

Faculty of Electrical Engineering

SELF-TUNING FUZZY LOGIC SPEED CONTROLLER OF INDUCTION MOTOR DRIVES

Nabil Salem Yahya Farah

Master of Science in Electrical Engineering

2019

C Universiti Teknikal Malaysia Melaka

SELF-TUNING FUZZY LOGIC SPEED CONTROLLER OF INDUCTION MOTOR DRIVES

Nabil Salem Yahya Farah

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering.

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declared that this thesis entitled "Self-Tuning Fuzzy Logic Speed Controller of Induction Motor Drives" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Nabil Salem Yahya Farah
Date	:	

APPROVAL

I hereby declared that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	:	
Supervisor Name	:	Dr. Md Hairul Nizam Bin Talib
Date	:	

ABSTRACT

Induction motor drives are commonly applicable in various industrial applications, such as traction system, electric vehicle and home appliances. This high performance drive require robust controller to obtain satisfactory performance in terms of speed demand change, load disturbance, inertia variation and non-linearity. Fuzzy Logic Control (FLC) is suitable for controller design especially when the system is difficult to be modelled mathematically due to its complexity, nonlinearity and imprecision. However, FLC with fixed parameters may experience degradation when the system operates away from the design point, and encounters parameter variation or load disturbance. The purpose of this project is to design and implement Self-Tuning Fuzzy Logic Controller (ST-FLC) for Induction Motor (IM) drives. The proposed self-tuning mechanism is able to adjust the output scaling factor of the output controller for main FLC. This process enhances the accuracy of the crisp output. This research begins by designing Indirect Field Oriented Control (IFOC) method fed by Hysteresis Current Controller (HCC) induction motor drive system. The FLC with fixed parameters for the speed controller comprises 9-rules are tuned to achieve best performance. Then, a simple self-tuning mechanism is applied to the main fuzzy logic speed controller. All simulations are executed by using Simulink and fuzzy tools in MATLAB software. The effectiveness of the proposed controller is determined by conducting a comparative analysis between FLC with fixed parameters and ST-FLC over a wide range of operating conditions, either in forward and reverse operations, load disturbance or inertia variations. Finally, experimental investigation is carried out to validate the simulation results by the aid of digital signal controller board dSPACE DS1104 with the induction motor drives system. Based on the results, ST-FLC has shown superior performance in transient and steady state conditions in term of various performance measures such as overshoot, rise time, settling time and recovery time over wide speed range operation. In comparison to fixed parameter FLC, the proposed ST-FLC reduced the settling time by 40.5%, rise time by 47.3% and speed drop by 19.2%. The proposed self-tuning mechanism is relatively simpler and consumes less computational burden compared to other self-tuning methods. This is proved by measuring the computational burden of another Self-Tuning method which used fuzzy rules to tune the output scaling factor. The execution time of the proposed self-tuning found to be 0.5×10^{-3} seconds compared to 1.2×10^{-3} seconds for the other self-tuning.

