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ABSTRACT 

 

 

This research explores control strategies for compensation on effect of cutting forces on 

accuracy of positioning table of a milling machine using a controller named cascade NP/PI. 

The control structure of cascade NP/PI controller was based on the conventional cascade 

P/PI controller with an add-on module of a nonlinear function. The system stability was 

guaranteed before the nonlinear parameters such as rate of variation of nonlinear gain (KO) 

and maximum value of error (emax) were determined. Cutting forces exist during milling 

cutting process, exert additional force on the drive system of the positioning table that if left 

uncompensated would impact on the accuracy and precision of the system. Therefore, it is 

crucial that the negative effect of these cutting forces are damped so as to retain the 

positioning accuracy and precision of the drive system. Cutting forces contain harmonics 

frequencies depending on the spindle speed rotations. An efficient controller that is able to 

damp these harmonics content is then desired. In this research, another two controllers were 

designed, namely, PID controller and cascade P/PI controller to compared the results with 

the proposed cascade NP/PI controller. The controllers’ performances were analysed 

numerically and validated experimentally on the X-axis of an XY ball screw driven 

positioning table using cutting forces measured at depth of cut of 0.2mm and 1mm and 

spindle speed rotations of 1500rpm, 2500rpm and 3500rpm. Analyses were performed on 

each of these controllers in terms of maximum tracking error, Root Mean Square (RMS) of 

tracking error and Fast Fourier Transform (FFT) of errors. Results of maximum tracking 

error showed that cascade NP/PI controller produced the lowest percentage error 0.25% 

compared to PID and cascade P/PI controller with 0.26% and 0.61% respectively whilst 

results on error reduction based on RMS of error showed that the proposed cascade NP/PI 

controller outperformed PID and cascade P/PI controller by as much as 62.1% and 6.3% 

respectively. Furthermore, spectrum analysis showed that cascade NP/PI controller has 

successfully compensated the negative effect of the cutting forces with the highest error 

reduction in term of damping of the peak frequencies by as much as 42.53% and 27.54% 

compared to PID and cascade P/PI controller respectively. As the research outcome, a review 

on precise positioning control strategy has been published in 2017. In 2018, the study on the 

nonlinear function implementing on PID and cascade P/PI controllers have been done and 

published in journal and book chapter. 
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ABSTRAK 

 

 

Kajian ini meneroka strategi kendalian untuk pengurangan daya pemotongan terhadap 

ketepatan kedudukan meja bagi mesin pengisaran menggunakan pengawal yang diberi 

nama pengawal lata NP/PI. Struktur kawalan pengawal lata NP/PI adalah berdasarkan 

pengawal konvensional lata P/PI dengan fungsi tidak linear sebagai modul tambahan. 

Kestabilan sistem telah dijamin terlebih dahulu sebelum parameter tidak linear seperti 

kadar variasi nilai tak linear (KO) dan nilai ralat maksimum (emax) telah ditentukan. Daya 

pemotongan wujud semasa proses pemotongan, menghasilkan daya tambahan pada sistem 

pemacu meja kedudukan yang jika dibiarkan tidak dikurangkan akan memberi kesan kepada 

kejituan dan ketepatan sistem. Oleh itu, adalah penting supaya kesan negatif dari daya 

pemotongan ini diatasi untuk mengekalkan kejituan kedudukan dan ketepatan sistem 

pemacu. Daya memotong mengandungi frekuensi harmonik bergantung kepada putaran 

kelajuan pengumpar. Pengawal yang cekap yang dapat menampung kandungan harmonik 

adalah diingini. Dalam kajian ini dua lagi pengawal telah direka iaitu pengawal PID dan 

pengawal lata P/PI untuk dibandingkan dengan pengawal lata NP/PI yang dicadangkan. 

