

Faculty of Manufacturing Engineering

PREPARATION AND CHARACTERIZATION OF SILICONE RUBBER COMPOSITES FILLED WASTE MINERAL FILLERS FOR HIGH VOLTAGE INSULATION APPLICATION

Najwa binti Kamarudin

Master of Science in Manufacturing Engineering

2019

🔘 Universiti Teknikal Malaysia Melaka

PREPARATION AND CHARACTERIZATION OF SILICONE RUBBER COMPOSITES FILLED WASTE MINERAL FILLERS FOR HIGH VOLTAGE INSULATION APPLICATION

NAJWA BINTI KAMARUDIN

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Preparation and Characterization of Silicone Rubber Composites Filled Waste Mineral Fillers for High Voltage Insulation Application" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	M
Name	:	NAJWA BINTI KAMARUDIN
Date	:	

.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

A de

Signature	
Supervisor Name	: TS. DR. JEEFFERIE BIN ABD RAZAK
Date	·

DEDICATION

To my beloved parents

Hj Kamarudin Bin Hj Said

Hjh Wan Rokma Binti Wan Ghani

ABSTRACT

Silicone rubber (SiR) based composites has increased demand in high voltage (HV) insulator application, due to their exceptional advantages over the existing conventional ceramic based insulator. SiR based insulator has compromised light-weight, superb breakage resistance, improved seismic performance and more flexible and manufacturable, than ceramic insulator. Hence, this research was conducted to prepare and characterize the performance of SiR based composites filled with mineral fillers, that derived from waste resources of silica (SiO₂) from waste glass, calcium carbonate (CaCO₃) from waste cockle shell and wollastonite (CaSiO₃) from combination of both. Simplified calcination heat treatment between SiO₂ and CaCO₃ (at percentage ratio of 51.70% : 48.30%), has successfully derived synthetic mineral CaSiO₃, as confirmed by x-ray diffraction at 37.5° of 20 peak. Later, SiR filled mineral filler was compounded by internal mixer with addition of dicumyl peroxide (DCP) as vulcanization agent, aux-heat stabilizer as colorant and mineral filler. Vulcanization via hot compression molding was performed before continuing into prolonged post-cured for complete conditioning. Two main independent variables has been tested in this research, which are the effects of mineral filler types and the effects of mineral filler loadings (at 5.00, 10.00, 20.00, 30.00 and 40.00wt.%), towards the resulted electrical, physical, mechanical and morphological performances of SiR filled composites. For electrical testing, an inclined plane test (IPT), surface resistivity and relative permittivity tests were conducted. Fracture surface observation via scanning electron microscope (SEM) was performed to relate the behavior of resulted mechanical strength of produced SiR based composites. It was interestingly found that, addition of mineral fillers caused an improvement in tensile strength about 70%, which exhibited by SiR/CaSiO₃ at 5.00wt.% filler added. In terms of IPT test, SiR/CaSiO₃ had maximally passed the tracking failure limit (4 out of 5 samples < 2.50cm) as compared than the other SiR composites. In addition, SiR/CaSiO₃ at 40wt.% exhibits highest value of surface resistivity and relative permittivity. Not only that, it also possessed maximal hardness value which indicating complete peroxide curing, at before and after HV exposure. While stable water absorption was also obtained by SiR/CaSiO₃ sample. In overall, SiR based composites provide absolute significant improvement as compared than unfilled especially for SiR/CaSiO₃ composites, which has dominated the best properties almost for entire performed tests. These findings, was underlined the potential of CaSiO₃ over the other mineral fillers, to established improved filler-matrix interaction, due to their needle-like structure and protrusion condition and its extraordinary insulation effects, which benefited for electrical insulation and strength performances of SiR based composites for outstanding and reliable HV application.

