

Faculty of Manufacturing Engineering

INVESTIGATION OF NATURAL HYBRID SANDWICH PANEL AND THIN SKIN COVER TOWARDS ACOUSTICAL PERFORMANCE

Paramananthan A/L Balakrishnan

Master of Science in Manufacturing Engineering

2019

INVESTIGATION OF NATURAL HYBRID SANDWICH PANEL AND THIN SKIN COVER TOWARDS ACOUSTICAL PERFORMANCE

PARAMANANTHAN A/L BALAKRISHNAN

A thesis submitted in fulfilment of the requirement for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "Investigation of Natural Hybrid Sandwich Panel and Thin Skin Cover towards Acoustical Performance" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Paramananthan A/L Balakrishnan
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Supervisor Name	:	Associate Professor Ir. Ts. Dr. Mohd Yuhazri Yaakob
Date	:	

DEDICATION

Dedicated to my Spritual Master Guruji Shri Brahmaatmanda for His shower of blessings. My beloved father, mother, wife, and children for giving me moral support and encouragement.

ABSTRACT

Sandwich structure is a very expensive engineering material. However, due to its multiple advantages such as light weight and high strength, its demand is relatively high. In this project, the natural material fiber was intended to replace the synthetic fiber in the core to reduce its dependency on synthetic materials. Basically, the use of natural material can minimize the cost in terms of materials and processing as well as to conserve the environment by reducing the waste of natural material. This research utilized the green natural fiber in the manufacturing of acoustic panel which must own good behavior such as the sound absorption. Furthermore, the materials and the processes involve are simple and cost effective. The materials used were coconut fiber, polystyrene, polyurethane, and polyester. The sandwich structure was done by using hand lay-up and press technique using a hydraulic press machine with 1 ton pressure. The natural acoustic panel is drilled in order to produce perforation on the surface of the panel. The parameter used in this research is the perforation of the natural fiber. The suggested diameter for the perforation is 3 mm and 6 mm. The acoustical behavior of the sandwich structure was tested by using impedance tube test. There are 23 sample designs for the core and 18 samples for the skin cover were prepared for the impedance tube testing. The impedance tube testing was used to measure the absorption coefficient of the natural fiber. Among the 23 samples that had been tested, the most suitable sample to be applied as an acoustic panel at low, medium and high frequency were S3, S13 and S14, respectively. In particular, 0.90, 0.98 and 0.85 of the absorption coefficient value at 600, 1500 and 2400 Hz, respectively. There is no or less research and testing done for the skin material. The suggested skin material also serves as a decorative and protective layer for the core or acoustic panel. The proposed material which is the cotton material with 2 layers of the same material with an 10 mm air gap in between the 2 layers and 10 mm gap to the core was recommended to be used as skin material for an acoustic core panel as the material had a very good sound absorption coefficient.

