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ABSTRACT 

 

 

Ceramic scaffolds have been widely used in biomedical application to treat bone defects. 

Enhancing the ceramic scaffold by using polymeric materials as coating may improve their 

strength however it will alter their pore characteristic as well as degradation behaviour 

which is crucial for the success of scaffold requirement. Polyhydroxybutyrate-co-valerate 

(PHBV) is degradable and has excellent compatibility properties for biomaterials. Thus the  

objectives of this study are (i)  to determine the sintering temperature for the fabrication by 

using polymeric sponge method (ii) to analyse the effect of PHBV coated Tricalcium (TCP) 

scaffold after in-vitro immersion in simulated body fluid (SBF) solution for 16 weeks (iii) 

to evaluate the bioactivity and biocompatibility of the PHBV coated TCP scaffolds. 

Polyhydroxybutyrate-co-valerate (PHBV) coated TCP scaffolds were fabricated using  

polymeric sponge method. Two types of calcium phosphate (CaP) were used as matrix 

which are commercial (C-CP) and locally (L-TCP) supplied. The CaP scaffolds were 

sintered at optimised sintering temperature of 1450°C. The initial mechanical strength of 

the commercial and  in-house TCP scaffolds are 36.64 KPa and 10.06 KPa respectively. 

The ceramic scaffold were then coated with PHBV using dip coating method, resulting in  

the increased of the  compression strength to 140.00 KPa (PHBV coated C-CP) and 148.00 

KPa ( PHBV coated L-TCP) respectively. The scaffold contained interconnect pores with 

a range of size from 200 to 400µm, and porosity  within 81% to 83%. Their mechanical 

strength in simulated body fluid (SBF) solution was retained up to 12 weeks with good pore 

integrity structure. The formation of bone-like apatite in the shape of globular and 

cauliflower-like cluster was observed  after 4 weeks of immersion  in SBF solution. The 

presence of apatite mineral was confirmed by FTIR, XRD and EDX analysis indicating 

bioactive ability of the scaffold. Biocompatibility analysis shows that the scaffolds were 

able to retain Saos-2 cells after 24 hours indicating their ability to allow cells proliferation  

to adhere to it. The increasing cell  metabolic activity up to day 14 was also observed 

suggested that the scaffold is compatible with cells and non toxic. This finding has indicated  

that the PHBV coated TCP scaffold is a compatible and comparable material that is 

potential to be used in bone tissue engineering.  
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ABSTRAK 

 

 

Perancah seramik telah digunakan secara meluas di dalam bidang perubatan bio untuk 

merawat kecacatan tulang. Polyhydroxybutyrate-co-valerate (PHBV) adalah bahan 

polimer yang boleh terurai dan memiliki sifat keserasian yang baik untuk digunakan 

sebagai bahan bio perubatan. Kekuatan perancah seramik boleh ditingkatkan dengan 

menyadurnya menggunakan bahan polimer, tetapi ini akan mengubah sifat liang serta sifat 

keserasian perancah yang mana ianya amat penting dalam memastikan kejayaannya 

sewaktu proses penggunaan. Oleh itu, objektif kajian ini adalah untuk menentukan suhu 

pembakaran perancah menggunakan kaedah replikasi span polimer, untuk menilai kesan 

tempoh perendaman in-vitro di dalam larutan cecair simulasi badan terhadap sifat 

mekamikal  perancah trikalsium (TCP) bersalut PHBV dan untuk menilai sifat bioaktif dan 

sifat keserasian perancah TCP bersalut PHBV. Perancah TCP yang disaluti lapisan PHBV 

telah dihasilkan dengan menggunakan kaedah replikasi span polimer. Dua jenis bahan 

mentah kalsium fosfat (CaP) digunakan sebagai matrik iaitu bergred komersial (C-CP) 

dan tempatan (L-TCP). Perancah CaP dibakar pada suhu optimum iaitu 1450°C. Kekuatan 

mekanikal permulaan perancah  TCP komersial dan tempatan adalah 36.64 KPa dan 10.06 

KPa. Perancah seramik kemudiannya disalut dengan PHBV dengan menggunakan kaedah 

penyalutan celup. Penyalutan ini meningkatkan kekuatan mampatan perancah kepada 

140.00 KPa dan 148.00 KPa bagi perancah C-TCP bersalut PHBV  dan L-TCP bersalut 

PHBV. Perancah TCP bersalut PHBV memiliki liang saling bersambung yang bersaiz di 

dalam lingkungan 200 - 400μm, dan peratusan  keliangan 81% hingga 83%. Kekuatan  

mekanikal dan struktur liang perancah  sewaktu rendaman in-vitro di dalam SBF adalah 

bertahan dengan baik sehingga minggu ke- 12. Longokan apatit dalam bentuk global dan  

bunga kubis terhasil seawal 4 minggu semasa proses rendaman. Kehadiran mineral apatit 

ini dicirikan dengan menggunkaan FTIR, XRD dan EDX yang mana mengesahkan 

kebolehan sifat bioaktif perancah. Analisis sifat keserasian menunjukkan bilangan sel jenis 

Saos-2 kekal selepas 24 jam proses pengkulturan, membuktikan keupayaan perancah di 

dalam membantu percambahan sel. Peningkatan aktiviti metabolik sel sehingga hari ke-14 

juga diperhatikan menunjukkan keserasian perancah di dalam menampung kehidupan sel 

dan tidak toksik kepadanya. Dapatan ini menunjukkan bahawa perancah TCP bersalut  

PHBV adalah serasi dan setanding dengan sifat tulang manusia dan memiliki potensi yang 

tinggi untuk digunakan di dalam bidang kejuruteraan tisu tulang.  
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CHAPTER 1 

 

INTRODUCTION 

 

The introduction presented in the thesis are classified into 6 sub-chapter including 

background, problem statement, objectives, research scope, significance of study and 

structure of thesis. 