ABSTRAK

Komposit berasaskan getah silikon (SiR) telah mendapat permintaan yang tinggi dalam aplikasi penebat voltan tinggi (HV), kerana kelebihannya yang luar biasa berbanding penebat berasaskan seramik konvensional yang sedia ada. Penebat berdasarkan SiR telah menjanjikan berat badan ringan, rintangan pecah yang hebat, prestasi seismik yang lebih baik dan lebih fleksibel dan boleh dihasilkan daripada penebat seramik. Oleh itu, kajian ini dijalankan untuk menyediakan dan mencirikan prestasi komposit SiR yang diisi dengan pengisi mineral, yang diperoleh daripada sumber silika (SiO₂) dari sisa kaca, kalsium karbonat (CaCO₃) dari sisa kulit kerang dan wollastonite (CaSiO₃) dari gabungan keduaduanya. Rawatan haba kalsinasi yang sederhana antara SiO₃ dan CaCO₃ (pada nisbah peratusan 51.70%: 48.30%), telah berjaya memperolehi mineral sintetik CaSiO₃, seperti yang disahkan oleh difraksi sinar-x pada 37.5 ° puncak 20. Kemudian, pengisi mineral yang diisi SiR dikompaun oleh pengadun dalaman dengan penambahan dicumyl peroksida (DCP) sebagai ejen pemvulkanan, penstabil aux-haba sebagai pewarna dan pengisi mineral. Pemvulkanan melalui pengacuan mampatan panas telah dilakukan sebelum diteruskan dengan pra-pemvulkanan yang berpanjangan untuk kitaran penyaman yang lengkap. Dua pembolehubah bebas utama telah diuji dalam kajian ini, iaitu kesan terhadap pengisi mineral dan kesan terhadap kuantitipengisian mineral (pada 5.00, 10.00, 20.00, 30.00 dan 40.00wt.%), ke arah prestasielektrik, mekanikal, fizikal dan morfologi SiR berasaskan komposit. Bagi ujian elektrik, ujian satah cenderung (IPT), ujian permukaan dan ketelusan relatif dijalankan. Pemerhatian permukaan patah melalui mikroskop elektron scanning (SEM) dilakukan untuk mengaitkan tingkah laku kekuatan mekanikal terhadap komposit SiR yang dihasilkan. Ia menarik perhatian bahawa, penambahan pengisi mineral menyebabkan peningkatan kekuatan tegangan sekitar 70%, yang dipamerkan oleh SiR/CaSiO₃ pada 5.00wt.%. Dari segi ujian IPT, SiR/CaSiO₃ telah mencapaikegagalan penjejakan maksimum (4 daripada 5 sampel <2.50sm) berbanding komposit SiR yang lain. Di samping itu, SiR/CaSiO₃ pada 40wt.% mempamerkan nilai tertinggi permukaan rintangan dan ketelusan relatif. Selain itu, ia juga mempunyai nilai kekerasan maksima yang menunjukkan pengawetan peroksida yang lengkap, sebelum dan selepas pendedahan HV. Tambahan pula, penyerapan air yang stabil juga diperolehi oleh sampel SiR/CaSiO₃. Secara keseluruhannya, komposit SiR memberikan pembaikan mutlak yang ketara berbanding yang tidak terisi terutamanya untuk komposit SiR/CaSiO₃, yang telah menguasai sifat-sifat terbaik hampir untuk seluruh ujian yang dilakukan. Penemuan ini menggariskan potensi CaSiO3berbanding pengisi mineral lain, untuk membentuk interaksi matriks pengisi yang lebih baik, disebabkan oleh struktur dan keadaan tujahan seperti jarum dan kesan penebat luar biasa yang memberi manfaat kepada penebat elektrik dan prestasi kekuatan SiR berdasarkan komposit untuk aplikasi HV yang cemerlang dan boleh dipercayai.

ACKNOWLEDGEMENTS

First and foremost, I would first like to thank my research supervisor Ts. Dr. Jeefferie bin Abd Razak of the Faculty of Manufacturing Engineering at Universiti Teknikal Malaysia Melaka. The door to Dr. Jeefferie office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this research to be my own work, but steered me in the right direction whenever he thought I needed it.

I would also like to thank my co-supervisor Puan Nurbahirah Binti Norddin who was involved in this research as an expert in electrical testing. Without her passionate participation and input, the electrical testing could not have been successfully conducted.

Finally, I must express my very profound gratitude to my parents and to my friends for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. The accomplishment would not have been possible without them.

Thank you.

