nonlinear function implementing on PID and cascade P/PI controllers have been done and published in journal and book chapter.

ABSTRAK

Kajian ini meneroka strategi kendalian untuk pengurangan daya pemotongan terhadap ketepatan kedudukan meja bagi mesin pengisaran menggunakan pengawal yang diberi nama pengawal lata NP/PI. Struktur kawalan pengawal lata NP/PI adalah berdasarkan pengawal konvensional lata P/PI dengan fungsi tidak linear sebagai modul tambahan. Kestabilan sistem telah dijamin terlebih dahulu sebelum parameter tidak linear seperti kadar variasi nilai tak linear (KO) dan nilai ralat maksimum (e_{max}) telah ditentukan. Daya pemotongan wujud semasa proses pemotongan, menghasilkan daya tambahan pada sistem pemacu meja kedudukan yang jika dibiarkan tidak dikurangkan akan memberi kesan kepada kejituan dan ketepatan sistem. Oleh itu, adalah penting supaya kesan negatif dari daya pemotongan ini diatasi untuk mengekalkan kejituan kedudukan dan ketepatan sistem pemacu. Daya memotong mengandungi frekuensi harmonik bergantung kepada putaran kelajuan pengumpar. Pengawal yang cekap yang dapat menampung kandungan harmonik adalah diingini. Dalam kajian ini dua lagi pengawal telah direka iaitu pengawal PID dan pengawal lata P/PI untuk dibandingkan dengan pengawal lata NP/PI yang dicadangkan. Prestasi pengawal dianalisa secara numerik dan disahkan secara uji kaji pada paksi X yang didorong oleh bola skru meja kedudukan XY menggunakan daya pemotong yang diukur pada kedalaman pemotongan 0.2mm dan 1mm dan putaran kelajuan pengumpar 1500rpm, 2500rpm dan 3500rpm. Analisis dilakukan pada setiap pengawal dari segi ralat trajektori maksimum, ralat trajektori 'Root Mean Square' (RMS) dan magnitud ralat trajektori 'Fast-Fourier-Transform' (FFT). Keputusan ralat trajektori maksimum menunjukkan pengawal lata NP/PI menghasilkan ralat peratusan terendah 0.25% berbanding PID dan pengawal lata P/PI dengan 0.26% dan 0.61% masing-masing manakala keputusan pengurangan ralat berdasarkan ralat trajektori RMS menunjukkan bahawa pengawal yang dicadangkan pengawal lata NP/PI mengatasi PID dan pengawal lata P/PI masing-masing sebanyak 62.1% dan 6.3%. Tambahan pula, analisis spektrum menunjukkan bahawa pengawal lata NP / PI telah berjaya mengurangkan kesan negatif daya pemotongan dengan pengurangan kesilapan yang paling tinggi dalam tempoh redaman frekuensi puncak sebanyak 42.53% dan 27.54% berbanding dengan PID dan pengawal lata P/PI masing-masing. Sebagai hasil penyelidikan, kajian semula mengenai strategi kawalan kedudukan tepat telah diterbitkan pada 2017. Pada tahun 2018, kajian mengenai fungsi tidak linear yang telah dilaksanakan pada pengawal PID dan pengawal lata P/PI telah dilakukan dan diterbitkan dalam jurnal dan bab buku.

ACKNOWLEDGEMENTS

First and foremost, I convey my sincere gratitude to my supervisor, Ir. Dr. Lokman Abdullah, who always being patience and supportive. I would also like to thank my cosupervisor, Assoc. Prof. Dr. Zamberi Jamaludin for his time, ideas, encouragement and effort for sharing knowledge with me.

I would also like to take this opportunity to thank to the Centre for Graduate Studies (PPS), Universiti Teknikal Malaysia Melaka (UTeM) for providing scholarship for me under "Skim Zamalah UTeM" since the first year I registered until the second year of my studies.

In my daily work, I have been blessed with a friendly and cheerful group of fellow students. Thanks to my desk mate, Kak Akmal who always gives me support and believes in me when I feel lost. Thanks to my other sisters, Kak Madihah, Kak Ah, and Kak Su for their cheerful and positive vibes that brings in the lab, always listen and give opinion towards my research. Thank you to my senior, Tsung Heng for always taught me about XY machine, controllers and advise towards my research. Thank you also to Dr Aidawaty for always gives opinion and ideas towards my research. I feel grateful get to know them for the past three years.

