

Faculty of Manufacturing Engineering

A CONCEPTUAL FRAMEWORK OF RECONFIGURABLE CONVEYOR SYSTEM TO SUPPORT CHANGEABILITY IN MANUFACTURING

Nor Rizan binti Mohamad

Master of Science in Manufacturing Engineering

2019

A CONCEPTUAL FRAMEWORK OF RECONFIGURABLE CONVEYOR SYSTEM TO SUPPORT CHANGEABILITY IN MANUFACTURING

NOR RIZAN BINTI MOHAMAD

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "A Conceptual Framework of Reconfigurable Conveyor System to Support Changeability in Manufacturing" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Nor Rizan Binti Mohamad
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Supervisor Name	:	Ir. Dr. Ing. Azrul Azwan Bin Abdul Rahman
Date	:	

DEDICATION

This report is dedicated especially to my beloved family, my parents (Encik Mohamad Bin Yaccob and Puan Lijah Binti Mohd) My husband (Encik Khairul Nizam Bin Abd Ghani) My sisters and my brothers And lastly to all my friends that give me a support while doing this project

Thank you very much.

ABSTRACT

Reconfigurable concept has a demand in the manufacturing system in order to support unpredictable customer demand. It is also to improve the changeability and functionality of the system to reduce time and cost-saving. A conveyor system is one of automated material handling systems commonly used in manufacturing industries. Due to the problem such as dynamic nature, space available, and risk operation, these conveyor systems are unable to suit the current market requirement. Therefore, this research aimed to propose a new conceptual framework of Reconfigurable Conveyor System (Re-Con) in order to support the changeability in the manufacturing system. At the end of the study, some case study is carried out to analyze and validate the concept. The study includes both conceptual framework for physical configuration and logical configuration. There are four possible configurations which are closed-loop, L-Shaped, U-Shaped and Straight-Line layout arrangement. For the logical configuration, there are six different modules of Programmable Logic Controller with different control strategies. The program is designed by using IEC 61131 Protocol. Function Block is designed from the program of each controller to make it easier to upload, download, design and redesign the controller when a changeable of layout arrangement is happen. The proposed conceptual framework is validated by using a lab-scale Re-Con. The analysis is conducted by using Maynard Operation Sequence Technique (MOST) analysis and Single Minutes Exchange Die (SMED). The physical configuration of Re-Con takes about 108.42 minutes and the logical configuration of Re-Con takes about 445.69 seconds compared to the lab-scale of the existing conveyor system. From the result, the development of the Reconfigurable Conveyor System can be made in the future study because it can reduce cost saving and time. In conclusion, the research's objective to develop a conceptual framework of Re-Con has been achieved.

ABSTRAK

Konsep pembentukan semula diperlukan dalam sistem pembuatan bagi menyokong permintaan pelanggan yang tidak menentu. Ia juga untuk meningkatkan kebolehan dan fungsi sistem bagi mengurangkan masa dan penjimatan kos. Sistem penghantar adalah salah satu sistem pengendalian bahan automatik yang sering digunakan didalam sistem pembuatan. Disebabkan masalah seperti sifat dinamik, ruang yang tersedia dan risiko operasi, sistem penghantar tidak dapat memenuhi keperluan pasaran semasa. Oleh itu, kajian ini bertujuan untuk mencadangkan rangka kerja bagi konsep baru iaitu sistem penghantar yang boleh dibentuk semula untuk menyokong perubahan dalam sistem pembuatan. Pada fasa akhir pembangunan konsep tersebut, beberapa kes kajian dijalankan untuk menganalisa dan mengesahkan konsep tersebut. Kajian ini merangkumi konfigurasi fizikal dan konfigurasi logik. Terdapat empat konfigurasi iaitu konfigurasi gelung tertutup, konfigurasi bentuk L, konfigurasi bentuk U dan konfigurasi garis lurus. Untuk konfigurasi logik, terdapat enam modul berbeza yang boleh diaturcara menggunakan pengawal logic boleh atur (PLC) dengan strategi kawalan yang berbeza. Program ini diaturcara dengan menggunakan Protokol IEC 61131. Fungsi Blok (FB) direka bentuk berlandaskan sistem kawalan dari setiap modul untuk memudahkan ianya dimuat naik, dimuat turun, direka bentuk dan direka bentuk semula apabila susunan konfigurasi berubah. Konsep rangka kerja ini diuji dengan menggunakan sistem penghantar bersaiz makmal yang boleh diubah suai. Analisa telah dilakukan dengan menggunakan Analisis MOST dan Analisis SMED. Konfigurasi fizikal mengambil masa dalam 108.42 minit dan konfigurasi logikal mengambil masa dalam 445.69 saat berbanding dengan sistem penghantar bersaiz makmal yang sedia ada. Daripada hasil kajian, sistem Re-Con ini boleh dibangunkan dan digunakan pada masa hadapan kerana ia dapat mengurangkan penjimatan kos dan masa. Sebagai kesimpulan, matlamat projek untuk membangunkan konsep sistem penghantar yang boleh diubah telah dicapai.