ABSTRAK

Pemacu motor aruhan biasanya digunakan dalam pelbagai aplikasi perindustrian, seperti sistem daya tarikan, kenderaan elektrik dan peralatan rumah. Pemacu prestasi tinggi ini memerlukan satu pengawal yang mantap untuk mendapatkan prestasi yang memuaskan dari kepelbagaian permintaan kelajuan, gangguan beban, variasi inersia dan tidak linear. Kawalan Logik Kabur (FLC) sesuai untuk reka bentuk pengawal terutamanya apabila sistem itu sukar dimodelkan secara matematik kerana kerumitan, tidak linearan dan masalah ketepatan. Walau bagaimanapun, FLC dengan parameter tetap mungkin mengalami kemerosotan apabila sistem beroperasi jauh dari titik reka bentuk, dan menghadapi variasi parameter atau gangguan beban. Projek ini bertujuan untuk mereka bentuk dan melaksanakan Kawalan Logik Kabur Talaan Sendiri (ST-FLC) bagi pemacu Motor Aruhan (IM). Mekanisme penalaan sediri yang dicadangkan dapat menyesuaikan faktor skala keluaran bagi pengawal untuk FLC utama. Proses ini dapat meningkatkan ketepatan keluaran pengawal. Penyelidikan ini bermula dengan merekabentuk kaedah Kawalan Orientasi Medan Tidak Langsung (IFOC) yang disandarkan oleh sistem pemacu motor aruhan Pengawal Arus Hysteresis (HCC). FLC dengan parameter tetap untuk pengawal kelajuan merangkumi 9 aturan yang ditalakan untuk mencapai prestasi terbaik. Kemudian, mekanisme penalaan sendiri mudah digunakan untuk pengawal kelajuan logik kabur utama. Semua simulasi dilaksanakan dengan menggunakan Simulink dan perkakasan kabur dalam perisian MATLAB. Keberkesanan pengawal yang dicadangkan ditentukan dengan menjalankan analisis perbandingan di antara FLC berparameter tetap dan ST-FLC dalam pelbagai keadaan operasi, sama ada dalam operasi kehadapan dan kebelakang, gangguan beban atau variasi inersia. Akhirnya, siasatan eksperimen dijalankan untuk mengesahkan keputusan simulasi dengan bantuan papan pengawal isyarat digital dSPACE DS1104 dengan sistem pemacu motor aruhan. Berdasarkan dapatannya, ST-FLC telah menunjukkan prestasi yang unggul sama ada di dalam keadaan fana dan mantap dari pelbagai aspek prestasi ukuran seperti lajak atas, masa menaik, masa pengenapan dan masa pemulihan dengan operasi julat kelajuan yang besar. Jika dibandingkan dengan FLC berparameter tetap, ST-FLC yang dicadangkan mengurangkan masa pengenapan sebanyak 40.5%, masa menaik sebanyak 47.3% dan masa pemulihan sebanyak 19.2%. Mekanisme penalaan sendiri yang dicadangkan agak mudah dan menggunakan beban komputasi yang kurang berbanding dengan kaedah penalaan sendiri yang lain. Ini dibuktikan dengan membuat pengukuran beban komputasi bagi kaedah talaan sendiri yang lain yang menggunakan aturan kabur sebagai penala faktor skala keluaran. Masa pelaksanaan bagi penalaan sendiri yang dicadangkan adalah 0.5×10^{-3} saat berbanding dengan 1.2×10^{-3} saat untuk penalaan diri yang lain.

ACKNOWLEDGEMENTS

Alhamdulillah, Thanks to ALLAH S.B.W for giving me the strength to complete my thesis. Without the help and uncountable blessing by ALLAH this research will not be finished as it is now.

I would like to express my sincere gratitude to my academic supervisor, Dr. Md Hairul Nizam Bin Talib who has been very helpful in guiding and motivating me. I am also grateful for his advice, patience and willingness to spare most of his precious time helping me in completion of the thesis. Special thanks go to my co-supervisor, Prof. Dr. Zulkifilie Bin Ibrahim for his kind help and supportive guidance during my study.

I also would like to thank my friends and colleagues in Electric vehicle drive lab, UTeM lecturers, students and anyone who have helped in accomplishing this project. I also wish to thank Universiti Teknikal Malaysia Melaka (UTeM) and Malaysian Ministry of Higher Education for providing the facilities and funding support under the research grant No: FRGS/1/2015/TK04/FKE/02/F00258 to achieve this project.

Lastly, I would express my sincere appreciations and gratitude to my parents, Salem Yahya and Harsah Hussein for their support and prayers. Also, my wife Lina Mohammed who has been supportive to me through all my study, my deepest appreciation and gratitude go for her.