Last but not least, thank you to my beloved husband, Syahid who always supports and loves me, being thoughtful and always be there for me for the last six months of our marriage and for the last three years of our friendship. Thank you to my parents in Batu Pahat, Johor. Thank you for your love. I know that I would always have you behind my back. Also, thank you to my parents in law in Ayer Keroh, Melaka for their kindness and support.

TABLE OF CONTENTS

DECI	LAR	ATION	
APPF	ROV	AL	
DEDI	ICA'	ΓΙΟΝ	
ABST	FRA	СТ	i
ABST	RA	K	ii
ACK	NOV		iii
TABI	LEC	DF CONTENTS	iv
LIST	OF	TABLES	vi
LIST	OF	FIGURES	viii
LIST	OF	APPENDICES	xiv
LIST	OF	SYMBOLS	xvi
LIST	OF	ABBREVIATIONS	xviii
LIST	OF	PUBLICATIONS	XX
	-		
CHA	РТЕ	R	
1.	INT	TRODUCTION	1
	1.1	Background	1
	1.2	Problem statement	5
	1.3	Objectives	6
	1.4	Scope of work	6
	1.5	Significance of studies	7
	1.6	Organization of thesis	7
2.	LII	TERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Introduction to milling process	10
	2.3	Factors affecting milling process quality	14
		2.3.1 Rack and pinion drive	15
		2.3.2 Direct linear drive	16
		2.3.3 Ball screw drive mechanism	18
		2.3.4 Friction force	20
		2.3.5 Cutting force	21
	2.4	Compensation techniques and strategy	24
		2.4.1 Explicit estimations of cutting forces	24
		2.4.2 Controller design – PID	26
		2.4.3 Variations in PID controller schemes	29
		2.4.4 Controller design based on cascade controller	34
	2.5	Cutting force measurement method	38
	2.6	Summary	39
3.	RF.	SEARCH METHODOLOGY	42
~ •	3.1	Introduction	42
	3.2	Overall procedure of research work	43
	2.2	Freedower of research from	

PAGE

	3.3 System framework	46
	3.4 Software for design and numerical analyses	47
	3.5 System identification	49
	3.6 Motor constant identification	51
	3.7 Cutting force characterization	52
	3.8 Summary	59
4.	CONTROLLER DESIGN	60
	4.1 Introduction	60
	4.2 Design and analysis of PID controller	60
	4.2.1 Fundamental design of PID controller	60
	4.2.2 Numerical validation of PID tracking performance	68
	4.3 Design and analysis of cascade P/PI controller	70
	4.3.1 Design and analysis of velocity loop PI controller	71
	4.3.2 Design and analysis of position loop P controller	75
	4.3.3 Numerical validation of cascade P/PI tracking performance	79
	4.4 Design and analysis of cascade NP/PI controller	81
	4.4.1 Design and analysis of nonlinear function N	82
	4.4.2 Numerical validation of cascade NP/PI tracking	89
	performance	
	4.5 Summary	91
5.	RESULT AND DISCUSSION	92
	5.1 Introduction	92
	5.2 Maximum tracking error	92
	5.2.1 Simulation results and analyses	93
	5.2.2 Experimental results and analyses	102
	5.3 Root mean square of tracking error	113
	5.3.1 Simulation results and analyses	114
	5.3.2 Experimental results and analyses	118
	5.4 Fast fourier transform of tracking error	122
	5.5 Discussion	128
	5.5.1 Maximum tracking error	128
	5.5.2 Root mean square error	130
	5.5.3 Fast fourier transform error	131
	5.6 Summary	135
6.	CONCLUSION AND SUGGESTIONS FOR FUTURE WORK	143
	6.1 Conclusions	143
	6.2 Suggestions for future work	145
RE	FERENCES	147
API	PENDICES	165

