

Faculty of Electrical Engineering

EFFECTS OF CELLULOSE BRIDGING PHENOMENON ON BREAKDOWN VOLTAGE AND CONDUCTION CURRENT CHARACTERISTICS IN MINERAL AND ESTER TRANSFORMER OILS

Muhamad Hafiy Syazwan bin Zainoddin

Master of Science in Electrical Engineering

2018

EFFECTS OF CELLULOSE BRIDGING PHENOMENON ON BREAKDOWN VOLTAGE AND CONDUCTION CURRENT CHARACTERISTICS IN MINERAL AND ESTER TRANSFORMER OILS

MUHAMAD HAFIY SYAZWAN BIN ZAINODDIN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Effects of Cellulose Bridging Phenomenon on Breakdown Voltage and Conduction Current Characteristics in Mineral and Ester Transformer Oils" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: MUHAMAD HAFIY SYAZWAN BIN ZAINODDIN
Date	: 23 NOVEMBER 2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	·
Supervisor Name	: ASSOC. PROF. DR. HIDAYAT BIN ZAINUDDIN
Date	: 23 NOVEMBER 2018

DEDICATION

To my beloved parents and family,

Zainoddin Bin Jamari and Rokiah Binti Mee,

Filzah Farah, Hani Nadhirah and Haziq Ahmad Hazwan

To my prestige wife,

Nur Adibah binti Ghazali

To my outstanding Lecturers and friends,

Thanks for being a great supporter during the journey

ABSTRACT

Dielectric liquid plays a vital role in High Voltage (HV) system. This liquid is used as an insulator, as well as in cooling method to dissipate heat generated from transformer windings and cores. Failure to maintain the condition for insulation will lead to transformer failure and significant losses of power electricity system. Almost 30% of the transformer failures from all over the world are caused by insulation failure and most of the cases are due to contaminant presence in the dielectric liquid. One of the major defects caused by the contamination is bridge phenomenon, potentially act as a conducting current path between two different potentials and lead to insulation failure. In order to understand the bridging phenomenon effects on dielectric liquid, this thesis presents the investigation on the breakdown voltage (BdV) and conduction current path characteristics in three types of dielectric liquid namely Gemini X (mineral oil), MIDEL 7131 (synthetic ester) and MIDEL eN (natural ester) contaminated with cellulose particles. These experiments were conducted in test cell using sphere-sphere electrode configuration under DC voltage stress. Three different contaminant sizes, i.e. 100, 300 and 500 µm, and three different gap distances, i.e. 10, 15 and 20 mm with two types of experiment conditions, i.e. stirred and without stirred were used in BdV and conduction path experiments. Three voltage levels were used for conduction current path experiment, i.e. 2, 7, and 15 kV for 25-minutes and for the BdV experiment, the voltage was applied in steps of 5 kV with a 1-minute interval for each step until BdV occurs or maximum 25-minutes. The formation of cellulose particles bridge have been analysed by taking the time taken for the particles to start attach on the electrodes surface and time taken to completely form cellulose particles bridge between electrodes. The results show that the presence of contaminant in dielectric liquid and the level of dielectric liquid viscosity play important roles in all experiments. In general, the cellulose bridge formation time, conduction current path and BdV increased as the size of particles increased. However, no cellulose bridge is observed when low voltage was applied to lower particle size during conduction current path experiment. In addition, the bridge condition is also different for each experiment, i.e. bridge condition in without stirred condition is always thicker and dense regardless the particle size used and gap distance compared with stirred condition. As a whole, MIDEL eN has a better performance compared to MIDEL 7131 and Gemini X as the BdV recorded is higher regardless the particle size, gap distance and experiment condition. Furthermore, it is obvious that all dielectric samples with contaminant presence will increase the BdV value with no correlation with particle size and gap distance. On the contrary, conduction current path recorded in Gemini X is always the highest which is believed due to the effect of viscosity, as lower viscosity level of dielectric liquid would increase the collation between oil molecules and cellulose particles which contribute to faster bridging formation and higher conduction current path.