TABLE OF CONTENTS

DEC	CLAF	RATION	
APF	ROV	AL	
DEI	DICA	TION	
ABS	STRA	СТ	i
ABS	STRA	K	i
ACI	KNOV	WLEDGEMENTS	ii
TAI	BLE (DF CONTENTS	iv
LIS	T OF	TABLES	vi
LIS	T OF	FIGURES	vii
LIS	T OF	APPENDICES	xi
LIS	T OF	ABBREVIATIONS	xi
LIS	T OF	SYMBOLS	XV
LIS	T OF	PUBLICATIONS	xvi
CH	APTE	CR	
1.	INT	TRODUCTION	1
	1.1	Background of study	1
	1.2	Problem statement	5
	1.3	Objectives	7
	1.4	Scope of works	8
	1.5	Significance of research	9
2.	LIT	ERATURE REVIEW	12
	2.1	Introduction	12
	2.2	Silicone rubber	12
		2.2.1 Silicone rubber for high voltage insulator application	14
	2.3	Silicone Rubber (SiR) based composites	17
		2.3.1 Mechanical properties of silicone rubber based	
		composites	21
		2.3.2 Electrical properties of silicone rubber based	
		composites	24
	2.4	Introduction to cockle shells	29
	2.5	Introduction to waste glass	31
	2.6	Introduction to wollastonite	33
	2.7	Summary	36
3.	ME'	THODOLOGY	38
	3.1	Introduction	38
		3.1.1 Preparation of calcium carbonate powder from	
		cockle shell	41
		3.1.2 Preparation of silica powder from waste glass	42
		3.1.3 Preparation of wollastonite powder	43
	3.2	Characterization of X-Ray Diffraction (XRD)	46
	3.3	Characterization using Particle Size Analysis (PSA)	47
	3.4	Preparation of SiR/mineral filler based composites	48
		iv	

		3.4.1	Weighing procedure for SiR based composites	
			preparation samples	48
		3.4.2	Compounding of SiR/filler based composites	50
		3.4.3	Vulcanization of SiR based composites	53
	3.5	Tensil	le testing (BS 6746)	56
	3.6	Hardn	ness testing of SiR based composites	58
	3.7	Electr	ical testing	59
		3.7.1	Inclined plane tracking test	59
		3.7.2	Surface resistivity testing	62
		3.7.3	Relative permittivity testing	65
	3.8	Physic	cal testing	66
		3.8.1	Water absorption testing	66
	3.9	Fractu	re surface morphological observation using SEM	68
	3.10	Summ	nary	69
4.	RES	SULT A	AND DISCUSSION	71
	4.1	Introd	luction	71
	4.2	Raw r	naterials characterization	72
		4.2.1	Structural analysis using X-Ray Diffraction (XRD) method	72
		4.2.2	Characterization of silica (SiO_2) made from waste	12
			glass bottles	74
		4.2.3	Characterization of calcium carbonate (CaCO ₃) made	
			from cockle shell	74
		4.2.4	X-Ray Diffraction (XRD) and X-Ray Fluorescence	
			(XRF) characterization of wollastonite (CaSiO ₃)	75
		4.2.5	Particle Size Analysis (PSA) characterization	77
		4.2.6	Scanning Electron Microscope (SEM) observation for	
			mineral fillers	79
	4.3	Electr	ical high-voltage testing for SiR filled mineral filler	
		based	composites	81
		4.3.1	Incline Plane Tracking (IPT) analysis of SiR based	
			composites	82
		4.3.2	Surface resistivity analysis	89
		4.3.3	Relative permittivity analysis	92
	4.4	Mecha	anical testing analysis for SiR filled mineral filler	
		based	composites	95
		4.4.1	Tensile testing analysis	96
	4.5	Physic	cal testing	108
		4.5.1	Water absorption analysis	108
		4.5.2	Hardness analysis	111
	4.6	Fractu	re surfaces observation via scanning electron	
		micro	scope (SEM) analysis	113
	4.7	Summ	nary	117
5.	CO	NCLUS	SION AND RECOMMENDATIONS	119
	5.1	Concl	usion	119
	5.2	Contr	ibutions to knowledge	122
	5.3	Recor	nmendations	123

v

REFERENCES APPENDICES

125 145

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Stresses on outdoor insulation (Cherney, 2005)	16
2.2	Summary of previous researches related to silicone rubber based	
	composites	20
2.3	Summary of previous researches related to mechanical	
	properties of silicone rubber based composites and	
	nanocomposites	23
2.4	Summary of previous researches related to electrical properties	
	ofsilicone rubber based composites	28
3.1	Mixing formulations for SiR based composites based on	
	5 wt.% filler loading	50
4.1	Chemical constituents of wollastonite	77