v

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Design strategies of PID controller elements (Li et al., 2006)	27
3.1	Coordinates motion of the Googol Tech XY ball screw drive system	46
3.2	Value of parameters	50
3.3	Parameters for overall identification	51
3.4	Properties of the cutting process	55
3.5	Measured cutting force in time and frequency domains for different spindle speed	57
3.6	The harmonic amplitudes for 1500rpm, 2500rpm and 3500rpm spindle speed rotations	58
4.1	Tuned gain values of the PID controller	63
4.2	Summary of numerical and theoretical values of tracking error using PID controller	70
4.3	PI controller gain parameters for the velocity loop	72
4.4	Summary of numerical and theoretical values of tracking error using cascade P/PI controller	81
4.5	Parameters of the N-function	85
4.6	Summary of numerical and theoretical values of tracking error using cascade NP/PI controller	91
5.1	Research configurations	93
5.2	Simulation results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm without input disturbance force	96
5.3	Simulation results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm with input disturbance force at 1500rpm	98
5.4	Simulation results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm with input disturbance force at 2500rpm	100

5.5	Simulation results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm with input disturbance force at 3500rpm	102
5.6	Experimental results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm without input disturbance force	105
5.7	Experimental results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm with input disturbance force at 1500rpm	107
5.8	Experimental results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm with input disturbance force at 2500rpm	109
5.9	Experimental results of maximum tracking errors and percentage errors for different controllers at reference amplitude of 10mm and 20mm with input disturbance force at 3500rpm	113
5.10	Summary of simulation results of RMS errors between different controllers without input disturbance	115
5.11	Summary of simulation results for RMS errors between different controllers with input disturbance	117
5.12	Summary of experimental results for RMS errors between different controllers without input disturbance	119
5.13	Summary of experimental results for RMS errors between different controllers with input disturbance	121
5.14	FFT analyses on error reduction for different controllers at reference amplitude of 10mm and input disturbance of 1500rpm	124
5.15	FFT analyses on error reduction for different controllers at reference amplitude of 10mm and input disturbance of 2500rpm	125
5.16	FFT analyses on error reduction for different controllers at reference amplitude of 10mm and input disturbance of 3500rpm	127
5.17	Average percentage FFT error reduction (10mm)	128

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	General structure of machining and finishing processes (Kalpakjian and Schmid, 2013)	2
1.2	General feed drive system (Altintas et al., 2011)	3
1.3	Ball screw mechanism (Vicente et al., 2012)	3
2.1	Types of milling operations (Kalpakjian and Schmid, 2013)	11
2.2	Peripheral milling (Kalpakjian and Schmid, 2013)	11
2.3	Face milling (Kalpakjian and Schmid, 2013)	12
2.4	(a) Conventional milling (b) Climb milling (Kalpakjian and Schmid, 2013)	12
2.5	End milling process (Kalpakjian and Schmid, 2013)	13
2.6	Example of an end milling cutting tool	14
2.7	General structure of rack and pinion (Moscrop, 2008)	16
2.8	Structure of iron core linear motor (Chiew, 2017)	17
2.9	General structure of direct linear drive (Pritschow, 1998)	17
2.10	General structure of ball screw drive (Zhang and Chen, 2017)	19
2.11	Pre-sliding and sliding regimes (Jamaludin, 2008)	20
2.12	Forces acting on cutting zones (Kalpakjian and Schmid, 2013)	22
2.13	Schematic diagram of cascade P/PI controller with cutting force estimator (Jamaludin, 2008)	25
2.14	Schematic diagram of cascade P/PI controller with inverse-model- based disturbance observer (Maharof et al., 2017)	26
2.15	Nyquist plot for stability system analysis (Abdullah et al., 2012)	29
2.16	Adaptive PID for nonlinear system (Nuella et al., 2009)	31
2.17	Block diagram of genetic algorithm PID-based (Singh, 2015)	32
2.18	Genetic algorithm for optimization of PID controller (Sun et al., 2018)	32
2.19	Results of FNPID controller based on hysteresis effect (Tang and Li, 2015)	33