ABSTRAK

Cecair dielektrik memainkan peranan penting dalam sistem Voltan Tinggi (HV). Cecair ini digunakan sebagai penebat dan kaedah penyejukan untuk menghilangkan haba yang dihasilkan daripada belitan pengubah dan teras. Kegagalan untuk mengekalkan keadaan penebat di tahap optimum akan membawa kepada kegagalan pengubah dan kesan besar kepada sistem kuasa elektrik. Hampir 30% daripada kegagalan pengubah dari seluruh dunia disebabkan oleh kegagalan penebat dan kebanyakan kes adalah disebabkan oleh pencemaran di dalam cecair dielektrik. Salah satu kesan utama yang disebabkan oleh pencemaran adalah fenomena titian, berpotensi bertindak sebagai jalan yang menjalankan antara dua potensi yang berbeza dan menyebabkan kegagalan penebat. Untuk memahami kesan fenomena penyambungan pada cecair dielektrik, tesis ini membentangkan penyiasatan mengenai ciri-ciri voltan rosak (BdV) dan arus konduksi dalam tiga jenis cecair dielektrik, Gemini X (minyak mineral), MIDEL 7131 (ester sintetik) dan MIDEL eN (estetik semulajadi) yang tercemar dengan zarah selulosa. Eksperimen ini dijalankan dalam sel ujian menggunakan konfigurasi elektrod sfera-sfera di bawah tekanan voltan DC. Tiga perbezaan saiz pencemaran, iaitu 100, 300 dan 500 µm, dan tiga jarak perbezaan jarak, iaitu 10, 15 dan 20 mm dengan dua jenis keadaan, iaitu, dikacau dan tanpa dikacau dalam BdV dan arus konduksi. Tiga tahap voltan digunakan untuk percubaan arus pengaliran, iaitu 2, 7, dan 15 kV selama 25 minit dan untuk eksperimen BdV, voltan yang ditingkatkan sebanyak 5 kV dengan selang 1 minit untuk setiap langkah sehingga kerosakan berlaku atau maksimum 25 minit. Pembentukan titian zarah selulosa telah dianalisa berdasarkan masa yang diambil untuk zarah-zarah mula melekat pada permukaan elektrod dan masa diambil untuk membentuk titian selulosa di antara elektrod. Keputusan menunjukkan bahawa kehadiran kontaminan dalam cecair dielektrik dan tahap kelikatan cecair dielektrik memainkan peranan penting dalam semua eksperimen. Secara umum, masa pembentukan titian selulosa meningkat serta arus konduksi dan BdV direkodkan meningkat apabila saiz zarah yang lebih tinggi digunakan berbanding dengan saiz yang lebih rendah. Walau bagaimanapun, tiada titian selulosa yang diperhatikan apabila voltan rendah digunakan pada saiz zarah yang lebih rendah semasa eksperimen arus pengaliran. Sementara itu, keadaan titian adalah berbeza bagi setiap eksperimen, iaitu keadaan titian tidak dikacau sentiasa lebih tebal tanpa mengira saiz zarah dan jarak yang digunakan berbanding keadaan yang dikacau. Keseluruhannya, MIDEL eN mempunyai prestasi yang lebih baik berbanding dengan MIDEL 7131 dan Gemini X kerana BdV yang direkodkan lebih tinggi tanpa mengira saiz zarah, jarak dan keadaan eksperimen. Di samping itu, dapat dilihat dengan jelas di semua sampel dielektrik bahawa kehadiran bahan pencemar meningkatkan BdV tanpa mengira saiz zarah dan jarak. Sebaliknya, laluan pengaliran yang direkodkan dalam Gemini X sentiasa tertinggi yang dipercayai kerana kesan kelikatan, sebagai tahap kelikatan rendah cecair dielektrik, ia meningkatkan pengagregatan antara molekul dan zarah minyak yang menyumbang kepada pembentukan penyambungan lebih cepat dan arus konduksi yang lebih tinggi.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my deepest gratitude to ALLAH S.W.T for blessing me throughout this journey. I want to express my sincere acknowledgement to my supervisor Assoc. Prof. Dr. Hidayat bin Zainuddin from Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support, continuous interest and encouragement towards the completion of this thesis.