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	Chemical structure of SiR (Nelson et al., 2004)	13
2.2	Molecular structures of PDMS (Frederick, 2014)	13
2.3	Silicone Rubber Insulator (www.polymerinsulator.com)	17
2.4	Designs and types of polymeric based composite insulator	18
	(Gorur, 1999)	
2.5	Schematic illustration of network conductive formation	25
2.6	A sketch showing resistance decreased with sufficient filler contents	
	(Saleem et al., 2010)	26
2.7	Percolation networks (Wang, 2005)	27
2.8	Chemical structure of calcium carbonate (Chemspider.com)	29
2.9	Example of cockle shell as collected and washed (Al-zubaid et al., 2015)	30
2.10	Crystalline structures (a) amorphous randomized structures (B)	
	and the molecular structure of silica-based glass(Axinte, 2011)	32
2.11	Dynamic viscosity of glass vs heating temperature(Axinte, 2011)	32
2.12	Appearance of wollastonite (Saadaldin and Rizkalla, 2014)	34
3.1	Illustration of flow chart for research process	40
3.2	Calcium carbonate (CaCO ₃) powder from cockle shell	41
3.3	Silica (SiO ₂) powder made from waste glass bottle	42
3.4	Flow chart of SiO ₂ & CaCO ₃ powder preparation flows	43
3.5	Flow chart of wollastonite preparation steps	45
3.6	Wollastonite (CaSiO ₃) powder	45
3.7	Powder of raw materials	46
3.8	X-ray diffraction (XRD) machine	47
3.9	Particle size analysis (PSA) machine	47

viii

3.10	Marerials used for compounding process wicj are : (a) Dicumyl peroxide	
	(b) Heat additive (c) SiR rubber matrix	49
3.11	An internal mixer model Brabender PlastiCorder	51
3.12	Compounding of SiR based composites	52
3.13	Gotech hot press machine for sample curing or vulcanization process	53
3.14	Molded specimens for an IPT tests	54
3.15	(a) Mould for tensile test; and (b) Mould for IPT test	55
3.16	Rubber cutter for tensile testing specimens	55
3.17	Dog bone shape of tensile tests specimen	56
3.18	Universal Testing Machine (UTM) model Shimadzu 20 kN	57
3.19	Testing set up for tensile test (BS 6747)	57
3.20	Shore A hardness indentor	58
3.21	Inclined Plane Tracking (IPT test) Equipment according to standard test	
	method of BS:EN 65807	60
3.22	Schematic diagram of Inclined Plane Tracking (IPT) testing set-up	62
3.23	Surface resistivity setup	63
3.24	Ring probe	63
3.25	Specimen dimension for the surface resistivity testing	64
3.26	Equipment of relative permittivity testing	65
3.27	Immersion of samples in distilled water for water absorption	68
3.28	Scanning Electron Microscope (SEM) for fracture surface morphological	
	observation	69
4.1	XRD diffraction of SiO ₂ , CaCO ₃ and CaSiO ₃ from waste resources	73
4.2	Particle size analysis (PSA) of silica made from waste glass source	78
4.3	Particle size analysis of calcium carbonate made from cockle shell source	78
4.4	Particle size analysis of wollastonite (CaSiO ₃)	79
4.5	SEM micrograph of SiO ₂ based waste glass (Magnification=500X)	80
4.6	SEM micrograph of CaCO ₃ based cockle shell (Magnification=500X)	80
4.7	SEM micrograph of CaSiO ₃ (Magnification=500X)	81
4.8	(a) Arcing on insulator sample	82
4.8	(b) Carbon formation on the IPT tested sample surface	82

sion
94
01
04
88
of 90
91
92
94
rix 95
98
99
103
106
108
109
Γ test 112
test 112
115
116
116

