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ABSTRACT 

 

 

Ironless Permanent Magnet Linear Motors (IPMLM) are abundantly applied in 

various automated industries due to its capability of achieving high speed and high 

accuracy motions. Through the removal of transmission elements, the positioning 

performances of IPMLM are subjected by parameter changes and external disturbances, 

which is relatively difficult to model accurately. Besides that, since the IPMLM are often 

used in long working range applications, they are easily influenced by the saturation effect 

of the system, and may cause large overshoot. Therefore, in this research, a Continuous 

Motion-Nominal Characteristic Trajectory Following (CM-NCTF) controller is proposed 

for positioning control of an IPMLM. While the CM-NCTF controller was applied in 

various mechanism, the performance of CM-NCTF controller has yet to be validated for 

positioning control of IPMLM. The proposed controller consists of two components: A 

Nominal Characteristic Trajectory (NCT) and a proportional-plus-integral (PI) 

compensator. The NCT works as a motion reference for the IPMLM, where the PI 

compensator makes the system motion follows the constructed NCT. The NCT is 

constructed on a phase plane using the decelerating velocity of the IPMLM and its 

corresponding displacement in open loop configuration. This step enables the NCT to 

capture the nonlinearities of the IPMLM, without having to model the nonlinearities 

additionally. The PI compensator is designed using information from the NCT and open 

loop response of the IPMLM. A conditional freeze anti-windup is added to the PI 

compensator to eliminate actuator saturation effect, particularly due to the large integral 

gain, and due to large working range motion. The positioning performance in point-to-

point and tracking motion is examined and compared to a Proximate Time Optimal 

Servomechanism (PTOS) controller experimentally. Experimental results show that the 

CM-NCTF controller does not exhibit any overshoot or steady state error at all, and has 

370 % faster rise time than the PTOS controller at smaller displacement. In tracking 

motion, the CM-NCTF controller performs better than the PTOS controller, with at least 

530 % improvement of tracking accuracy at small displacement, and 2400 % improvement 

of tracking accuracy at large displacement. In the evaluation of robustness against mass 

changes, experimental results and sensitivity analysis show that the CM-NCTF controller 

is robust towards mass variation as compared to the PTOS controller. In conclusion, the 

positioning performance of the CM-NCTF controller is validated on an IPMLM with high 

positioning and robust performance in the presence of mass variation as compared to PTOS 

controller, with no occurrence of actuator saturation problem.  
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ABSTRAK 

 

 

Motor limpang bermagnet kekal tanpa teras besi (IPMLM) banyak digunakan 

dalam pelbagai industri automasi kerana keupayaannya untuk mencapai kelajuan dan 

ketepatan pergerakan yang tinggi. Akibat penyingkiran unsur-unsur transmisi, pergerakan 

IPMLM mudah dipengaruhi oleh perubahan parameter dan gangguan luaran terhadap 

IPMLM yang agak sukar dimodelkan. Selain itu, oleh sebab IPMLM sering digunakan 

dalam sistem pergerakan jarak jauh, maka IPMLM senang dipengaruhi oleh ketepuan 

penggerak tersebut, dan menjana pergerakan terlajak yang besar. Oleh itu dalam kajian 

ini, sebuah pengawal Pengikut Trajektori Ciri Nominal Dalam Pergerakan Berterusan 

(CM-NCTF) telah dicadangkan untuk mengawal pergerakan IPMLM. Proses untuk mereka 

pengawal CM-NCTF adalah mudah tanpa pengetahuan kawalan yang dalam, dan ia tidak 

memerlukan parameter IPMLM yang tepat. Pengawal CM-NCTF mempunyai dua 

bahagian, iaitu Trajektori Ciri Nominal (NCT) dan pengawal berkadar-dengan-kamiran 

(PI). NCT berfungsi sebagai sebuah rujukan pergerakan bagi IPMLM, manakala 

pengawal PI memastikan bahawa pergerakan IPMLM mengikut seperti dalam NCT. NCT 

ini dilukis di satah fasa dengan menggunakan halaju dan sesaran IPMLM dalam keadaan 

gelung terbuka ketika ia sedang diperlahankan. Cara pembentukan NCT ini dapat 

menangkap ciri-ciri tidak lelurus IPMLM, supaya pereka tidak perlu mendapatkan ciri-ciri 

ini secara khusus. Pengawal PI pula direka dengan menggunakan maklumat daripada 

NCT dan tindakbalas IPMLM dalam keadaan gelung terbuka. Sebuah struktur anti-

memutar beku bersyarat telah ditambahkan ke dalam pengawal PI untuk menghapuskan 

pengaruh ketepuan penggerak khususnya disebabkan oleh reaksi kamiran yang besar dan 

pergerakan jarak jauh. Prestasi pengawal CM-NCTF telah diperiksa dan dibandingkan 

dengan sebuah Pengawal Servomekanisme Masa Optimum Terdekat (PTOS) dalam aspek 

pergerakan titik ke titik dan pergerakan penjejakan melalui ujikaji. Hasil ujikaji 

menunjukkan bahawa pengawal CM-NCTF tidak menunjukkan sebarang pergerakan 

terlajak dan ralat dalam keadaan mapan, dan ia mempunyai masa menaik yang 370 %  

lebih cepat daripada PTOS dalam pergerakan yang lebih kecil. Dalam aspek pergerakan 

penjejakan, pengawal CM-NCTF mempunyai prestasi pergerakan yang lebih baik, di 

mana ralat penjejakannya adalah 530 % lebih rendah daripada pengawal PTOS dalam 

pergerakan jarak dekat, dan 2400 % lebih rendah dalam pergerakan jarak jauh. Dalam 

penilaian keteguhan pengawal terhadap perubahan jisim, hasil ujikaji dan analisis 