I also would like to express my greatest gratitude to High Voltage Engineering (HVE) Research Laboratory and the technician of the laboratory, Mr. Mohd Wahyudi bin Md. Hussain and a big thanks to all High Voltage teams for their support and information through my years of study.

Special thanks to Ministry of Education (MOE) and Universiti Teknikal Malaysia Melaka (UTeM) grant funding for the financial support throughout this project. This research is funded by the Fundamental Research Grant Scheme (FRGS) Grant No. FRGS/1/2014/TK0/FKE/02/F00216. Besides, I also would like to express my deepest gratitude to both my parents and for their endless prayer, moral and financial support. Lastly, thank you to everyone especially my dearest friends who had been to the crucial parts of realization of this project. Not forgetting, my humble apology as it is beyond my reach personally mentioned those who are involved directly or indirectly one to one.

iii

TABLE OF CONTENTS

PAGE

DE	ECLA	RATION	
AP	PROV	AL	
DE	EDICA	TION	
AB	STRA	CT	i
AB	STRA	K	ii
AC	CKNO	WLEDGEMENTS	iii
TA	BLE	OF CONTENTS	iv
LI	ST OF	TABLES	vii
LI	ST OF	FIGURES	ix
LI	ST OF	EQUATIONS	xvii
LI	ST OF	ABBREVIATIONS	xviii
LI	ST OF	SYMBOLS	XX
LI	ST OF	PUBLICATIONS	xxi
CE	IAPTI		1
1.		RODUCTION	1
	1.1	Overview	l
	1.2	Transformer failures	l
	1.3	Ester Oils as Potential Substitutes of Mineral Oils	3
	1.4	HVDC power transmission and HVDC converter transformers	6
	1.5	Problem Statement	8
	1.6	Research Objectives	10
	1.7	Scope of the Research	10
	1.8	Significant Contributions of the Research	11
	1.9	Organization of the Thesis	12
2.	LITI	ERATURE REVIEW	13
	2.1	Overview	13
	2.2	Transformers	13
	2.3	Insulating Medium in Power Transformer	15
		2.3.1 Mineral Oils	17
		2.3.1.1 Nytro Gemini X mineral oil	19
		2.3.2 Ester Oils	20

	2.3.1.1 Nytro Gemini X mineral oil	19
	2.3.2 Ester Oils	20
	2.3.2.1 MIDEL 7131 Synthetic Esters	23
	2.3.2.2 MIDEL eN Natural Ester	25
2.4	Cellulose Pressboard	288
2.5	Failure Analysis of Power Transformers	29
	2.5.1 Effect of Contaminant Particles on Transformer Failure	31
	2.5.2 Dielectric Strength of Dielectric Liquids Contaminated with	ith Particles 33
2.6	Mechanism of Breakdown in Dielectric Liquids	35
2.7	Suspended Particle Theory	36
2.8	Dielectrophoresis	38

- Dielectrophoresis 2.8
- iv

2.9 Summary

MET	THODOLOGY	42
3.1	Background	42
3.2	Flow Chart of Methodology	43
3.3	Experimental Preparation	45
	3.3.1 Hardware Description	45
	3.3.2 Oil Preparation	45
	3.3.3 Test Cell	46
	3.3.4 Contaminant Preparation	47
	3.3.5 Electrode System	49
3.4	Experimental Setup	51
3.5	Bridging Experiment /Data collection process	54
	3.5.1 Effect of Cellulose Pressboard Particle Condition	54
	3.5.2 Effect of Gap Distance	55
	3.5.3 Effect of Cellulose Pressboard Particle Size	55
3.6	Summary	56
	MET 3.1 3.2 3.3 3.3 3.4 3.5 3.6	 METHODOLOGY 3.1 Background 3.2 Flow Chart of Methodology 3.3 Experimental Preparation 3.3.1 Hardware Description 3.3.2 Oil Preparation 3.3.3 Test Cell 3.3.4 Contaminant Preparation 3.3.5 Electrode System 3.4 Experimental Setup 3.5 Bridging Experiment /Data collection process 3.5.1 Effect of Cellulose Pressboard Particle Condition 3.5.2 Effect of Gap Distance 3.5.3 Effect of Cellulose Pressboard Particle Size 3.6 Summary