Х

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	The datasheet of the SiR used	145	

xi

LIST OF ABBREVIATIONS

AC	-	Alternate current
Al_2O_3	-	Alumina
ASTM	-	American standard test method
ATH	-	Aluminum tetahedra
В	-	Boron
BaTiO ₃	-	Barium Titanate
С	-	Carbon
Ca	-	Calcium
CaCO ₃	-	Calcium carbonate
CaSiO ₃	-	Wollastonite
Cu	-	Copper
Cm	-	Centimetre
CNT	-	Carbon nanotechnology
DBA	-	Dry band arcing
DC	-	Direct current
DCP	-	Dicumyl Peroxide
E _{AB}	-	Elongation at break
EMI	-	Electromagnetic interference
Fe	-	Iron
GHz	-	Gigahertz
GNR	-	Graphene nanoribbon

HRS	-	Hours	
HTVSR	-	High temperature vulcanized silicone rubber	
HV	-	High voltage	
IRHD	-	International Rubber Hardness Degree	
IPT	-	Inclined Plane Tracking	
К	-	Potassium	
kN	-	KiloNewton	
kV	-	Kilovolt	
Mg	-	Magnesium	
mins	-	Minutes	
ml	-	Mililitre	
mm	-	Milimetre	
MPa	-	Mega Pascal	
Na	-	Sodium	
NH ₄ Cl	-	Ammonium chloride	
Ni	-	Nickel	
0	-	Oxygen	
Р	-	Phosphorus	
PDMS	-	Polydimethylsiloxane	
PSA	-	Particle size analysis	
RPM	-	Rotation per minute	
RT	-	Room temperature	
RTV	-	Room temperature vulcanized	
S	-	Second	
SE	-	Shielding effectiveness	
SEM	-	Scanning electron microscope	

xiii

Si	-	Silicone
SiO ₂	-	Silica
SiR	-	Silicone rubber
TiO ₂	-	Titanium Oxide
Ts	-	Tensile strength
UTM	-	Universal tensile machine
UV	-	Ultraviolet
XRD	-	X-Ray diffraction
XRF	-	X-Ray fluorescence
Zn	-	Zinc

LIST OF SYMBOLS

Ω	-	Ohms
wt	-	Weight
%	-	Percentage
Σ	-	Sum up
°C	-	Degree celcius
Ω/sq	-	Ohm per square
Ø	-	Theta
μm	-	Micrometer

LIST OF PUBLICATIONS

Journal Paper:

- 1. Norddin, N., Saadon, I.M., Kamarudin, N., Razak, J.A., 2018. DC Incline Plane Test of Silicone Rubber Samples with Different Filler for High Voltage Insulation. *Journal of Advanced Manufacturing Technology*. (Accepted)
- Kamarudin, N., Razak, J.A., Mohamad, N., Norddin, N., Aman, A., Ismail, M.M., Junid, R. And Chew, T., 2018. Mechanical and Electrical Properties of Silicone Rubber based Composites for High Voltage Insulator Application. *International Journal of Engineering and Technology*, 7(3.25), pp. 452-457.

Conference Proceeding:

- 1. Kamarudin, N., Razak, J.A., Norddin, N., Mohamad, N., Tee, L.K., Chew, T. And Saad, N.M., 2019, July. Hardness and Water Absorption Properties of Silicone Rubber for High Voltage Insulator Applications. In *Symposium on Intelligent Manufacturing and Mechatronics*, pp. 343-352. Springer, Singapore.
- 2. Kamarudin, N., Razak, J.A., Norddin, N., Aman, A. And Nazir, N., 2018. Effect of Filler Loading on Tracking and Erosion of Silicone Rubber based Composites Under DC Voltage. In *Intelligence Manufacturing and Mechatronics*, pp. 73-83. Springer, Singapore.
- 3. Kamarudin, N., Razak, J.A., Norddin, N.B., Mohamad, N., Nazir. and Aman, A., 2017. Preliminary Investigation on Silicone Rubber Filled Wollastonite Composites for High Voltage Insulator Application. *Proceedings of Mechanical Engineering Research Day*, 2017, pp.1-2.

xvi

CHAPTER 1

INTRODUCTION

1.1 Background of study

An electrical insulation has been recognized as an important aspect to be considered for high voltage outdoor application (Karthik et al., 2013). Previously, there are several types of high voltage insulators on transmission lines for outdoor applications, have been manufactured. The history of high voltage insulator has began in 20th century, with porcelain as the only material being utilized for insulator applications. In 1940s, the development of insulator was then continued with utilization of polymer insulator that replacing conventional materials like porcelain, glass and ceramic. This transformation had started with manufacturing of high voltage insulator using epoxy resins as based raw materials (Hall, 1993).