 

1.1 Background  

In the field of bone tissue engineering, further research has been conducted for the 

past decades to achieve the best condition in term of materials as well as processing 

techniques to improve their application (Li et. al., 2013). As the results, materials used for 

porous scaffold which is suitable for bone healing and structural support with optimum 

osteogenesis abilities was accomplished. Throughout bone tissue regeneratqaion, bone 

scaffold act as a template. Nowadays, besides controlling the porosity of porous scaffold 

during fabrication process technologies being used also improve the properties of the 

scaffold. The uniqueness of natural human bone, they are associate of both mechanical 

properties and architectural design form macroscale to nano scale dimension as shown in 

Figure 1.1. However, the porous scaffold should imitate the natures of the bone to have the 

desired physical properties, mechanical strength and biological properties. It also must be 

biocompatible with the host tissue and able to support proliferation, adhesion and secretory 

activities of the cell (Yang et. al., 2001). 
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Figure 1.1:  Macro to nano scale of bone cell (Li et. al., 2013) 

 

The loss of severely damaged bone are replace through substitution either 

autologous or allogenic as an alternative method. This is the important aspects in 

regenerative medicine. The most notable studied, clinically tested and used synthetic 

materials based on calcium phosphate (CaP) are hydroxyapatite (HAp- Ca10(PO4)6(OH)2), 

β-tricalcium phosphate (β-TCP – Ca3(PO4)2), and biphasic HAp/β-TCP mixture. CaP with 

high biocompatibility and bioactivity of CaP thus, make it the best candidate to fabricate 

porous scaffold. Otherwise, it also builds a connection between ceramic implant and bone 

tissue (Ge et. al., 2008). Besides that, in human healthcare, one of the most expensive cost 

involving tissue and organ failures which might be caused from infections, injuries and 

defects. And the core reason towards this problem is lack of organ and tissue donor. 
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Therefore, the solution that been discovered to encounter this issue is by introducing 

artificial substitutes and non-living processed tissues (Rai et. al., 2012). Though, the flaw 

of the bone or the outcome of the host tissue are not really solved by the substitutes such 

as lack of biocompatibility, non-bioactive material, vascularization of bone and bone 

remodeling (Roche et. al., 2015). Therefore, for a better result bioactive, biodegradable and 

biocompatible materials is a must being used in the field of tissue engineering (TE) (Puppi 

et. al., 2010).  

There are gained in global interest of orthophosphate-based ceramics in orthopedics 

fixation because of the similar composition between mineral phase in human bone which 

promote organization of bone cell of the implants, hence they are the best alternative 

candidates over bio-inert materials such as chromium, cobalt, stainless steel and titanium.  

Within this TE field, β-TCP and HA are the most studied materials due to their greater 

biocompatibility and biodegradability compared to other biomaterials. However, when it 

comes to biodegradable composite, β-TCP are the most favored choice as in order to 

accommodate new bone formation because its resorption rate is better than other 

biomaterials.   

Within regenerative medicine and tissue engineering, there are a lot of natural and 

synthetic polymer being used. However, according to Nair and Laurencin (2007) natural  

polymers has been considered to be among the first used for clinical application. According 

to Tang et. al. (2014), natural polymers include cellulose, chitin, silk, hyaluronic acid, 

chitosan, gelatin, albumin, collagen, keratin, elastin and actin. Nevertheless, because of 

their structural complexity, possible immunogenicity, and inferior biomechanical 

properties make they difficult to be used. In order to avoid the weaknesses of natural 

polymer, the potential candidates in tissue engineering which is synthetic polymer has been 

introduced. Synthetic polymer not only easy to tailor to any form for tissue engineering but 
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they also easy to get compared to natural polymers. In tissue engineering and regenerative 

medicine field, major synthetic polymers used are polycaprolactone (PCL), poly(ethylene 

glycol) (PEG), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactide-co-glycolic 

acid) (PLGA), polyhydroxybutyrate (PHB), poly(hydroxyvalerate) (PHV), 

poly(hydroxybutyrate- valerate) (PHBV), poly(dioxanone) (PDS), poly(propylene 

fumarate) (PPF), polyurethanes (PUs), polyphosphazenes, polyanhydrides, and polyacetals 

(Tang et. al., 2014). 

 

1.2 Problem statement 

A lot of efforts have been dedicated over the past decades in the development of 

biodegradable scaffolds which mimicking natural bone tissues in term of excellent 

biocompatibility as well as mechanical properties (Holland et. al., 2005; Wagoner-johnson 

et. al., 2011). As an example, according to Kang et. al. (2011), the widely studied of HA 

and β-TCP are to endeavor the strong biocompatibility, biodegradability, desire 

compressive strength of ceramics and flexibility of ductile polymers. Nevertheless, there 

are several methods involving in strengthening the mechanical strength of composites 

scaffold and one of them is polymer matrix approach as well as self-assembled mineralized 

collagen method (Fabbri et. al., 2010). Though by using these methods, the amount of 

ceramic matrix being used is limited hence, the composite’s bioactivity will be affected 

(Bleach et. al., 2002). As instance, by increasing 10% to 40% volume of calcium phosphate 

which is HA, the materials become fragile so, to overcome the problem the HA content will 

be limited to 20% volume (Tan et. al., 2003). As a consequence, to improve the bioactivity 

properties, HA is being introduced with polymer to form a nanocomposite layers on the 

ceramic matrix (Roohani et. al., 2010) but, this method did not show in improving the 

strength of monolithic polymer also difficult to produce with high concentration of ceramic 