Prestasi pengawal dianalisa secara numerik dan disahkan secara uji kaji pada paksi X yang 

didorong oleh bola skru meja kedudukan XY menggunakan daya pemotong yang diukur 

pada kedalaman pemotongan 0.2mm dan 1mm dan putaran kelajuan pengumpar 1500rpm, 

2500rpm dan 3500rpm. Analisis dilakukan pada setiap pengawal dari segi ralat trajektori 

maksimum, ralat trajektori ‘Root Mean Square’ (RMS) dan magnitud ralat trajektori ‘Fast-

Fourier-Transform’ (FFT). Keputusan ralat trajektori maksimum menunjukkan pengawal 

lata NP/PI menghasilkan ralat peratusan terendah 0.25% berbanding PID dan pengawal 

lata P/PI dengan 0.26% dan 0.61% masing-masing manakala keputusan pengurangan ralat 

berdasarkan ralat trajektori RMS menunjukkan bahawa pengawal yang dicadangkan 

pengawal lata NP/PI mengatasi PID dan pengawal lata P/PI masing-masing sebanyak 

62.1% dan 6.3%. Tambahan pula, analisis spektrum menunjukkan bahawa pengawal lata 

NP / PI  telah berjaya mengurangkan kesan negatif daya pemotongan dengan pengurangan 

kesilapan yang paling tinggi dalam tempoh redaman frekuensi puncak sebanyak 42.53% 

dan 27.54% berbanding dengan PID dan pengawal lata P/PI masing-masing. Sebagai hasil 

penyelidikan, kajian semula mengenai strategi kawalan kedudukan tepat telah diterbitkan 

pada 2017. Pada tahun 2018, kajian mengenai fungsi tidak linear yang telah dilaksanakan 

pada pengawal PID dan pengawal lata P/PI telah dilakukan dan diterbitkan dalam jurnal 

dan bab buku.
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a  –  Ferraris relative acceleration signal  

d  –  Disturbance force 

d̂   –  Estimated disturbance force 

δ – Sampling frequency 

D  –  Diameter of the cutter  

ep(t)  –  Position tracking error 

ev(t)  –  Velocity tracking error 

emax – Maximum value of error 

f  –  Feed per tooth  

F  –  Friction force 

Fc  –  Cutting force 

Ft  –  Thrust force 

G  –  System 

Gp –  Position controller 

Gpi  –  Velocity controller 

kf  –  Motor force constant 

Kp  –  Proportional controller 

Ki  –  Integral controller 

Kd  –  Derivative controller 

KO – Rate of variation of nonlinear gain 

m  –  Order of numerator 

M  –  Mass of the motor/system 

n  –  Order of denominator (n > m)  

nt  –  Teeth number of the cutter 

N – Rotational speed of the cutter  
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Nf –  Normal force 

qi, s   –  Filter numerator coefficients 

Q –  Low pass filter 

R  –  Resultant force 

u  –  Voltage to the drive amplifier 

up –  Position control signal 

upi  –  Velocity control signal 

v  –  Linear speed of the work piece or feed rate  

vel  –  Velocity 

V  –  Cutting speed 

Vest  –  Estimated velocity 

Z  –  Output position 

estZ  –  Estimate position 

Zref  – Reference position 

Zact – Actual position 

c   –  Cut-off frequency 

x  –  Absolute acceleration 

π  –  Pi  
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ADRTC  –  Adaptive disturbance rejection tracking controller   

AGE   –  Approximation grid evaluation 

CL   –  Closed loop transfer function 

CNC   –  Computer numerical control 

DoE   –  Design of experiment  

DRTC   –  Disturbance rejection tracking controller 

DSP   –  Digital signal processing 

EDM   –  Electrical discharge machining 

FFT   –  Fast fourier transform 

FNPID  –  Feedforward NPID 

FPID   –  Fuzzy PID 

FRF   –  Frequency response function 
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IMBDO  –  Inverse model based disturbance observer 

I/O   –  Input output 

IoT   –  Internet of things 

JITL   –  Just in time learning 

LTI   –  Linear time invariant 

MMI   –  Man machine interface 

NPID   –  Nonlinear PID 

OL   –  Open loop transfer function 

PD   –  Proportional-derivative 

PID   –  Proportional-Integral-Derivative 

PI   –  Proportional-integral 

PLC   –  Programmable logic controller 
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RMS   –  Root mean square 

SISO   –  Single input single output 

TGPID  –  Taguchi-grey-PID 