ABSTRAK

Struktur 'sandwich' merupakan bahan kejuruteraan yang sangat mahal. Walaubagaimanapun, ianya mempunyai banyak kelebihan seperti ringan dan kekuatan yang tinggi, maka permintaan terhadap struktur 'sandwich' adalah sangat tinggi. Dalam kajian ini, bahan semulajadi dipilih untuk dijadikan bahan serat pada struktur 'sandwich' untuk menggantikan bahan sintetik dan secara tidak langsung dapat mengurangkan pergantungan terhadap bahan sintetik. Secara umumnya, penggunaan bahan semulajadi juga dapat mengurangkan kos dari segi bahan mentah dan pemprosesan serta dapat memelihara alam sekitar dengan mengurangkan bahan buangan daripada sumber bahan semulajadi. Kajian ini dilaksanakan bagi memperluaskan penggunaan bahan semulajadi atau bahan hijau untuk dijadikan panel akustik yang mempunyai keupayaan yang tinggi untuk menyerap getaran bunyi. Selain itu, penggunaan bahan mentah dan proses yang digunakan dalam kajian ini adalah mudah didapati dan kos yang berpatutan. Bahanbahan yang diperlukan untuk menghasilkan panel akustik adalah sabut kelapa, polistirena, poliuretana, dan poliester. Struktur 'sandwich' dihasilkan dengan menggunakan teknik 'hand lay-up' dan ditekan dengan mesin tekan hidraulik dengan tekanan 1 tan. Panel akustik semulajadi tersebut digerudi untuk menghasilkan lubang pada permukaan panel. Faktor yang digunakan di dalam kajian ini adalah perbezaan saiz lubang pada gentian semulajadi. Diameter yang digunakan untuk penembusan bagi akustik panel tersebut adalah 3 mm dan 6 mm. Sifat akustik yang terdapat di dalam struktur 'sandwich' akan diuji dengan menggunakan ujian tiub impedan. Terdapat 23 reka bentuk sampel'core' dan 18 sampel untuk 'skin cover' akan disediakan untuk ujian tiub impedan. Ujian tiub impedans adalah untuk mengukur pekali penyerapan gentian semula jadi. Berdasarkan ujian yang dijalankan ke atas 23 sampel tersebut sampel terbaik dan sesuai untuk digunakan sebagai panel akustik pada frekuensi rendah, sederhana dan tinggi adalah sample nombor S3, S13, dan S14 yang mana mempunyai penyerapan bunyi sebanyak 0.90, 0.98 and 0.85 pada frekuensi 600, 1500 and 2400 Hz. Tidak ada kajian yang dibuat untuk lapisan luar panel akustik sebelum ini. Lapisan kulit ataupun lapisan luar ini memainkan peranan yang penting kerana lapisan luar ini boleh juga berfungsi sebagai perlindungan dan perhiasan. Bahan yang dicadangkan sebagai kulit dalam kajian ini ialah kain kapas dimana dua lapisan kain kapas di antara dua ruang udara 10mm bagi panel akustik dimana bahan kain kapas membuktikan bahawa ianya mempunyai pekali penyerapan bunyi yang baik.

ACKNOWLEDGEMENTS

First and foremost, I would want to thank the Almighty God and my Guru for their love, support, blessings and Grace.

Particularly I would like to take this opportunity to express my sincere acknowledgement and deepest gratitude to my supervisor Associate Professor Ir. Ts. Dr. Mohd Yuhazri Bin Yaakob from the Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to En. Johardi Bin Abdul Jabar, Assistant Engineer, Vibration and Acoustics Laboratory, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his assistance and efforts in all the lab and analysis work.

Special thanks to my En. Kamal Bin Hat, Lecturer at the Department of Mechanical Engineering, Politeknik Nilai Negeri Sembilan for his assistance and help in analysis work. Thank you to my Father, mother, wife and children for their patience and support all through the years.

Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

iii

TABLE OF CONTENTS

DEC APP DEI	CLARA PROVA DICATI	TION L ION	
ABS ABS ACH TAP LIST LIST LIST LIST	TRAC TRAK NOWI ELE OF F OF T F OF FI F OF A F OF S F OF P	Γ LEDGEMENTS 'CONTENTS ABLES IGURES BBREVIATIONS YMBOLS UBLICATIONS	i iii iv vii viii xviii xx xx
CHA	APTER		
1.	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Problem statement	3
	1.3	Research objectives	6
	1.4	Scopes of research	6
	1.5	Rational of the research	7
	1.6	Thesis organization	8
2.	LITI	ERATURE REVIEW	10
	2.1	Introduction to composite material	10
		2.1.1 The classification of composite material	11
		2.1.2 Classification of natural composite	11
		2.1.3 Plant fibers	12
	2.2	Sandwich structure	13
		2.2.1 Core	14
		2.2.2 Skin	14
	2.3	Previous research of acoustic properties of natural fiber	15
		2.3.1 Acoustic properties of coconut fiber	16
		2.3.1.1 Effect of perforation on the acoustic panel	19
		2.3.1.2 Effect of air gap on acoustic panel	21
		2.3.2 Acoustic properties of oil palm fiber	22
		2.3.3 Acoustic properties of arengapinnata (sugar paim)	25
	2.4	2.5.4 Acoustic properties of sisal fiber	20
	2.4 2.5	Summary	27
	2.3	Summary	29
3.	MET	HODOLOGY	32
	3.1	Overview	32
	2.2	3.1.1 Flow chart of the research methodology	33
	3.2	Kaw material selection	34
		5.2.1 Coconut liber	34
		5.2.2 Unsaturated polyuretnane (PU)	36