TABLE OF CONTENTS

DECLARATION APPROVAL

ABS	STRAC	Г	i
ABS	STRAK		ii
ACH	KNOWI	LEDGEMENTS	iii
TAE	BLE OF	CONTENTS	iv
LIS	T OF TA	ABLES	vii
LIS	T OF FI	IGURES	viii
LIS	T OF A	PPENDICES	xii
LIS	T OF A	BBREVIATIONS	xiii
LIS	T OF SY	YMBOLS	XV
LIS	T OF PU	UBLICATIONS	xviii
CHA	APTER		
1.	INTR	ODUCTION	1
	1.1	Research background	1
	1.2	Motivation	3
	1.3	Problem statement	4
	1.4	Research objectives	6
	1.5	Research scope	7
	1.6	Research contributions	9
	1.7	Thesis overview	10
2.	LITE	RATURE REVIEW	12
	2.1	Introduction	12
	2.2	Vector control method	13
	2.3	PWM switching techniques	16
		2.3.1 Hysteresis Current Control (HCC)	17
		2.3.2 Sinusoidal Pulse Width Modulation (SPWM)	19
		2.3.3 Space Vector Pulse Width Modulation (SVPWM)	20
	2.4	Speed controller	22
		2.4.1 Proportional Integral (PI) controller	23
		2.4.2 Adaptive control mechanism	24
		2.4.3 Fuzzy Logic Controller (FLC)	28
		2.4.3.1 Fuzzy logic implementation	29
		2.4.3.2 Different type of FLC	30
		2.4.3.3 Tuning techniques of FLC	32
	o -	2.4.4 Self-Tuning Fuzzy Logic Controller (ST-FLC)	34
	2.5	Summary	44
3.	RESE	ARCH METHODOLOGY	45
	3.1	Introduction	45

- 3.2 Mathematical model of IM 47 Modelling of FOC IM drives 3.3 52 Indirect Field Oriented Control (IFOC) 3.4 55
 - iv