ACKNOWLEDGEMENTS

In the name of God, the Most Gracious, the Most Merciful.

Alhamdulillah and praises to Allah SWT because of His Almighty and His Utmost blessings. First of all, I am highly grateful to my university, Universiti Teknikal Malaysia Melaka (UTeM) for allowing me to do my master's project.

Next, I want to thank my Supervisor, Ir. Dr. Ing Azrul Azwan Bin Abdul Rahman for the knowledge, guides and times given during the research period. Without the help from him, surely I will have a problem in completing the master's writing report.

A very special appreciation goes to Ir. Dr. Muhammad Arfauz Bin A. Rahman as my cosupervisor, who has been giving me the guides from beginning until the end of my study. Not to forget all of the knowledge, supportive words, and commitments that he gave for making me successful in accomplishing my goals during the study.

Special gratitude to my parents, Mohamad Bin Yaacob and Lijah Binti Mohd for the encouragements, emotional help and supports during completing my master. Besides that, I would like to express my heartfelt gratitude to my husband, Khairul Nizam Bin Abdul Ghani, the person which always be the backbone to me and support me during my study. Lastly, to all my friends, thanks a lot in giving me strength, constructive suggestion, idea and also criticism. Thank you.

iii

TABLE OF CONTENTS

			PAGE
DE	CLAR	ATION	
AP	PROV	A L	
DE	EDICA	TION	
AB	STRA	CT	i
AB	STRA	K	ii
AC	CKNOV	WLEDGEMENTS	iii
TA	BLE (DF CONTENTS	iv
LI	ST OF	TABLES	vi
LI	ST OF	FIGURES	viii
LI	ST OF	APPENDICES	xi
LI	ST OF	ABBREVIATIONS	xiii
LI	ST OF	PUBLICATIONS	xiv
CE	IAPTE	R	
1.	INTF	RODUCTION	1
	1.1	Background	1
	1.2	Problem statement	3
	1.3	Objective of the study	6
	1.4	Scope	7
	1.5	Significant of study	7
	1.6	Thesis structure	8
2.	LITE	CRATURE REVIEW	10
	2.1	Material handling system	10
		2.1.1 Life cycle of material handling system	13
	2.2	Conveyor system	15
	2.3	The changeability in manufacturing system	16
		2.3.1 Reconfigurability and their characteristics	17
	2.4	The industrial state of the arts	20
		2.4.1 Research activities	20
		2.4.2 The example of the existing conveyor system	23
	2.5	The controller	27
		2.5.1 Controller hardware	27
		2.5.2 Controller software	30
	• •	2.5.3 PLC programming language	32
	2.6	The electrical component	35
	2.7	Data collection analysis	35
	2.8	Maynard Operation Sequence Technique (MOST) analysis	36
	2.9	Single Minutes Exchange Dies (SMED)	38
	2.10	Summary	40
3.	MET	HODOLOGY	41
	3.1	The overall flowchart of research	41
		3.1.1 Literature review	42
		3.1.2 Analyze the questionnaire from manufacturing industry	42
		3.1.3 Identification of the conceptual framework of Re-Con	42
		3.1.4 Analyze the control variable	43