		3.2.3 Sandwich core dimension	38
		3.2.4 Coconut CSM	39
		3.2.5 Polystyrene foam	40
		3.2.6 Aluminum plate	41
		3.2.7 Paper	42
		3.2.8 Non-woven fabric	43
		3.2.9 Plastic sheet	44
		3.2.10 Sample fabrication of the skin cover	44
	3.3	Sample preparation for impedance tube testing	45
		3.3.1 Sample preparation of the core for impedance tube	
		testing	45
		3.3.2 The layer arrangement based on the serial number	47
		3.3.3 Sample preparation and arrangements of the skin	
	2 4	cover for impedance tube testing	52
	3.4	Impedance tube testing	56
	3.5	Morphological analysis	59
	3.6	Summary	59
4.	RES	ULT AND DISCUSSION	61
	4.1	Acoustical performance testing	61
		4.1.1 Impedance tube testing	61
		4.1.2 Frequency range	62
	4.2	Data analysis on the core	62
		4.2.1 Sample 1	63
		4.2.2 Sample 2	65
		4.2.3 Sample 3	67
		4.2.4 Sample 4	69
		4.2.5 Sample 5	70
		4.2.6 Sample 6	72
		4.2.7 Sample 7	73
		4.2.8 Sample 8	75
		4.2.9 Sample 9	76
		4.2.10 Sample 10	77
		4.2.11 Sample 11	79
		4.2.12 Sample 12	80
		4.2.13 Sample 13	81
		4.2.14 Sample 14	83
		4.2.15 Sample 15	84
		4.2.16 Sample 16	85
		4.2.17 Sample 17	86
		4.2.18 Sample 18	88
		4.2.19 Sample 19	89
		4.2.20 Sample 20 4.2.21 Sample 21	90
		4.2.21 Sample 21	91
		4.2.22 Sample 22	92
	12	Fifect of single layer on accustic panel	94
	4.3 1 1	Effect of sandwich structure on acoustic panel	93 07
	4.4 15	Effect of perforation size on acoustic panel for single layer	97 00
	т.Ј	Enter of performion size on accusic parter for single rayer	<u> </u>

	4.6	Effect of perforation size on acoustic panel for sandwich	101
	47	Absorption coefficient α against frequency Hz of the samples	101
	7.7	at low frequency	102
	4.8	Absorption coefficient α against frequency Hz of the samples	102
		at medium frequency	103
	4.9	Absorption coefficient, α against frequency. Hz of the samples	
		at high frequency	104
	4.10	Data analysis on the skin cover	105
		4.10.1 Aluminum plate	106
		4.10.1.1 Sample AL-1	106
		4.10.1.2 Sample AL-2	108
		4.10.1.3 Sample AL-3	109
		4.10.2 Plastic skin	112
		4.10.2.1 Sample Pl-1	112
		4.10.2.2 Sample PL-2	114
		4.10.2.3 Sample PL-3	115
		4.10.3 Banner (gloss vinyl reinforced with nylon mesh)	117
		4.10.3.1 Sample BN-1	117
		4.10.3.2 Sample BN-2	118
		4.10.3.3 Sample BN-3	120
		4.10.4 Wall paper (used for home decoration)	121
		4.10.4.1 Sample WP-1	122
		4.10.4.2 Sample WP-2	123
		4.10.4.3 Sample WP-3	125
		4.10.5 Non-woven fabric	126
		4.10.5.1 Sample NW-1	126
		4.10.5.2 Sample NW-2	128
		4.10.5.3 Sample NW-3	129
		4.10.6 Cotton fabric	132
		4.10.6.1 Sample CT-1	132
		4.10.6.2 Sample CT-2	133
		4.10.6.3 Sample CT-3	135
		4.10.7 Analysis of absorption coefficient results	137
		4.10.7.1 Low frequency range analysis	137
		4.10.7.2 Medium frequency range analysis	139
		4.10.7.3 High frequency range analysis	140
	4.11	Summary	142
5.	CON	CLUSION AND RECOMMENDATIONS	143
	5.1	Conclusion	143
	5.2	Recommendation for future research	145
REF	EREN (CES	147