		3.4.1 H	Park and	d Clark transformation	56
	3.5	Inverter	and cor	ntrol system	57
		3.5.1	Three-pl	hase voltage source inverter	57
	a (3.5.2 H	Hysteres	sis Current Controller (HCC)	60
	3.6	Speed co	ontrolle	r design	62
		3.6.1	Fuzzy L	ogic Controller (FLC)	62
		3	.6.1.1	Membership functions	64
		3	.6.1.2	Fuzzy rules	65
		3	.6.1.3	Scaling factors	67
		3.6.2	Self-Tui	ning Fuzzy Logic Controller (ST-FLC)	69
	3.7	Simulati	ion imp	lementation	72
	3.8	Hardwar	re imple		74
		3.8.1	Control	desk	77
		3.8.2	Hardwa	re set up	/8
		3	.8.2.1	(dSPACE)	ineering 80
		3	822	FPGA module	81
		3	823	Gate drives	82
		3	824	Three phase inverter	82
		3	.8.2.5	Three-phase rectifier	83
		3	.8.2.6	DC link capacitor	84
		3	.8.2.7	Induction motor	84
		3	.8.2.8	Current sensor	84
		3	.8.2.9	Incremental optical encoder	85
	3.9	3 Summar	.8.2.9 ry	Incremental optical encoder	85 86
4.	3.9 RESU]	3 Summar L T AND I	.8.2.9 ry DISCUS	Incremental optical encoder	85 86 87
4.	3.9 RESU 4.1	3 Summar L T AND I Introduc	.8.2.9 ry DISCUS	Incremental optical encoder SSION	85 86 87 87
4.	3.9 RESU 4.1 4.2	3 Summar L T AND I Introduc Simulati	.8.2.9 ry DISCUS ction ion resu	Incremental optical encoder SSION	85 86 87 87 87
4.	3.9 RESU 4.1 4.2	3 Summar L T AND I Introduc Simulati 4.2.1 S	.8.2.9 ry DISCUS ction ion resu Step rate	Incremental optical encoder SSION Ilt ed speed reference at no-load operations	85 86 87 87 87 88
4.	3.9 RESU 4.1 4.2	3 Summar L T AND I Introduc Simulati 4.2.1 5 4.2.2 F	.8.2.9 ry DISCUS ction ion resu Step rate Respons	Incremental optical encoder SSION Ilt ed speed reference at no-load operations se to variation in speed reference	85 86 87 87 87 87 88 91
4.	3.9 RESU 4.1 4.2	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar	Incremental optical encoder SSION Ilt ed speed reference at no-load operations se to variation in speed reference nd IAE measures	85 86 87 87 87 87 88 91 95
4.	3.9 RESU 4.1 4.2	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op	Incremental optical encoder SSION Ilt ed speed reference at no-load operations se to variation in speed reference nd IAE measures berations	85 86 87 87 87 88 91 95 97
4.	3.9 RESU 4.1 4.2	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons	Incremental optical encoder SSION Ilt ed speed reference at no-load operations se to variation in speed reference nd IAE measures berations se to inertia variations	85 86 87 87 87 87 88 91 95 97
4.	3.9 RESU 4.1 4.2	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons nental re	Incremental optical encoder SSION Ilt ed speed reference at no-load operations se to variation in speed reference nd IAE measures perations se to inertia variations esult	85 86 87 87 87 87 88 91 95 97 99 101
4.	 3.9 RESU 4.1 4.2 4.3 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons nental re Rated sp	Incremental optical encoder SSION Ilt ed speed reference at no-load operations se to variation in speed reference nd IAE measures berations se to inertia variations esult beed performance at no load condition	85 86 87 87 87 88 91 95 97 99 101 101
4.	 3.9 RESU 4.1 4.2 4.3 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H	.8.2.9 ry DISCUS ction ion resu Step rate Respons TAE ar Load op Respons nental re Rated sp Respons	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference	85 86 87 87 87 88 91 95 97 99 101 101 101
4.	 3.9 RESU 4.1 4.2 4.3 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.3 H	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons nental re Rated sp Respons Reverse	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison	85 86 87 87 87 88 91 95 97 99 101 101 108 110
4.	 3.9 RESU 4.1 4.2 4.3 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.3 H 4.3.4 I	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons nental re Rated sp Respons Reverse IAE and	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison I ITAE performance comparison	85 86 87 87 87 88 91 95 97 99 101 101 101 108 110 112
4.	 3.9 RESU 4.1 4.2 4.3 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.3 H 4.3.4 I 4.3.5 H	.8.2.9 ry DISCUS ction ion resu Step rate Respons TAE ar Load op Respons Reted sp Respons Reverse IAE and Respons	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison I ITAE performance comparison se to load disturbance	85 86 87 87 87 88 91 95 97 99 101 101 108 110 112 113
4.	 3.9 RESU 4.1 4.2 4.3 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.2 H 4.3.3 H 4.3.4 I 4.3.5 H 4.3.6 H	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons Respons Reverse IAE and Respons Respons	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference and IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison I ITAE performance comparison se to load disturbance se to variation of inertia	85 86 87 87 87 88 91 95 97 99 101 101 101 108 110 112 113 116
4.	 3.9 RESU 4.1 4.2 4.3 4.4 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.3 H 4.3.3 H 4.3.4 I 4.3.5 H 4.3.6 H Discussi	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons nental re Rated sp Respons Reverse IAE and Respons Respons ion	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison I ITAE performance comparison se to load disturbance se to variation of inertia	85 86 87 87 87 88 91 95 97 99 101 101 101 108 110 112 113 116 118
4.	 3.9 RESU 4.1 4.2 4.3 4.4 4.5 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.3 H 4.3.3 H 4.3.4 I 4.3.5 H 4.3.6 H Discussi Summar	.8.2.9 ry DISCUS ction ion resu Step rate Respons TAE ar Load op Respons Reted sp Respons Reverse IAE and Respons Respons ion ry	Incremental optical encoder SSION Alt ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison I ITAE performance comparison se to load disturbance se to variation of inertia	85 86 87 87 87 88 91 95 97 99 101 101 101 108 110 112 113 116 118 121
4.	 3.9 RESU 4.1 4.2 4.3 4.4 4.5 CONC 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.3 H 4.3.3 H 4.3.4 I 4.3.5 H 4.3.6 H Discussi Summar	.8.2.9 ry DISCUS ction ion resu Step rate Respons (TAE ar Load op Respons Reted sp Respons Reverse IAE and Respons ry AND F	Incremental optical encoder SSION It ed speed reference at no-load operations se to variation in speed reference ad IAE measures berations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison I ITAE performance comparison se to load disturbance se to variation of inertia STUTURE RESEARCH	 85 86 87 87 88 91 95 97 99 101 101 108 110 112 113 116 118 121 122
4.	 3.9 RESU 4.1 4.2 4.3 4.4 4.5 CONC 5.1 	3 Summar LT AND I Introduc Simulati 4.2.1 S 4.2.2 H 4.2.3 I 4.2.4 I 4.2.5 H Experim 4.3.1 H 4.3.2 H 4.3.2 H 4.3.3 H 4.3.4 I 4.3.5 H 4.3.6 H Discussi Summar LUSION Conclus	.8.2.9 ry DISCUS ction ion resu Step rate Respons ITAE ar Load op Respons nental re Rated sp Respons Reverse IAE and Respons ry AND F sion	Incremental optical encoder SSION It ed speed reference at no-load operations se to variation in speed reference ad IAE measures terations se to inertia variations esult beed performance at no load condition se to variation of speed reference speed performance comparison ITAE performance comparison se to load disturbance se to variation of inertia	 85 86 87 87 87 88 91 95 97 99 101 101 108 110 112 113 116 118 121 122 122