		3.1.5 Development of the physical reconfiguration	43			
		3.1.6 Development of the logical reconfiguration	44			
		3.1.7 Testing and analysis	46			
	3.1.8 Case study implementation					
	3.2	Challenge specification	47			
	3.3	Connection through Ethernet	48			
		3.3.1 IP address set up	48			
		3.3.2 List of the IP address	49			
	3.4	The conceptual framework of Re-Con	50			
		3.4.1 Physical reconfiguration	50			
		3.4.1.1 Modelling of Re-Con	51			
		3.4.1.2 Possible layout reconfiguration	52			
	3.5	Logical reconfiguration	53			
		3.5.1 The architecture of Re-Con	54			
	3.6	The electrical wiring	57			
	3.7	The conceptual framework for control system of Re-Con	60			
		3.7.1 Main system controller	61			
		3.7.2 Sub-system controller	61			
		3.7.2.1 Programming for each module	70			
		3.7.2.2 Function block	71			
		3.7.2.3 Changeable function block for each configuration	74			
		3.7.3.4 Programming method selection	74			
	3.8	Case study implementation	76			
	3.9	Summary	77			
4.	RES	SULT AND DISCUSSION	78			
	4.1	Analysis of conveyor system in manufacturing industries	78			
	4.2	Maynard Operation Sequence Technique (MOST) analysis	80			
		4.2.1 Case study 1: Physical analysis	80			
		4.2.2 Case study 2: Wiring analysis	83			
		4.2.3 Case study 3: Total time taken for one module of conveyor	85			
		4.2.4 Case study 4: Changeover in physical configuration for each	96			
		layout	80			
	4.3	Single Minutes Die Exchange (SMED) analysis	93			
	4.4	Summary	95			
5.	CON	NCLUSION AND RECOMMENDATIONS	96			
	5.1	Conclusion	96			
	5.2	Future recommendation	98			
RE	FERF	ENCES	99			
APPENDICES 1			108			

v

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Structure of the thesis	8
2.1	The basic elements in designing process for RMS (Kalo, 2011)	18
2.2	The characteristic of reconfigurability (Makinde et al., 2014)	20
2.3	A general systematic approach for PLC-based control system development (Abdul Rahman, 2013)	28
2.4	Basic MOST measurement techniques (Deshpande, 2007)	37
2.5	Unit conversion table (Rahman, 2018)	38
2.6	Example of template SMED	40
3.1	List of IP address	49
3.2	Table of I/O assignment of module 1	62
3.3	Table of I/O assignment of module 2	64
3.4	Table of I/O assignment of module 3	66
3.5	Table of I/O assignment of module 4	67
3.6	Table of I/O assignment of module 5	68
3.7	Table of I/O assignment of module 6	70
4.1	MOST analysis for physical of existing conveyor system	81
4.2	MOST analysis for physical of Re-Con	82
4.3	MOST analysis for wiring process of existing conveyor system	83
4.4	MOST analysis for wiring process of Re-Con	84

4.5	Total time taken for one module (Existing of conveyor system)	85
4.6	Total time taken for one module (Re-Con)	86
4.7	Changeover in physical configuration straight line shaped	88
4.8	Changeover in physical configuration U-shaped	90
4.9	Changeover in physical configuration L-shaped	91
4.10	Changeover in physical configuration closed loop shaped	93
4.11	SMED analysis of logical reconfiguration	94

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Revolution of manufacturing system (Abdul Rahman, 2013)	2
1.2	Estimated annual growth rates of world MVA by years, at constant 2010 prices (UNIDO, 2016)	4
1.3	Estimated annual growth rates of world MVA by years, at constant prices of 2005 (UNIDO, 2015)	4
1.4	Industrial production in industrialized country (OECD, 2015)	5
2.1	Material handling system in a value creation system (Abdul Rahman, 2013)	11
2.2	Hardware configuration and control architecture of the material flow control (VDMA 15276, 1994; Ten Hompel and Schmidt, 2008	12
2.3	Life cycle of an automated material handling system (Abdul Rahman, 2013)	14
2.4	Diverging life cycles of the elements of the factory (Abdul Rahman, 2013)	15
2.5	Enablers of changeable manufacturing sub-systems (ElMaraghy and Wiendahl, 2009)	17
2.6	The type of configuration and reconfiguration system (Pritschow et al., 2012)	19
2.7	Single line layout	23
2.8	U-shape layout	23
2.9	Closed loop layout	23
2.10	Interoll conveyor module (Interoll, 2014)	24

viii

2.11	DynaCon modular conveyor system (Muskegon, 2014)	25
2.12	Power module (Itoh Denki, 2014)	26
2.13	SIMATIC ET200SP (Siemens, 2015)	29
2.14	OMRON CP1L-EL20DR (Component, 2015)	29
2.15	TIA portal (Siemens, 2007)	30
2.16	CX-ONE OMRON VER 4.25 (Corporation, 2015)	31
2.17	Characteristic of the programming language (Bolton, 2008)	33
2.18	Example of LD program (Siemens, 2006)	34
2.19	Procedure for programming FBD SIMATIC (Siemens, 2006)	34
3.1	The flowchart of the overall research	41
3.2	The flowchart of overall process of physical reconfiguration	43
3.3	The flowchart of overall process of logical reconfiguration	45
3.4	The flowchart of PC setting (Step 1)	48
3.5	The flowchart of PLC setting (Step 2)	48
3.6	The flowchart of changing PLC type (Step 3)	49
3.7	(a) Straight line conveyor and (b) Pneumatic cylinder conveyor	51
3.8	Modeling of Re-Con	52
3.9	Possible layout reconfiguration	53
3.10	The lab-scale of Re-Con	54
3.11	The architecture of Re-Con	56
3.12	The electrical wiring of the one module of Re-Con	58
3.13	Wiring diagram for Re-Con	59
3.14	The conceptual framework for control system of Re-Con	60
3.15	Control strategies in main system controller	61