4.	RESU	ULT AN	ND DISC	USSION	58
	4.1	Overv	iew		58
	4.2	Break	down Vo	ltage Experiment	59
		4.2.1	Effect o	f Different Particle Sizes	59
		4.2.2	Test Co	nditions: Without Stirring	64
		4.2.3	Gap Dis	stance Effect	72
		4.2.4	Distanc	e Effect on Bridge Formation	73
		4.2.5	Distanc	e Effect on The Breakdown Behavior	76
	4.3	Condu	uction Cu	rrent Experiment	82
		4.3.1	Effect o	f Particle Size	82
			4.3.1.1	Cellulose Bridge Experiment (Particle Size: 500 µm)	83
			4.3.1.2	Cellulose Bridge Experiment (Particle Size: 300 µm)	86
			4.3.1.3	Cellulose Bridge Experiment (Particle Size: 100 µm)	88
		4.3.2	Test Co	nditions	91
		4.3.3	Test Co	ndition: With Stirring	92
			4.3.3.1	Cellulose Bridge Experiment (Particle Size: 500 µm)	92
			4.3.3.2	Cellulose Bridge Experiment (Particle Size: 100 µm)	99
		4.3.4	Test Co	ndition: Without Stirring	106
			4.3.4.1	Cellulose Bridge Experiment (Particle Size: 500 µm)	106
			4.3.4.2	Cellulose Bridge Experiment (Particle Size: 100 µm)	112
		4.3.5	Effect of	f Gap Distance	120
			4.3.5.1	Gap Distance: 10 mm	120
			4.3.5.2	Gap Distance: 15 mm	121
			4.3.5.3	Gap Distance: 20 mm	123
	4.4	Summ	nary		127

5.	CON	ICLUSION AND RECOMMENDATIONS	129
	5.1	Conclusion	129
	5.2	Recommendations for Future Work	133

REFERENCES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Properties of Nytro Gemini X mineral oil	20
2.2	Comparison of the characteristic between ester and mineral oils	22
2.3	Dielectric properties of MIDEL 7131	24
2.4	Dielectric properties of MIDEL eN	26
2.5	Dielectric properties comparison between Gemini X, MIDEL 7131	27
	and MIDEL eN	
2.6	Summary of the types of faults that lead to transformer failures	30
2.7	Typical contaminant level in dielectric liquid	33
4.1	Comparison of the cellulose bridge formation behaviour of the	71
	insulating oil samples contaminated with different sizes of cellulose	
	pressboard particles	
4.2	Comparison of the cellulose bridge formation behaviour of the	75
	insulating oil samples contaminated at various gap distances (10, 15,	
	and 20 mm)	
4.3	Comparison of the cellulose bridge formation behaviour of the Gemini	91
	X mineral oil samples contaminated with cellulose pressboard	
	particles with different particle sizes	

vii

- 4.4 Comparison of the cellulose bridge formation behaviour of the 105 insulating oil samples contaminated with cellulose pressboard particles (with stirring)
- 4.5 Comparison of the cellulose bridge formation behaviour of the 119 insulating oil samples contaminated with cellulose pressboard particles (without stirring)
- 4.6 Comparison of cellulose bridge formation behaviour of the insulating 125 oil samples contaminated with cellulose pressboard particles with a particle size of 500 µm at various gap distances (10, 15, and 20 mm) at 15 kV of applied voltage

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Power system grid	2
1.2	Failures number and cost of 25-kV Transformer in the USA	3
1.3	Schematic of HVDC system	8
2.1	Basic principle of the transformer	15
2.2	Three types of hydrocarbon molecules found in the crude petroleum	18
2.3	Timeline of the development and application of synthetic ester	24
2.4	Timeline of the development and application of natural ester	25
2.5	Chemical structure of natural triglyceride	25
2.6	Condition of pDEP and nDEP	39
3.1	Project activities Flow Chart	44
3.2	Metrohm 684 Coulometer for moisture measurement	46
3.3	Test cell configuration	47
3.4	Sieve used to classify the contaminant particles	48
3.5	Classification process of the cellulose pressboard particles	49
3.6	OHAUS Pioneer Series of analytical and precision balances	49
3.7	Side view of the spherical-spherical electrode configuration	50
3.8	Gas bubble release process from horizontal electrodes	50
3.9	Experimental Setup for Conduction Current Path	51