REFERENCES APPENDICES

125 146

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	A summary of related studies in the past 10 years	41
3.1	Switching Functions of VSI	59
3.2	Hysteresis current controller for first leg inverter	61
3.3	Rule base for 3x3 FLC	66
3.4	Simulation parameters	72
4.1	Performance measures comparison between FLC and ST-FLC	88
4.2	Phase A current THD comparison	90
4.3	Average values of overshoot, rise time and settling time	92
4.4	Comparison of ST-FLC and FLC with inertia variation	100
4.5	Speed performance comparison of FLC and ST-FLC at rated speed	102
4.6	THD comparison of phase A current for FLC and ST-FLC	106
4.7	ITAE and IAE performance index at rated speed	107
4.8	Averages values of speed measures at forward entire speed region	108
4.9	Averages values of overshoot, settling time and rise time at entire	110
	reverse speed region	
4.10	Comparison of ST-FLC and FLC with inertia variation	116

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Hysteresis control block diagram	17
2.2	Hysteresis current control of VSI (Kalyanraj and Lenin Prakash,	18
	2014)	
2.3	SPWM technique principle	19
2.4	Three-phase VSI configuration	21
2.5	Vector representation of the topology	22
2.6	Fuzzy gain scheduling of PI controller	25
2.7	MRAC configuration	26
2.8	MRAS based ST-FLC (Febin Daya J.L et al., 2013)	35
2.9	Self-tuning FLC based MRAS (Masiala, 2010)	37
2.10	FMRLC based IM drive structure (Zhen and Xu, 2000)	38
3.1	Overall block diagram of IM drive system	45
3.2	Project flow chart	46
3.3	Three-phase of equivalent phasor diagram	47
3.4	Two-phase of equivalent phasor diagram	48
3.5	Dynamic or d-q equivalent circuit of induction machine ;(a) q-axis	49
	circuit (b) d-axis circuit	
3.6	Configuration of speed control in vector-controlled IM drive	54