3.16	(a) Actual appearance (b) Direction of movement conveyor (Module	62
	1)	
3.17	(a) Actual appearance (b) Direction of movement conveyor (Module	63
	2)	
3.18	(a) Actual appearance (b) Direction of movement conveyor (Module	65
	3)	
3.19	(a) Actual appearance (b) Direction of movement conveyor (Module	66
	4)	
3.20	(a) Actual appearance (b) Direction of movement conveyor (Module	68
	5)	
3.21	(a) Actual appearance (b) Direction of movement conveyor (Module	69
	6)	
3.22	Programming of PLC in each modules	71
3.23	Logical reconfiguration of Re-Con	72
3.24	Programming of function block in the module	73
3.25	Main function block for each module	73
3.26	Function block for each configuration	74
3.27	Programming method selection	75
3.28	The schematic diagram of the process flow of the Re-Con	76
4.1	Analysis of conveyor system in manufacturing industries	79
4.2	Straight line shaped layout configuration	87
4.3	U-shaped layout configuration	89
4.4	L-shaped layout configuration	90
4.5	Closed loop shaped layout configuration	92

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Input and output module 1	108
В	Input and output module 2	110
С	Input and output module 3	112
D	Input and output module 4	114
Е	Input and output module 5	116
F	Input and output module 6	117
G	Function block module 1	119
Н	Function block module 2	120
Ι	Function block module 3	121
J	Function block module 4	122
K	Function block module 5	123
L	Function block module 6	124
М	Function block for motor run	125
Ν	Function block for closed loop reconfiguration	126
0	Function block for U-shaped reconfiguration	127
Р	Function block for L-shaped reconfiguration	128
Q	Function block for straight line reconfiguration	129
R	The lab scale of reconfigurable conveyor system	130

S	The layout arrangement for each configuration	132
Т	Step to insert function block into the rung	134
U	The sample of questionnaires	140

LIST OF ABBREVIATIONS

AGV	-	Automated Guided Vehicle
APPC	-	Adaptive Production Planning and Control
DMS	-	Dedicated Manufacturing System
FB	-	Function Block
FMS	-	Flexible Manufacturing System
I/O	-	Input/Output
MOST	-	Maynard Operation Sequence Technique analysis
PLC	-	Programmable Logic Controller
RAS	-	Reconfigurable Assembly System
RE-CON	-	Reconfigurable Conveyor System
RMS	-	Reconfigurable Manufacturing System
RPP	-	Reconfigurable Process Planning
SMED	-	Single Minutes Exchange Die
TRF	-	Transformable Factory

xiii

LIST OF PUBLICATIONS

Papers are published:

- Mohamad, N. R., Abdul Rahman, A. A., Bali Mohamad, B. M., Rahman, M. A. A., Jafar, F. A., Muhamad, M. R., and Md Fauadi, M. H. F., 2018. Architecture of Reconfigurable Conveyor System in Manufacturing System. *Journal of Advanced Manufacturing Technology (JAMT)*, 12(1), pp. 117-128.
- Abdul Rahman, A. A. and Mohamad, N. R., 2016. Software-in-the-Loop Simulation Techniques to Support Reconfiguration of Manufacturing System. *ARPN Journal of Engineering and Applied Sciences*, 11(16), pp. 9789-9795.
- 3. Mohamad, N. R., Abdul Rahman, A. A., and Rahman, M. A. A., 2016. A Concept of Logical Reconfiguration. *Proceedings in Innovative Research and Industrial Dialogue, IRID 2016.*
- 4. Mohamad, N. R., Abdul Rahman, A. A., Bali Mohamad., A. A., Rahman, M. A. A. and Ekhwan, A., 2015. The State of The Art and Future Perspective of Reconfigurable Conveyor Systems in Manufacturing Industry. *Proceeding in International Conference on Design and Concurrent Engineering, IDECON 2015.*

xiv

CHAPTER 1

INTRODUCTION

1.1 Background

Manufacturing industries is one of the important industries that play as a company, which manufacture various products. This industry makes a large influence in the country's economic growth. The material handling system is commonly used in the manufacturing process as a delivery and production tools to move the product from the raw material to completion stage. The material handling system can be classified into two categories which are manual and automated material handling system. The example of an automated material handling system is an Automated Guided Vehicle (AGV), conveyor system and robot.