2.20	Basic configuration of fuzzy logic system (Gil et al., 2017)	34
2.21	General scheme of cascade controller (Jamaludin, 2008)	34
2.22	Structure of cascade fuzzy P/PI controller (Retas et al., 2016)	36
2.23	Comparisons between cascade P/PI, DRTC and ADRTC (Zhang and Chen, 2017)	37
2.24	IMBDO based on conventional cascade P/PI controller (Maharof et al., 2017)	37
2.25	Kistler dynamometer Type 9257B (Overview of Products: Kistler Dynamometer Manual, 2013)	39
3.1(a)	Flowchart of overall research work	44
3.1(b)	Flowchart of overall research work	45
3.2	System framework	47
3.3	Sisotools toolbox used in this research	48
3.4	ControlDesk software used in this research	49
3.5	Comparison between FRF measurement and the best fit model	50
3.6	Double integrator model or mass line model	51
3.7	Overall procedures for cutting force characterization	52
3.8	Position the cutting force as input disturbance signal	53
3.9	Dimensions of the aluminium block with four drilled holes	53
3.10	Diagram for cutting force measurement	54
3.11	Experimental setup for cutting process	56
4.1	PID control structure	61
4.2	Bode diagram of the open loop transfer function with PID controller	63
4.3	Nyquist plot for system with PID controller	65
4.4	Bode diagram of the closed loop system for PID controller	65
4.5	Bandwidth of the system with PID controller	65
4.6	Maximum peak sensitivity values for system with PID controller	66
4.7	Maximum peak value of complimentary sensitivity function for system with PID controller	67
4.8	Flowchart of loop shaping method for PID controller	67
4.9	Numerical and theoretical results of tracking errors for input reference of 10mm and frequencies of 0.4Hz and 0.7Hz using PID controller	69
4.10	Numerical and theoretical results of tracking errors for input reference of 20mm and frequencies of 0.4Hz and 0.7Hz using PID controller	69
4.11	Cascade P/PI control structure	70

4.12	Bode diagram of the open loop transfer function in the velocity loop	73
4.13	Nyquist plot for the velocity loop	73
4.14	Bandwidth determination and maximum peak value of the sensitivity function for the velocity loop	74
4.15	Maximum peak value of the complimentary sensitivity function for the velocity loop	75
4.16	Bode diagram of the open loop transfer function in the position loop	77
4.17	Nyquist plot for the position loop	77
4.18	Bandwidth determination and maximum peak value of the sensitivity function for the position loop	78
4.19	Maximum peak value of the complimentary sensitivity function for the position loop	79
4.20	Numerical and theoretical results of tracking errors for input reference of 10mm and frequencies of 0.4Hz and 0.7Hz using cascade P/PI controller	80
4.21	Numerical and theoretical results of tracking errors for input reference of 20mm and frequencies of 0.4Hz and 0.7Hz using cascade P/PI controller	81
4.22	Cascade NP/PI control structure	82
4.23	Switching function (a) Signum function (b) Sigmoid function	83
4.24	Effect of noise on position errors using signum function and sigmoid function	84
4.25	Flowchart for tuning approach of the N-function parameters	87
4.26	Popov plot of the <i>N</i> -function	88
4.27	Relationship between the nonlinear gains and error based on different <i>KO</i> values	88
4.28	Numerical and theoretical results of tracking errors for input reference of 10mm and frequencies of 0.4 Hz and 0.7 Hz using cascade NP/PI controller	90
4.29	Numerical and theoretical results of tracking errors for input reference of 20mm and frequencies of 0.4 Hz and 0.7 Hz using cascade NP/PI controller	90
5.1	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.4Hz without input disturbance force	95
5.2	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.7Hz without input disturbance force	95
5.3	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.4Hz with input disturbance of 1500rpm	97