3.7	Three phase Voltage Source Inverter	58
3.8	Hysteresis current control for first leg of VSI	61
3.9	Block diagram of standard FLC	63
3.10	3x3 MFs Design in MATLAB/SIMULINK, (a) error MF, (b)	64
	change of error MF and (c) output fuzzy MF	
3.11	3D surface viewer of 9 rules FLC	66
3.12	Rules view of 9 rules FLC	67
3.13	Block diagram of proposed ST-FLC	70
3.14	Detailed model of the proposed ST-FLC method	71
3.15	MATLAB/SIMULINK model of the IM drive system	73
3.16	Experimental setup of the IM drives system	74
3.17	Block diagram of IM drive interface with hardware	76
3.18	Layout of ControlDesk	77
3.19	Hardware setup	79
3.20	dSPACE1104 illustration with I/O board	80
3.21	DEO-NANO FPGA Module	81
3.22	Gate drives	82
3.23	Three-phase voltage source inverter	83
3.24	3-phase rectifier and DC-Link capacitor experimental scheme	83
3.25	2HP Blador induction motor	84
3.26	Current sensor	85
3.27	Simulink Model of RPM conversion block	86
4.1	FLC and ST-FLC performance under no load speed operations	89

4.2	THD analysis of Phase A current,(a) current waveform(FLC),(b)	90
	harmonics spectrum (FLC),(c) current waveform (ST-FLC), (d)	
	harmonics spectrum (ST-FLC)	
4.3	Speed responses at 900 rpm and 300 rpm	92
4.4	Speed comparison of wide range of forward speed operation (a)	93
	percent overshoot, (b) settling time, (c) rise time	
4.5	Speed comparison of wide range of reverse speed operation (a)	94
	percent overshoot, (b) settling time, (c) rise time	
4.6	Performance comparison of FLC and ST-FLC with various speed	96
	operations based on ,(a) ITAE and (b) IAE	
4.7	Comparison of load disturbance rejection capabilities (100% load)	97
4.8	Comparison of load disturbance rejection capabilities	98
	(50%,75%) load	
4.9	Load disturbance comparison at wide range of speed operation	98
	(full load)	
4.10	Performance comparison of ST-FLC and FLC with two different	100
	values of inertia (a) 2.5J, (b) 3.75 J	
4.11	Comparison of simulation and experimental results	101
4.12	Speed performance comparison of FLC and ST-FLC at rated speed	103
	operation, (a) forward operation, (b) reverse operation	
4.13	Performance comparison of speed, torque and currents at 1400rpm	105
4.14	IA current THD analysis,(a) current waveform(FLC),(b) harmonics	106
	spectrum (FLC),(c) current waveform (ST-FLC), (d) harmonics	
	spectrum (ST-FLC)	

4.15	Speed performance comparison of FLC and ST-FLC at wide	109
	forward speed range, (a) overshoot, (b) settling time, (c) rise time	
4.16	Speed performance comparison of FLC and ST-FLC at wide reverse	111
	speed range, (a) overshoot, (b) settling time, (c) rise time	
4.17	Performance comparison of ST-FLC and FLC,(a) ITAE and (b) IAE	112
4.18	Load disturbance comparison of FLC and ST-FLC at full load and	114
	rated speed	
4.19	Load disturbance comparison at wide range of speed operation	114
4.20	Performance comparison measure of ST-FLC and FLC at 1400rpm,	115
	(a) 75% load, (b) 50% load	
4.21	Performance comparison of ST-FLC and FLC with increase in	117
	inertia, (a) 2.5J, (b) 3.75J	
4.22	Computational time comparison of FLC and ST-FLC	119

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Induction Motor Parameters	146
В	Flow Chart of Research Activities	147
С	Simulink Models	148
D	Performance at wide Speed Operations	152