kepekaan menandakan bahawa pengawal CM-NCTF adalah lebih teguh terhadap 

perubahan jisim berbanding dengan pengawal PTOS. Kesimpulannya, pengawal CM-

NCTF mampu mencapai ketepatan pergerakan yang tinggi dan teguh terhadap perubahan 

jisim berbanding dengan pengawal PTOS, tanpa dipengaruhi masalah ketepuan 

penggerak.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

In modern manufacturing industries, demands on product quality improvement and 

high productivity have led to the continuous research and development for mechanisms 

with high positioning accuracy and velocity. Among various actuators, a direct drive linear 

motor is often opted to fulfil such demands. Unlike conventional machineries such as ball 

screw mechanisms or conveyor systems, direct drive linear motors do not come with any 

transmission elements such as gears, screw shafts or belts; the motor is capable of moving 

in a linear manner directly. With the application of this structure, gear related problems 

like backlash and mechanical limitation of speed and acceleration are eliminated (Yan & 

Shiu, 2008). Such advantages have put direct drive motors into extensive area of high 

speed and high accuracy applications, including robotic manipulators, semiconductor 

lithography system and transportation system.  

 Despite having simple construction, it was pointed out that the magnetic structure 

of linear motor presents a huge non-linear characteristic: the attractive force between 

permanent magnet and armature coil produces ripple force that causes unwanted vibrations 

(Tan et. al., 2003). These vibrations affect the positioning accuracy significantly, and may 

lead to system instability. Apart from the ripple force, the linear motor is also more 

sensitive towards parameter variations (load changes and external disturbances) due to the 

lack of mechanical transmissions. Therefore, in order to realize the high positioning 



 

2 

 

performances of linear motor in presence of these characteristics, application of controller 

is inevitable.  

 Over the past decades, various controllers were designed for positioning control of 

linear motors. In 1991, a disturbance observer was designed to estimate and counter the 

action of disturbances and parameter variations (Komada et al., 1991). Not long after, the 

design of H∞ (H-infinity) optimal feedback controller was proposed to provide high 

dynamic stiffness for the linear motor to reduce the effect of external disturbances (Alter 

and Tsao, 1996). More than half a decade later, an adaptive robust motion control which is 

capable of adapting the changes of unknown parameters and reduces their effects on the 

motor was proposed and simulated (Yao and Xu, 2002). In 2010, compensation of force 

ripple was done by considering the ripple model into the control scheme (Bascetta et al., 

2010). In recent years, a two degree-of-freedom controller incorporated with a learning 

feedforward controller was developed to achieve high precision tracking control in the 

presence of nonlinearities (Hama and Sato, 2015).  

While it is well documented that these controllers are effective in producing top-

notch positioning performances in linear motors, it is also observed that majority of the 

controllers need one to identify and model the nonlinearities of the linear motors to 

compensate them, which is relatively complicated and time-consuming. Apart from that, 

some of these controllers involve complex design procedures where deep comprehension 

of control system theory is essential. Therefore, with the reference of the above mentioned 

setbacks, it is favorable to produce a controller that is relatively simple and easy to design, 

while fulfilling desired performance specifications as well as robustness and stability 

(Dorato, 2000). It is also preferable if the controller is free of the necessity of plant 

modeling.    
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 To achieve this objective while assuring the above-mentioned controller 

characteristics are attained, a Continuous Motion Nominal Characteristic Trajectory 

Following (CM-NCTF) controller is proposed in this research for the positioning control of 

an Ironless Permanent Magnet Linear Motor (IPMLM). The CM-NCTF controller is a 

model based controller designed using the open loop response of the system, and it has 

straightforward design procedures that does not require deep understanding of control 

knowledge.  

 

1.2 Problem Statement 

Linear motors are highly favorable over the conventional transmission machineries 

due to their structural simplicity, high speed and high accuracy properties. In spite of that, 

repeated researches have reported the existence of ripple force in the linear motor that lead 

to vibrations and possible instability, particularly at low velocity motion. Furthermore, 

linear motors are also subjected to nonlinear frictions, load changes and parameter 

variations that degrade the positioning accuracy and compromise the stability of the system.  

Apart from the classical controllers, various advance controllers were designed to 

achieve high positioning accuracy in the presence of nonlinearities. However, these 

controllers have proven their limitations as the dynamics of the system has to be modeled 

as accurately as possible, else the stability and the positioning performance of the system 

will be at stake. On top of that, industrial operators might find difficulties in the applying 

advance controllers in the real plant as they are not familiar with the complex design 

procedures which require deep understanding of control theory. To overcome the 

mentioned restrictions of advance controllers, a CM-NCTF controller which does not 

require the exact model parameters, and has straightforward design procedure is proposed. 
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While the CM-NCTF controller has been proposed for various mechanism, its 

application on the IPMLM has yet to be observed. Even though in the past literature it was 

highlighted that the CM-NCTF controller has already proven its capability on mechanisms 

driven by voice coil motor (direct drive), however it must be stressed that these 

mechanisms work in a short range, whereas in this research, the direct drive IPMLM is a 

long working range linear motor. It is noted that at large displacement motion, actuator 

saturation problem occurs. Therefore, the CM-NCTF controller is improved to eliminate 

the occurrence of actuator saturation of the system. 

 

1.3 Objectives 

The objectives of this project are: 

i. To design a Continuous Motion Nominal Characteristic Trajectory Following 

(CM-NCTF) controller for positioning control of the linear motor; and 

ii. To evaluate the positioning performance as well as the robustness towards 

mass variations of the CM-NCTF controller and compare to a Proximate 

Time Optimal Servomechanism (PTOS) controller in point-to-point and 

tracking motion experimentally. 

  