Х

5.4	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.7Hz with input disturbance of 1500rpm	98
5.5	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.4Hz with input disturbance of 2500rpm	99
5.6	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.7Hz with input disturbance of 2500rpm	100
5.7	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.4Hz with input disturbance of 3500rpm	101
5.8	Simulation results of tracking errors for different controllers at reference amplitude of 10mm, 0.7Hz with input disturbance of 3500rpm	102
5.9	Experimental results of tracking errors for different controllers at reference amplitude of 10mm, 0.4Hz without input disturbance force	104
5.10	Experimental results of tracking errors for different controllers at reference amplitude of 10mm, 0.7Hz without input disturbance force	104
5.11	Experimental results of tracking errors for different controllers at reference amplitude of 10mm and 0.4Hz with input disturbance force of 1500rpm	106
5.12	Experimental results of tracking errors for different controllers at reference amplitude of 10mm and 0.7Hz with input disturbance force of 1500rpm	106
5.13	Experimental results of tracking errors for different controllers at reference amplitude of 10mm and 0.4 Hz with input disturbance force of 2500rpm	107
5.14	Presence of spike at near zero velocity reversal point for input reference frequency of 0.4Hz and spindle speed of 2500rpm	108
5.15	Experimental results of tracking errors for different controllers at reference amplitude of 10mm and 0.7Hz with input disturbance force of 2500rpm	109
5.16	Comparisons in tracking errors between cascade P/PI and cascade NP/PI controller at reference amplitude of 20mm and 0.4Hz with input disturbance force of 2500rpm	110
5.17	Experimental results of tracking errors for different controllers at reference amplitude of 10mm and 0.4Hz with input disturbance force of 3500rpm	111
5.18	Experimental results of tracking errors for different controllers at reference amplitude of 10mm and 0.7Hz with input disturbance force of 3500rpm	111

5.19	Presence of spike at near zero velocity reversal point for input reference frequency of 0.7Hz and spindle speed of 3500rpm	112
5.20	Comparisons in simulation result of RMS errors between different controllers for input reference amplitude of 10mm and 20mm without input disturbance	115
5.21	Comparison in simulation results of RMS error between different controllers for reference amplitude of 10mm and frequency of 0.4Hz	118
5.22	Comparison in simulation results of RMS error between different controllers for reference amplitude of 10mm and frequency of 0.7Hz	118
5.23	Comparisons in experimental results of RMS error between different controllers for input reference amplitude of 10mm without input disturbance	120
5.24	Comparisons in experimental results of RMS error between different controllers for reference amplitude of 10mm and frequency of 0.4Hz	122
5.25	Comparison in experimental results of RMS error between different controllers for reference amplitude of 10mm and frequency of 0.7Hz	122
5.26	FFT of tracking errors for different controllers at reference amplitude of 10mm and input disturbance of 1500rpm	123
5.27	FFT of tracking errors for different controllers at reference amplitude of 10mm and input disturbance of 2500rpm	125
5.28	FFT of tracking errors for different controllers at reference amplitude of 10mm and input disturbance of 3500rpm	126
5.29	Control configuration of PID controller	129
5.30	Control configuration of cascade P/PI controller	129
5.31	Percentage error reduction among the different controllers using RMS error for tracking amplitude of 10mm and frequency of 0.4Hz	131
5.32	Percentage error reduction among the different controllers using RMS error for tracking amplitude of 10mm and frequency of 0.7Hz	131
5.33	Peak magnitudes of FFT error at harmonic frequencies for reference amplitude of 10mm and frequency of 0.4Hz and spindle speed of (a) 1500rpm, (b) 2500rpm and (c) 3500rpm	133
5.34	Peak magnitudes of FFT error at harmonic frequencies for reference amplitude of 10mm and frequency of 0.7Hz and spindle speed of (a) 1500rpm, (b) 2500rpm and (c) 3500rpm	134
5.35	Summary of percentage error for each controller at different reference amplitude, tracking frequencies, input disturbance and spindle speed of (a) 1500rpm, (b) 2500rpm and (c) 3500rpm	137
5.36	Summary of error reduction based on RMS errors for each controller at different reference amplitude, tracking frequencies and spindle speed of (a) 1500rpm, (b) 2500rpm and (c) 3500rpm	139

5.37 Summary of error reduction based on FFT errors for each controller 141 at different reference amplitude, tracking frequencies, input disturbance and spindle speed of (a) 1500rpm, (b) 2500rpm and (c) 3500rpm