LIST OF ABBREVIATIONS

AC	-	Alternate Current
ADC	-	Analog to Digital Converter
ASD	-	Adjustable Speed Drive
AWPI	-	Anti-Windup Proportional integral controller
CoG	-	Center of Gravity
DC	-	Direct Current
DSP	-	Digital Signal Processor
DTC	-	Direct Torque Control
DSPACE	-	Digital Signal Processing And Control Engineering
FL	-	Fuzzy Logic
FLC	-	Fuzzy Logic Controller
FMRLC	-	Fuzzy Model Reference Learning Control
FNN	-	Fuzzy Neural Network
FOC	-	Field Oriented Control
НСС	-	Hysteresis Current Control
IAE	-	Integral Absolute Error
IGBT	-	Insulated Gate Bipolar Transistor
IFOC	-	Indirect Field Oriented Control
IM	-	Induction Motor
ITAE	-	Integral Time Absolute Error

xiii

MF	-	Membership Function
MRAC	-	Model Reference Adaptive Control
MRAS	-	Model Reference Adaptive System
PI	-	Proportional Integral
PMSM	-	Permanent Magnet Synchronous Motor
PWM	-	Pulse Width Modulation
RTI	-	Real Time Interface
SPWM	-	Sinusoidal Pulse Width Modulation
ST-FLC	-	Self-Tuned Fuzzy Logic Controller
SVPWM	-	Space Vector Pulse Width Modulation
TS	-	Takagi-Sugeno
THD	-	Total Harmonics Distortion
UoD	-	Universe of Discourse
VSI	-	Voltage Source Inverter

xiv

LIST OF SYMBOLS

В	-	Friction
$\alpha\beta$ -frame	-	Stator reference frame
<i>dq</i> -frame	-	Rotor reference frame
<i>d</i> -axis	-	Direct axis
<i>q</i> -axis	-	Quadrature axis
е	-	Speed error
Се	-	Change of speed error
G _e	-	Error gain
G _{ce}	-	Change of speed gain
G _{cu}	-	Output gain
i_a, i_b, i_c	-	Stator phase a ,b and c current
I _a	-	Armature current
I_f	-	Field current
i _{sd}	-	Direct axis stator current
i _{sq}	-	Quadrature axis stator current
K _p	-	Proportional gain for PI
K _i	-	Integral gain for PI
K _t	-	Torque constant
L _s	-	Stator self-inductance

XV

L _r	-	Rotor self-inductance
L_m	-	Mutual inductance
Р	-	Number of poles
OS	-	Overshoot
R _r	-	Rotor Resistance
R _s	-	Stator Resistance
T _e	-	Electromagnetic torque
T_L	-	External load
T_r	-	Rise time
T_s	-	Settling time
T _{st}	-	Sampling time
v _r	-	Rotor voltage
v_s	-	Stator voltage
v _{sd}	-	Direct axis voltage
v_{sq}	-	Quadrature axis voltage
$arphi_r$	-	Rotor flux leakage
φ_s	-	Stator flux leakage
σ	-	Leakage coefficient factor
ε	-	Damping ratio
$ heta_f$	-	Field angle
$ heta_r$	-	Rotor position angle
$ heta_{sl}$	-	Slip angle
ω _e	-	Synchronous speed
ω_n	-	Natural frequency

xvi

ω_r	-	Rotor speed or actual speed
ω_{sl}	-	Slip speed
$\omega_r *$	-	Reference speed
$ au_m$	-	Mechanical torque time constant
$ au_r$	-	Rotor time constant
$ au_s$	-	Stator time constant

xvii

LIST OF PUBLICATIONS

A. Journal Publications

Farah, N.S.Y., Talib, M.H.N., Ibrahim, Z., Rasin, Z. and Rizman, Z.I., 2018. Experimental investigation of different rules size of fuzzy logic controller for vector control of induction motor drives. Journal of Fundamental and Applied Sciences, 10(6S), pp.1696-1717.