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Type of natural fibers used in acoustic application	16
2.2	The orientation or type of fiber	18
2.3	Type of panel and the properties of the acoustic panel	20
2.4	Material and structural parameters of micro-perforated panel	21
2.5	Density, thickness, and sound absorption coefficient at	23
	various frequencies (Sihabut and Laemsak, 2010)	
3.1	Mechanical properties of aluminium	42
3.2	General mechanical properties of paper	43
3.3	The layer arrangement of the sample in the impedance tube	47
	testing	
3.4	Samples arrangements for impedance tube testing	52
4.1	The selected samples for different frequency range	99

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	The classification of natural fibers (Snehamayee, 2012)	12
2.2	Typical sandwich structure (Wang and Liu, 2003)	14
2.3	The absorption coefficient of coconut fiber with and	19
	without composite perforated panel	
2.4	The distance between the holes or perforation of the	20
	samples	
2.5	An arrangement of perforated plates and airspaces	22
	(Congyun and Qibai, 2005)	
2.6	A set of specimens with various finishing (a & b) rough	23
	surface, (c) screen surface	
2.7	Percentage of sound absorption coefficient of oil palm	24
	frond fibreboard with different finishing (Sihabut and	
	Laemsak, 2010)	
2.8	Fibre extracted from oil palm frond (Sihabut and	25
	Laemsak, 2010)	
2.9	Sound absorption coefficient versus frequencies of	26
	arengapinnata, oil palm and coconut (coir) fiber	
	(Lindawati et al. 2010)	

viii

2.10	The (a) sisal fiber and (b) sisal plant (Azevedo and	27
	Nabuco, 2005)	
2.11	Comparison between fibreglass, sisal fiber and sisal	27
	carpet (Azevedo and Nabuco, 2005)	
2.12	The diagram of standing wave apparatus (Sihabut and	28
	Laemsak, 2010)	
3.1	Flow chart of the research methodology	33
3.2	The cross section of coconut fruits (Nor et al. 2004)	35
3.3	The CSM coconut fiber	36
3.4	The PU foam (a) part A and (b) part B	37
3.5	The mixture of PU foam is poured into the mould	38
3.6	The PU foam in solid form	38
3.7	The hydraulic cold press machine at composite lab	39
3.8	Mixture of PU foam is poured into the CSM coconut fiber	40
3.9	(a) Polystyrene foam and (b) prepared testing sample	41
3.10	1mm perforated aluminum plate	42
3.11	A roll of wallpaper	43
3.12	Nonwoven fabric	44
3.13	(a) Custom made 33.3 mm acrylic glass ring (b)	45
	material attached to ring	
3.14	Schematic diagram of impedance tube testing (Jiang et al.	46
	2012)	
3.15	The experimental setup for the impedance tube testing	57
	system	

4.1	CSM coconut fiber	63
4.2	The graph of absorption coefficient against frequency	63
4.3	SEM image of CSM coconut fiber	64
4.4	Polyurethane foam	65
4.5	The graph of absorption coefficient against frequency	66
4.6	The SEM image of PU foam	66
4.7	The influences of pore cell sizes on sound absorption	67
	coefficient of closed cell PU foams: A1- 0.35 mm pore	
	cell, A2- 0.67 mm pore cell, A3 - 0.77 mm pore cell, A4	
	- 1.05 mm pore cell (Zhang <i>et al.</i> , 2012)	
4.8	CSM coconut fiber filled polyurethane	67
4.9	The graph of absorption coefficient against frequency of	68
	S3	
4.10	The SEM image of the CSM coconut fiber filled with PU	69
	at the magnification of 100X	
4.11	Polystyrene foam	69
4.12	The graph of absorption coefficient against frequency of	70
	S4	
4.13	CSM coconut fiber filled with polyurethane (3 mm)	70
4.14	The graph of absorption coefficient against frequency of	71
	S5	
4.15	Polyurethane foam (with 3 mm hole)	72
4.16	The graph of absorption coefficient against frequency of	73
	S6	