Figure 1.1 shows the revolution manufacturing system. Manufacturing industries have been introduced in the year 1850s. Most of the industries at this year used manual process by handmade. After a certain century, a new assembly line introduced in 1913s. This year is the beginning of mass production. In the year 1955s shows the peak of mass production since this year shows a high rate of production. These periods can be called as Dedicated Manufacturing Line (DML). To solve the problem, some improvement has been made by introducing a new invention of CNC technology in the year 1980s to support the high-frequency of customer's requirements. This system can be called as Flexible Manufacturing System (FMS). In the 2000s, the manufacturing industry needs to face unpredictable, high-frequency market changes, and other challenges due to globalization in this 21st century (Abdul Rahman, 2013). Therefore, a new type of manufacturing system is

required in order to make the competition between companies in the manufacturing industry to make it become more responsive to all the market changes (Koren and Shpitalni, 2010). Reconfigurable Manufacturing System (RMS) is introduced to support high-frequency market changes (Abdul Rahman, 2013).

Figure 1.1: Revolution of manufacturing system (Abdul Rahman, 2013)

In this research, the researcher is only focused on the conveyor system because the conveyor system is commonly used in manufacturing industries. In Malaysia industry scenario, about 39.3% of companies in Malaysia used conveyor system as their main material handling system. A conveyor system is used to transport an object from one place to another (Dematic, 2014). Instead of possessing a new manufacturing system, a new

conveyor system should be implemented first since the conveyor is a composed of material handling system which occurred in most of the manufacturing system.

There are several advantages by using the conveyor system, which is time and costsaving and increases productivity at a certain time (An, 2011). In a rapidly changing environment, good coordination of production and logistics at a manufacturing operational level is required to handle rapidly evolving technology, frequently changing customer demand and satisfaction, and remain competitive.

A new concept of Reconfigurable Conveyor System (Re-Con) can adapt for converting the production of new models with cost-effective way by improving the capacity, productivity (Nazzal and El-Nashar, 2007) and functionality of the system to meet the product demand. The manufacturing system is scalable with the integration of technology and produces a variety of products in the rapid pace of change in quantities by reconfiguring the system-manufacturing layout.

This research is proposed to develop a new conceptual framework of Re-Con in manufacturing industries. The proposed framework of Re-Con is shown in two categories, which are physical and logical state.

1.2 Problem statement

Nowadays, the manufacturing industry is one of the important industries and made a large influence in the country's economic growth. It is now moving to adopt the reconfigurable manufacturing system in order to support the rapid changes in the market demands. According to the UNIDO (2016), the annual growth of the world manufacturing value added (MVA) is increased about 2.8 percent compared to the UNIDO estimates in 2015, which is 1.3 percent. These results indicate that there is increased of 1.2 percent compared to 2015. Figure 1.2 shows the estimated annual growth rates of world

3

MVA by years, at constant 2010 prices and Figure 1.3 shows the estimated annual growth rates of world MVA by years, at constant prices of 2005.

Figure 1.2: Estimated annual growth rates of world MVA by years, at constant 2010 prices

(UNIDO, 2016)

Figure 1.3: Estimated annual growth rates of world MVA by years, at constant prices of

2005 (UNIDO, 2015)

This statistic has proved that manufacturing industries cannot depend on the steady market demand any longer. However, regional conflicts especially in the Middle East and North Africa, as well as financial instability in Europe may adversely affect the growth figures. Global manufacturing output growth further slowed in the second quarter of 2015 as the global economy faced a number of challenges, including significant changes in the value of major currencies, a decline in oil prices, a continued slowdown in China and geopolitical instabilities. Figure 1.4 shows the industrial production in the industrialized country.

Figure 1.4: Industrial production in industrialized country (OECD, 2015)

For the solution of the problem, a new conceptual framework needs to be designed in order to respond to this sudden change of the market demands. Most of the manufacturing industries uses a conveyor system as their main system. The demand for the use of the conveyor system as one of the material handling system is increasingly moved forward with the technology. A conveyor system is used to transport product from the loading station until the unloading station. The current material handling