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ABSTRACT 

 

 

Induction motor drives are commonly applicable in various industrial applications, such as 

traction system, electric vehicle and home appliances. This high performance drive require 

robust controller to obtain satisfactory performance in terms of speed demand change, load 

disturbance, inertia variation and non-linearity. Fuzzy Logic Control (FLC) is suitable for 

controller design especially when the system is difficult to be modelled mathematically due 

to its complexity, nonlinearity and imprecision. However, FLC with fixed parameters may 

experience degradation when the system operates away from the design point, and 

encounters parameter variation or load disturbance. The purpose of this project is to design 

and implement Self-Tuning Fuzzy Logic Controller (ST-FLC) for Induction Motor (IM) 

drives. The proposed self-tuning mechanism is able to adjust the output scaling factor of the 

output controller for main FLC. This process enhances the accuracy of the crisp output. This 

research begins by designing Indirect Field Oriented Control (IFOC) method fed by 

Hysteresis Current Controller (HCC) induction motor drive system. The FLC with fixed 

parameters for the speed controller comprises 9-rules are tuned to achieve best performance. 

Then, a simple self-tuning mechanism is applied to the main fuzzy logic speed controller. 

All simulations are executed by using Simulink and fuzzy tools in MATLAB software. The 

effectiveness of the proposed controller is determined by conducting a comparative analysis 

between FLC with fixed parameters and ST-FLC over a wide range of operating conditions, 

either in forward and reverse operations, load disturbance or inertia variations. Finally, 

experimental investigation is carried out to validate the simulation results by the aid of digital 

signal controller board dSPACE DS1104 with the induction motor drives system. Based on 

the results, ST-FLC has shown superior performance in transient and steady state conditions 

in term of various performance measures such as overshoot, rise time, settling time and 

recovery time over wide speed range operation. In comparison to fixed parameter FLC, the 

proposed ST-FLC reduced the settling time by 40.5%, rise time by 47.3% and speed drop by 

19.2%. The proposed self-tuning mechanism is relatively simpler and consumes less 

computational burden compared to other self-tuning methods. This is proved by measuring 

the computational burden of another Self-Tuning method which used fuzzy rules to tune the 

output scaling factor. The execution time of the proposed self-tuning found to be 0.5 𝑥10−3 

seconds compared to 1.2 𝑥10−3 seconds for the other self-tuning. 
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ABSTRAK 

 

 

 

Pemacu motor aruhan biasanya digunakan dalam pelbagai aplikasi perindustrian, seperti 

sistem daya tarikan, kenderaan elektrik dan peralatan rumah. Pemacu prestasi tinggi ini 

memerlukan satu pengawal yang mantap untuk mendapatkan prestasi yang memuaskan dari 

kepelbagaian permintaan kelajuan, gangguan beban, variasi inersia dan tidak linear. 

Kawalan Logik Kabur (FLC) sesuai untuk reka bentuk pengawal terutamanya apabila 

sistem itu sukar dimodelkan secara matematik kerana kerumitan, tidak linearan dan 

masalah ketepatan. Walau bagaimanapun, FLC dengan parameter tetap mungkin 

mengalami kemerosotan apabila sistem beroperasi jauh dari titik reka bentuk, dan 

menghadapi variasi parameter atau gangguan beban. Projek ini bertujuan untuk mereka 

bentuk dan melaksanakan Kawalan Logik Kabur Talaan Sendiri (ST-FLC) bagi pemacu 

Motor Aruhan (IM). Mekanisme penalaan sediri yang dicadangkan dapat menyesuaikan 

faktor skala keluaran bagi pengawal untuk FLC utama. Proses ini dapat meningkatkan 

ketepatan keluaran pengawal. Penyelidikan ini bermula dengan merekabentuk kaedah 

Kawalan Orientasi Medan Tidak Langsung (IFOC) yang disandarkan oleh sistem pemacu 

motor aruhan Pengawal Arus Hysteresis (HCC). FLC dengan parameter tetap untuk 

pengawal kelajuan merangkumi 9 aturan yang ditalakan untuk mencapai prestasi terbaik. 