Nabil Farah, M. H. N. Talib, Z. Ibrahim, J. M. Lazi, Maaspaliza Azri., 2018. Self-tuning Fuzzy Logic Controller Based on Takagi-Sugeno Applied to Induction Motor Drives. International Journal of Power Electronics and Drive System ,Vol. 9, No. 4, pp. 1967-1975

B. Conference Publications

Farah, N., Talib, M.H.N., Ibrahim, Z., Azri, M. and Rasin, Z., 2017, October. Self-tuned output scaling factor of fuzzy logic speed control of induction motor drive. In System Engineering and Technology (ICSET), 2017 7th IEEE International Conference on (pp. 134-139).

Farah, N., Talib, M.H.N., Ibrahim, Z., Isa, S.M. and Lazi, J.M., 2017, October. Variable hysteresis current controller with fuzzy logic controller based induction motor drives. In System Engineering and Technology (ICSET), 2017 7th IEEE International Conference on (pp. 122-127).

Nabil Farah, M.H.N. Talib, Z. Ibrahim, M. Azri, Z. Rasin and J Mat Lazi., In Press. Self-Tuning Fuzzy Logic Control Based on MRAS For Induction Motor Drives .In CEAT 2018 International Conference on Clean Energy and Technology.

xviii

CHAPTER 1

INTRODUCTION

1.1 Research background

Induction Motor (IM) is one of the most popular electrical machines with a wide range of applications, such as electric vehicle, oil and gas excavations, mills, conveyors and many more (Zeraoulia &Benbouzid, 2006). The induction motor generally consists of a stator, which is the stationary part of the motor, and a rotor, which is the rotating part of the motor. There are two types of induction motor depending on the rotor construction, namely squirrel cage and wound rotor induction motor. Squirrel cage is the most widely used induction motor due to its simplicity, ease of construction, rugged and it requires less maintenance and is relatively cheaper (Dorrell et al., 2012).

Variable Speed Drive (VSD) can be defined as an electric motor which its speed can be adapted by utilizing additional controllers. Utilizing VSD in the control process of the motor is advantageous as energy saving, especially for large and high power electric motor. The function of VSD is to match the speed of the electric motor to the system requirements through adjusting the motor speed accordingly to the required tasks of the system. This can be achieved by compensating the changes on the system through external controllers (Saidur et al., 2012).

Scalar control is one of the first control method used to drive the AC motor. This method, however, only provides satisfactory performance during steady state condition but not in transient condition. Therefore, this method is only suitable for applications which do not require precise control and crucial transient of speed and torque response behaviors. The

demands of high performance motor drives with good transient and steady state performances can be achieved by vector control or FOC and DTC. FOC and DTC become the standard control method for high performance motor drive system, which the flux and torque can be decoupled control. These methods directly control the instantaneous position of the voltage, current and flux vectors. It controls the flux and torque component independently, similar to separately excited Direct Current (DC) machine. The invention of the FOC and DTC overcomes the disadvantages of scalar control method. Further discussion of this topic is covered in Chapter 2. This project implements Indirect FOC (IFOC) method due to its excellent record in control high performance drive. In addition, this method applies simpler sensing techniques and is more reliable.

Speed, torque or flux of the motor can be controlled to follow the desired requirements. The IM speed needs to be effectively controlled as it can impact the overall system performance directly. Proportional Integral (PI) controller is a common technique to control the induction motor drives. This controller has grown due to its simplicity and is easy to implement with satisfactory performance. However, their scaling parameters are sensitive to the motor parameters variation or load disturbance. This will degrade the performance of the system, and will results in a big speed drop with long recovery time to any load disturbance. In order to overcome the drawbacks associated with conventional controllers, Fuzzy Logic Controller (FLC) is proposed. FLC is an effective method to control the speed of the motor without parameters dependency. Two inputs and one output fuzzy are utilized in the FLC speed controller. Speed error and changes in speed error are used as the crisp input variables of the FLC. They are converted into fuzzy variables, and then combined with the designed fuzzy rules to produce the desired output. A scaling factor placed for each input and output fuzzy variables can be calculated depending on the system requirements. These factors have a crucial influence on the system performance. However, the fixed values of these scaling