The need for this major replacement was to eliminate the usage of expensive porcelain material, reduce the cost of manufacturing and most important to increase the tracking and erosion resistance of insulator which has very important for high voltage insulator application (Khan et al., 2017). Polymer material has chosen to replace previous type of insulator, due to their hydrophilic properties, which aids the process of dry band arcing that led into flashover phenomena (Prasenjit et al., 2015). Furthermore, polymeric insulators addressed most of the problems faced by the porcelain insulators. Their advantages includes light weight and flexible characteristics, which allows easier erection and commissioning of insulators, even at distant areas including places with resistance to vandalisms (Xuguang et al., 2000). These advantages over ceramic insulators have made them very attractive enough to be used for high voltage insulator industry.

Nowadays, in most countries, polymeric based insulator has growing demand due to technological growth and attractive potential benefits to their end consumers (Ramirez and Hernandez, 2016). Since polymeric insulations are well accepted in high voltage application, large number of important studies and research activities for improvement on their performances had been performed by various researchers at the global worldwide. One of key indicators for polymeric insulation surface performance was determined by its tracking and erosion effects since it has been well-known reason for common insulation failure (Vasudev, 2012). Tracking could be defined as formation of surface carbonaceous path, while erosion was a weight loss experienced by the tested insulator material (Ghunem, 2015). Tracking and erosion are considered as important aspects to be looked into, since it leads to a better strength of insulator (Kannan et al., 2015). Furthermore, polymeric insulators exhibit a hydrophobicity property which has suitable to be used in highly polluted areas. These kinds of properties make polymeric insulators good for their usage. However, polymeric insulators also possessed certain drawbacks. While they are having commercial success, an obstacle occurred due to fluctuate hydrocarbon cost, limited manufacturing versatility and the utmost important part was an inadequate performance for outdoor field high voltage application (Sundhar et al., 1992). Since the usage of polymeric insulators has not been developed until the late 1960s and 1970s, their expected life was still unknown (Hall, 1993). Furthermore, polymeric insulators are vulnerable to tracking and erosion under electrical stress, and also to degradation under corona and weathering (Vas et al., 2012). If the polymeric insulator agonize from tracking and erosion for a long period of time, it may eventually lead into failure of the insulators (Yaacob et al., 2013). Thus, in order to overcome these problems, an initiative should be created. Since silicone rubber (SiR) possessed lower stiffness, an alternative has been made by adding some functional fillers into it, for polymeric based composites production,

for the sake to enhance their resulted end properties of electrical insulation and mechanical strength (Amin and Salman, 2006). As reported by many previous researchers, by adding functional fillers into the polymer matrix, it could improvised certain properties and also could lowering the cost of manufacturing process (Venkatesulu and Thomas, 2010; Aman et al., 2013; Ghunem et al., 2015; Ali et al., 2017).

Over the past few years, polymeric based composite insulators have growing into higher demand and has already known worldwide (Momen, G. and Farzaneh, 2011). According to Rowland et al. (2010), a failure would occurred earlier for polymeric based composite insulators due to poor design and improper manufacturing processes. However, an improvement has been established for over 20 years, by enhancing the design and manufacturing techniques to overcome the problem in early application. Surprisingly, their usage has increased rapidly and known worldwide for over three decades. Among the benefits, polymeric composite designs for high voltage insulators has compromised lighter weight, less breakage, improved seismic performance and more flexibility at real application than ceramic insulators. These features provide advantages of lower installation cost, better durability and more aesthetically pleasing design. To counter these advantages, a comprehensive understanding of synthetic and mineral fillers roles and involvement are yet to be realized. It should be noted that an involvement of filler in polymeric composite for HV application was important since it could enhance the mechanical strength and other electrical insulation attributes of resulted polymer composites (Bian et al., 2013).

Basically, reinforcements material or fillers are regularly used to enhance the polymeric composite properties and also to reduce the end cost of final products (Ansorge et al., 2012; Aman et al., 2013). The most common fillers that often been used for electrical insulation application are alumina, silica, calcium carbonate and wollastonite mineral fillers. In this research work, the later three mineral filler types were chosen based

3