3.10	Experimental setup for breakdown voltage	52
3.11	System Interface by using Visual Basic	53
3.12	Cellulose pressboard particle condition before the experiment	55
3.13	Sizes of cellulose particle used to contaminate dielectric liquid for	56
	the bridging experiment	
3.14	DC test procedure	57
4.1	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	60
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with a particle size of 100 μ m	
4.2	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	61
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with a particle size of $300 \ \mu m$	
4.3	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	62
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with a particle size of 500 μ m	
4.4	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	66
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with a particle size of 100 μ m	
4.5	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	67
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with a particle size of $300 \ \mu m$	
4.6	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	68
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with a particle size of 500 µm	

4.7	Breakdown Comparison between Stirring and Without Stirring in	70
	100, 300 and 500 um sizes of contaminant	
4.8	Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131,	73
	and (c) MIDEL eN contaminated with cellulose pressboard particles	
	with different gap distance between electrodes	
4.9	Breakdown Comparison between Stirring and Without Stirring in 10,	78
	15 and 20 mm gap distance	
4.10	Cellulose particles after applying HVDC	79
4.11	Cellulose particles after polarization process	80
4.12	Cellulose particles during the bridging process	81
4.13	Cellulose particles during the bridging process	82
4.14	Cellulose particles after breakdown occurrence	82
4.15	Cellulose bridge experiment of the Gemini X contaminated with	83
	cellulose pressboard particles with a particle size of 500 μm at three	
	voltage levels: (a) 2 kV, (b) 7 kV, and (c) 15 kV	
4.16	Figure 4.16: Conduction current of the Gemini X contaminated with	85
	cellulose pressboard particles with a particle size of 500 μm at three	
	voltage levels: (a) 2 kV, (b) 7 kV and (c) 15 kV	
4.17	Cellulose bridge experiment of Gemini X mineral oil contaminated with	87
	cellulose pressboard particles with a particle size of 300 μm at three	
	voltage levels: (a) 2 kV, (b) 7 kV, and (c) 15 kV	
4.18	Conduction current of the Gemini X contaminated with cellulose	88
	pressboard particles with a particle size of 300 μm at three voltage	
	levels: (a) 2 kV, (b) 7 kV and (c) 15 kV	

- 4.19 Cellulose bridge experiment of Gemini X contaminated with cellulose 89 pressboard particles with a particle size of 100 μm at three voltage levels: (a) 2 kV, (b) 7 kV, and (c) 15 kV
- 4.20 Conduction current of the Gemini X mineral oil contaminated with 90 cellulose pressboard particles with a particle size of 100 μm at three voltage levels: (a) 2 kV, (b) 7 kV and (c) 15 kV
- 4.21 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 92
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 500 μm at an applied voltage of 2 kV
- 4.22 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 93
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 2 kV
- 4.23 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 94
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 500 μm at an applied voltage of 7 kV
- 4.24 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 95
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 7 kV
- 4.25 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 96
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 500 μm at an applied voltage of 15 kV
- 4.26 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 97
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 15 kV

xii

- 4.27 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 99
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 100 μm at an applied voltage of 2 kV
- 4.28 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 100
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 100 μm at an applied voltage of 7 kV
- 4.29 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 101
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 100 μm at an applied voltage of 15 kV
- 4.30 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 102
 contaminated with cellulose pressboard particles with a particle size
 of 100 μm at an applied voltage of 2 kV
- 4.31 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 103
 contaminated with cellulose pressboard particles with a particle size
 of 100 μm at an applied voltage of 7 kV
- 4.32 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 103
 contaminated with cellulose pressboard particles with a particle size
 of 100 μm at an applied voltage of 15 kV
- 4.33 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 107
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 500 μm at an applied voltage of 2 kV
- 4.34 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 108
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 500 μm at an applied voltage of 7 kV