4.17	CSM coconut fiber filled with polyurethane (with hole 6	74
	mm)	
4.18	The graph of absorption coefficient against frequency of	74
	S7	
4.19	Polyurethane foam (with hole 6 mm)	75
4.20	The graph of absorption coefficient against frequency of	75
	S8	
4.21	Sandwich structure of CSM coconut fiber filled with	76
	polyurethane with CSM coconut fiber	
4.22	The graph of absorption coefficient against frequency of	77
	S9	
4.23	Sandwich structure CSM coconut fiber filled with	77
	polyurethane (3 mm hole) with CSM coconut fiber	
4.24	The graph of absorption coefficient against frequency of	78
	S10	
4.25	Sandwich structure of CSM coconut fiber filled	79
	polyurethane with 6mm holes and CSM coconut fiber	
4.26	The graph of absorption coefficient against frequency of	79
	S11	
4.27	The polyurethane foam and CSM coconut fiber	80
4.28	The graph of absorption coefficient against frequency of	81
	S12	
4.29	Sandwich structure of polyurethane foam with CSM	82
	coconut fiber	

4.30	The graph of absorption coefficient against frequency of	82
	S13	
4.31	Sandwich structure of polyurethane foam with 6 mm	83
	holes And CSM coconut fiber	
4.32	The graph of absorption coefficient against frequency Of	84
	S14	
4.33	Sandwich structure of CSM coconut fiber filled	84
	polyurethane with polystyrene foam	
4.34	The graph of absorption coefficient against frequency of	85
	S15	
4.35	Sandwich structure of CSM coconut fiber with 3 mm hole	85
	and polystyrene foam	
4.36	The graph of absorption coefficient against frequency of	86
	S16	
4.37	Sandwich structure of CSM coconut fiber with 6mm hole	87
	and polystyrene foam	
4.38	The graph of absorption coefficient against frequency S17	87
4.39	Sandwich structure of polyurethane foam and polystyrene	88
	foam	
4.40	The graph of absorption coefficient against frequency of	88
	S18	
4.41	Sandwich structure of polyurethane foam and 3 mm hole	89
	polystyrene foam	

4.42	The graph of absorption coefficient against frequency of	90
	S19	
4.43	Sandwich structure of polyurethane foam with 6 mm hole	90
	and polystyrene foam	
4.44	The graph of absorption coefficient against frequency of	91
	S20	
4.45	Sandwich structure of CSM coconut fiber filled	91
	polyurethane and polyurethane foam	
4.46	The graph of absorption coefficient against frequency of	92
	S21	
4.47	Sandwich structure of CSM coconut fiber filled	93
	polyurethane with 3mm hole polyurethane foam	
4.48	The graph of absorption coefficient against frequency of	93
	S22	
4.49	Sandwich structure of CSM coconut fiber filled	94
	polyurethane with 6mm hole and polyurethane foam	
4.50	The graph of absorption coefficient against frequency S23	94
4.51	The graph of the absorption coefficient against frequency,	96
	Hz of the single layer sample without perforation	
4.52	The graph of the absorption coefficient, α against	98
	frequency, Hz of the sandwich structure sample	
4.53	The graph of the absorption coefficient, α against	100
	frequency, Hz of the different perforation size of single	
	layer sample	

xiii

4.54	The graph of the absorption coefficient, α against	
	frequency, Hz of the different perforation size of	
	sandwich structure sample	
4.55	The graph of the absorption coefficient, α against	103
	frequency, Hz of the low frequency	
4.56	The graph of the absorption coefficient, α against	104
	frequency, Hz of the medium frequency	
4.57	The graph of the absorption coefficient, α against	105
	frequency, Hz of the high frequency	
4.58	(a) AL-1 arrangement with air gap; (b) AL-1 perforated	106
	surface of aluminum plate	
4.59	Sound absorption coefficient of single layer aluminum	107
	plate (5 mm air gap)	
4.60	Aluminum foil with air gap	108
4.61	Sound absorption coefficient of single layer aluminum	109
	foil (10 mm air gap)	
4.62	Double layer aluminum foil with 10 mm gap in between	109
	and to back wall	
4.63	Sound absorption coefficient of double layer aluminum	110
	foil (10 mm air gap)	
4.64	(a) Aluminum plate surface magnification at 1.00 K X	111
	(b) Perforation surface or edges on aluminum plate 300X	
	magnification	