Kemudian, mekanisme penalaan sendiri mudah digunakan untuk pengawal kelajuan logik 

kabur utama. Semua simulasi dilaksanakan dengan menggunakan Simulink dan perkakasan 

kabur dalam perisian MATLAB. Keberkesanan pengawal yang dicadangkan ditentukan 

dengan menjalankan analisis perbandingan di antara FLC berparameter tetap dan ST-FLC 

dalam pelbagai keadaan operasi, sama ada dalam operasi kehadapan dan kebelakang, 

gangguan beban atau variasi inersia. Akhirnya, siasatan eksperimen dijalankan untuk 

mengesahkan keputusan simulasi dengan bantuan papan pengawal isyarat digital dSPACE 

DS1104 dengan sistem pemacu motor aruhan. Berdasarkan dapatannya, ST-FLC telah 

menunjukkan prestasi yang unggul sama ada di dalam keadaan fana dan mantap dari 

pelbagai aspek prestasi ukuran seperti lajak atas, masa menaik, masa pengenapan dan masa 

pemulihan dengan operasi julat kelajuan yang besar. Jika dibandingkan dengan FLC 

berparameter tetap, ST-FLC yang dicadangkan mengurangkan masa pengenapan sebanyak 

40.5%, masa menaik sebanyak 47.3% dan masa pemulihan sebanyak 19.2%. Mekanisme 

penalaan sendiri yang dicadangkan agak mudah dan menggunakan beban komputasi yang 

kurang berbanding dengan kaedah penalaan sendiri yang lain. Ini dibuktikan dengan 

membuat pengukuran beban komputasi bagi kaedah talaan sendiri yang lain yang 

menggunakan aturan kabur sebagai penala faktor skala keluaran. Masa pelaksanaan bagi 

penalaan sendiri yang dicadangkan adalah 0.5 𝑥10−3 saat berbanding dengan 1.2 𝑥10−3 

saat untuk penalaan diri yang lain. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Research background 

Induction Motor (IM) is one of the most popular electrical machines with a wide range 

of applications, such as electric vehicle, oil and gas excavations, mills, conveyors and many 

more (Zeraoulia &Benbouzid, 2006). The induction motor generally consists of a stator, 

which is the stationary part of the motor, and a rotor, which is the rotating part of the motor. 

There are two types of induction motor depending on the rotor construction, namely squirrel 

cage and wound rotor induction motor. Squirrel cage is the most widely used induction motor 

due to its simplicity, ease of construction, rugged and it requires less maintenance and is 

relatively cheaper (Dorrell et al., 2012).  

Variable Speed Drive (VSD) can be defined as an electric motor which its speed can 

be adapted by utilizing additional controllers. Utilizing VSD in the control process of the 

motor is advantageous as energy saving, especially for large and high power electric motor. 

The function of VSD is to match the speed of the electric motor to the system requirements 

through adjusting the motor speed accordingly to the required tasks of the system. This can 

be achieved by compensating the changes on the system through external controllers (Saidur 

et al., 2012).  

Scalar control is one of the first control method used to drive the AC motor. This 

method, however, only provides satisfactory performance during steady state condition but 

not in transient condition. Therefore, this method is only suitable for applications which do 

not require precise control and crucial transient of speed and torque response behaviors. The 

 
 



 

 

2 

 

demands of high performance motor drives with good transient and steady state 

performances can be achieved by vector control or FOC and DTC. FOC and DTC become 

the standard control method for high performance motor drive system, which the flux and 

torque can be decoupled control. These methods directly control the instantaneous position 

of the voltage, current and flux vectors. It controls the flux and torque component 

independently, similar to separately excited Direct Current (DC) machine. The invention of 

the FOC and DTC overcomes the disadvantages of scalar control method. Further discussion 

of this topic is covered in Chapter 2. This project implements Indirect FOC (IFOC) method 

due to its excellent record in control high performance drive. In addition, this method applies 

simpler sensing techniques and is more reliable.     

Speed, torque or flux of the motor can be controlled to follow the desired requirements. 

The IM speed needs to be effectively controlled as it can impact the overall system 

performance directly. Proportional Integral (PI) controller is a common technique to control 

the induction motor drives. This controller has grown due to its simplicity and is easy to 

implement with satisfactory performance. However, their scaling parameters are sensitive to 

the motor parameters variation or load disturbance. This will degrade the performance of the 

system, and will results in a big speed drop with long recovery time to any load disturbance. 

In order to overcome the drawbacks associated with conventional controllers, Fuzzy Logic 

Controller (FLC) is proposed. FLC is an effective method to control the speed of the motor 

without parameters dependency. Two inputs and one output fuzzy are utilized in the FLC 

speed controller.  Speed error and changes in speed error are used as the crisp input variables 

of the FLC. They are converted into fuzzy variables, and then combined with the designed 

fuzzy rules to produce the desired output. A scaling factor placed for each input and output 

fuzzy variables can be calculated depending on the system requirements. These factors have 

a crucial influence on the system performance. However, the fixed values of these scaling 