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	General recommendations for milling operations (Kalpakjian and Schmid, 2013)	165
В	Approximation of energy requirements in cutting operations (Kalpakjian and Schmid, 2013)	166
С	Steps on using 'fdident' tool	167
D	Coding to change from time domain data to frequency domain data	173
Е	Comparisons with different values of KO1 and KO2	174
F	Simulation results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz without input disturbance force	175
G	Simulation results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance of 1500rpm	176
Н	Simulation results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance of 2500rpm	177
Ι	Simulation results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance of 3500rpm	178
J	Experimental results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz without input disturbance force	179
К	Experimental results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance of 1500rpm	180
L	Experimental results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance of 2500rpm	181
М	Experimental results of tracking errors for different controllers at reference amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance of 3500rpm	182

N	Simulation comparisons of RMS error for different controllers at reference amplitude 20mm, 0.4Hz and 0.7Hz with input disturbance force	183		
0	Experimental comparisons of RMS error for different controllers at reference amplitude 20mm, 0.4Hz and 0.7Hz with input disturbance force			
Р	Comparisons of FFT Error for different controllers at reference amplitude 20mm, 0.4Hz and 0.7Hz with input disturbance of 1500rpm			
Q	Comparisons of FFT error for different controllers at reference amplitude 20mm, 0.4Hz and 0.7Hz with input disturbance of 2500rpm			
R	Comparisons of FFT error for different controllers at reference amplitude 20mm, 0.4Hz and 0.7Hz with input disturbance of 3500rpm	188		
S	Average percentage FFT error reduction (20mm)	189		
Т	Percentage error reduction for different controllers using RMS error for tracking amplitude of 20mm, 0.4Hz and 0.7Hz with input disturbance force	190		
U	Peak magnitudes of FFT error at harmonic frequencies for reference amplitude of 20mm and frequency of 0.4Hz, 0.7Hz when spindle speed at (a) 1500rpm, (b) 2500rpm and (c) 3500rpm	191		

LIST OF SYMBOLS

a	-	Ferraris relative acceleration signal
d	_	Disturbance force
â	_	Estimated disturbance force
δ	_	Sampling frequency
D	_	Diameter of the cutter
$e_p(t)$	_	Position tracking error
$e_v(t)$	-	Velocity tracking error
e_{max}	-	Maximum value of error
f	_	Feed per tooth
F	_	Friction force
F_c	_	Cutting force
F_t	-	Thrust force
G	_	System
G_p	_	Position controller
G_{pi}	_	Velocity controller
<i>k</i> _f	_	Motor force constant
K_p	_	Proportional controller
K_i	-	Integral controller
K_d	_	Derivative controller
KO	-	Rate of variation of nonlinear gain
т	-	Order of numerator
М	_	Mass of the motor/system
n	_	Order of denominator (n > m)
n_t	_	Teeth number of the cutter
Ν	_	Rotational speed of the cutter

xvi

N_f	_	Normal force
q_i , s	_	Filter numerator coefficients
Q	_	Low pass filter
R	_	Resultant force
и	_	Voltage to the drive amplifier
u_p	_	Position control signal
<i>u_{pi}</i>	_	Velocity control signal
v	_	Linear speed of the work piece or feed
vel	_	Velocity
V	_	Cutting speed
Vest	_	Estimated velocity
Ζ	_	Output position
Żest	_	Estimate position
Zref	_	Reference position
Zact	_	Actual position
\mathcal{O}_{c}	_	Cut-off frequency
ÿ	_	Absolute acceleration
π	_	Pi

rate

xvii

LIST OF ABBREVIATIONS

-	Adaptive disturbance rejection tracking controller
_	Approximation grid evaluation
_	Closed loop transfer function
_	Computer numerical control
_	Design of experiment
_	Disturbance rejection tracking controller
_	Digital signal processing
_	Electrical discharge machining
_	Fast fourier transform
_	Feedforward NPID
_	Fuzzy PID
_	Frequency response function
_	Genetic algorithm
_	Inverse model based disturbance observer
_	Input output
_	Internet of things
_	Just in time learning
_	Linear time invariant
_	Man machine interface
_	Nonlinear PID
_	Open loop transfer function
_	Proportional-derivative
_	Proportional-Integral-Derivative
_	Proportional-integral
_	Programmable logic controller

xviii

- RMS Root mean square
- SISO Single input single output
- TGPID Taguchi-grey-PID