- 4.35 Cellulose Bridging experiment of the (a) Gemini X, (b) MIDEL 109
 7131, and (c) MIDEL eN contaminated with cellulose pressboard particles with a particle size of 500 µm at an applied voltage of 15 kV
- 4.36 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 110
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 2 kV
- 4.37 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 110
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 7 kV
- 4.38 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 111
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 15 kV
- 4.39 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 113
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 100 μm at an applied voltage of 2 kV
- 4.40 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 114
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 100 μm at an applied voltage of 7 kV
- 4.41 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 115
 and (c) MIDEL eN contaminated with cellulose pressboard particles
 with a particle size of 100 μm at an applied voltage of 15 kV

xiv

- 4.42 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 116
 contaminated with cellulose pressboard particles with a particle size
 of 100 μm at an applied voltage of 2 kV
- 4.43 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 116
 contaminated with cellulose pressboard particles with a particle size
 of 100 μm at an applied voltage of 7 kV
- 4.44 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 117
 contaminated with cellulose pressboard particles with a particle size
 of 100 μm at an applied voltage of 15 kV
- 4.45 Cellulose bridge experiment of the (a) Gemini X, (b) MIDEL 7131, 120 and (c) MIDEL eN contaminated with cellulose pressboard particles with a particle size of 500 μm at an applied voltage of 15 kV (gap distance: 10 mm)
- 4.46 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 121
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 15 kV (gap distance: 10 mm)
- 4.47 Cellulose Bridging experiment of the (a) Gemini X, (b) MIDEL 122
 7131, and (c) MIDEL eN contaminated with cellulose pressboard particles with a particle size of 500 µm at an applied voltage of 15 kV (gap distance: 15 mm)
- 4.48 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 123
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 15 kV (gap distance: 15 mm)

XV

- 4.49 Cellulose Bridging experiment of the (a) Gemini X, (b) MIDEL 124
 7131, and (c) MIDEL eN contaminated with cellulose pressboard particles with a particle size of 500 µm at an applied voltage of 15 kV (gap distance: 20 mm)
- 4.50 Conduction current of the Gemini X, MIDEL 7131, and MIDEL eN 125
 contaminated with cellulose pressboard particles with a particle size
 of 500 μm at an applied voltage of 15 kV (gap distance: 20 mm)

xvi

LIST OF EQUATIONS

EQUATION	TITLE	PAGE
2.1	Chemical reaction's equation for esterification process	20
2.2	MIDEL 7131 derivation	26
2.3	Permittivity equation for suspended particle	39
2.4	DEP force equation	41
2.5	Low frequency DEP	41
2.6	High Frequency DEP	41

xvii

LIST OF ABBREVIATIONS

А	Ampere	
AC	Alternating Current	
ASTM	American Society for Testing and Materials	5
BdV	Breakdown Voltage	
BS	British Standard	
°C	Celsius	
CIGRE	International Council on Large Electric System	ms
CSC	Current Source Converter	
DC	Direct Current	
DEP	Dielectrophoresis	
DT	Distribution Transformer	
e.g.	For example	
Gemini X	One of the Mineral Oil brands	
HV	High Voltage	
HVDC	High Voltage Direct Current	
i.e.	That is	
IEC	International Electrotechnical Comission	
IEEE	Institute of Electrical and Electronics Engin	eers
ISO	International Organization for Standardizati	on

xviii

KFC	-	Karl Fisher Coulomat
kV	-	Kilo Volt
LCC	-	Line-Commutated Converter
LV	-	Low Voltage
Μ	-	Minutes
MATLAB	-	Engineering Software
MIDEL 7131	-	One of the Vegetable Oil brands (Synthetic)
MIDEL eN	-	One of the Vegetable Oil brands (Natural)
mm	-	Milimetre
MPa	-	MegaPascal
NEI	-	Natural Ester Insulation
PCB	-	Polychlorinated Biphenyls
PD	-	Partial Discharge
Ppm	-	Part per million
РТ	-	Power Transformer
S	-	Seconds
VB	-	Visual Basic
VSC	-	Voltage Source Converter

xix