4.65	(a) Sample PL-1 arrangement; (b) Sample PL-1 attached	112
	on ring	
4.66	Sound absorption coefficient of single layer plastic skin	113
	with 5mm air gap to back	
4.67	Sample PL-2 with an increased air gap of 10 mm to the	114
	back wall	
4.68	Sound absorption coefficient of plastic skin with 10 mm	115
	air gap to wall	
4.69	Sample PL-3 with a 10 mm air gap in between and 10mm	115
	air gap to back wall	
4.70	Sound absorption coefficient of double layer plastic skin	116
4.71	(a) Sample BN-1 arrangement; (b) sample BN-1 attached	117
	to ring	
4.72	Sample BN-1 with 5mm air gap to back wall	118
4.73	Sample BN-2 with an increased air gap of 10 mm to back	119
	wall	
4.74	Sample BN-2 absorption coefficient results with 10 mm	119
	air gap to back wall	
4.75	Sample BN-3 with 10mm air gap in between layers and	120
	10 mm air gap to back wall	
4.76	Sample BN-3 with 10 mm air gap in between layers and	120
	10 mm air gap to back wall	
4.77	(a) Sample WP-1 arrangement with air gap; (b) Sample	122
	WP-1 attached to a ring	

XV

4.78	Sample WP-1 of wall paper with an air gap of 5 mm to	123
	the back wall	
4.79	Sample WP-2 wall paper with increased air gap to the	123
	back wall	
4.80	Sample WP-2 with an air gap of 10 mm to the back wall	124
4.81	Sample WP-3 with 10mm air gap in between and 10 mm	125
	to back wall	
4.82	Sample WP-3 with 10 mm air gap in between and 10 mm	126
	air gap to back wall results	
4.83	(a) Sample NW-1 with a 5 mm air gap to the back wall;	126
	(b) Sample NW-1 attached to ring	
4.84	Absorption coefficient of sample NW-1 with 5 mm air	127
	gap to back wall	
4.85	Sample NW-2 with an air gap of 10 mm to the back wall	128
4.86	Sample NW-2 absorption coefficient; 10 mm air gap to	129
	back wall	
4.87	Sample NW-3 arrangement with 10 mm air gap in	129
	between and 10 mm to back wall	
4.88	Sample NW-3 absorption coefficient of 2 layers	130
4.89	Porosity of non woven fiber magnification of 20X	131
4.90	Average thickness of non woven fabric fiber	131
4.91	(a) Sample CT-1 arrangement with air gap of 5 mm; (b)	132
	Sample CT-1 on a ring	

4.92	Sample CT-1 absorption coefficient with 5 mm air gap to	133
	back wall	
4.93	Sample CT-2 arrangements with an air gap of 10 mm to	133
	the back wall	
4.94	Sample CT-2 absorption coefficient, increased air gap to	134
	10 mm	
4.95	Sample CT-3 arrangements; 10 mm air gap between	135
	layers and 10 mm air gap to back wall	
4.96	Sample CT-3 absorption coefficient results	136
4.97	Presence of porosity between the woven fibers	137
4.98	Plotted data for absorption of all samples	138
4.99	Plotted data for medium frequency range	140
4.100	Plotted data for high frequency range	141

xvii

LIST OF ABBREVIATIONS

ASTM	-	American Society for Testing And Materials
CFRP	-	Carbon Fiber-Reinforced Polymer
СМС	-	Ceramic Matrix Composite
CSM	-	Chopped Strand Mat
FRP	-	Fiber reinforced panel
GFRP	-	Glass Fiber-Reinforced Polymer
Н	-	Height
ISO	-	International Standards Organization
L	-	Length
MMC	-	Metal Matrix Composite
NAC	-	Normal incidence sound Absorption Coefficient
РМС	-	Polymer Matrix Composite
PU	-	Polyurethane
RAC	-	Random incidence sound Absorption Coefficient
SMI	-	Small Medium Industry
S1	-	Sample 1
S2	-	Sample 2
S3	-	Sample 3
S4	-	Sample 4
S5	-	Sample 5

xviii

S6	-	Sample 6
S7	-	Sample 7
S8	-	Sample 8
S9	-	Sample 9
S10	-	Sample 10
S11	-	Sample 11
S12	-	Sample 12
S13	-	Sample 13
S14	-	Sample 14
S15	-	Sample 15
S16	-	Sample 16
S17	-	Sample 17
S18	-	Sample 18
S19	-	Sample 19
S20	-	Sample 20
S21	-	Sample 21
S22	-	Sample 22
S23	-	Sample 23
W	-	Width