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ABSTRACT 

 

 

The linear electromagnetic actuator is receiving significant attention due to recent advances 

in power electronics and modern control method. Besides that, the manufacturing industry 

is relying on faster and more accurate positioning system in machine tools to meet the 

increasing demand for higher machining tolerances. Compare to the pneumatic and 

hydraulic actuator, the linear electromagnetic actuator has a fast dynamic response, high 

energy efficiency, and high positioning accuracy. In this thesis, a three-phase tubular linear 

switched reluctance actuator (LSRA) is proposed for the application in semiconductor 

fabrication industry. The LSRA with tubular structure seems to be attractive for industrial 

purposes due to both its closed form and inherently absence of normal force compared to the 

planar type LSRA. In addition, the tubular LSRA has robust construction, low manufacturing 

and maintenance cost, good fault tolerance capability and high reliability in the harsh 

environment make it an attractive alternative to permanent magnet linear actuator. However, 

the tubular LSRA has a long mover which increases the possibility of the mover to deform 

during fabrication. So, a new mover design is proposed to overcome the problem by 

separating the mover into mover shaft, magnetic ring and non-magnetic ring. Subsequently, 

the proposed mover design allows the travelling distance of the actuator to be modified by 

adding or removing the rings without changing the shaft. In addition, the design procedures, 

ranging from design specification and structure determination to optimization of actuator 

parameters is demonstrated in this thesis. The investigation is achieved through the 

simulation using the Finite Element Method (FEM) analysis and the performance is 

evaluated based on the generated thrust force. Then, the tubular LSRA prototype is 

fabricated according to the optimized design. In order to drive the tubular LSRA, three 

different high current amplifiers together with the switching algorithm are used to provide 

the correct switching signal due to this method is simple and straightforward while no 

extensive knowledge of power electronic converter is required. Next, the force and motion 

characteristics of the tubular LSRA are evaluated to verify the actuator design and the 

behaviour of the tubular LSRA is obtained through the open loop experiment. The developed 

tubular LSRA is capable of generating a maximum static force of 0.65 N which is within the 

required range needed to be operated in semiconductor fabrication process. Through the 

open loop reciprocating motion, the dynamic responses of the tubular LSRA are capable of 

achieving a maximum velocity of 210 mm/s and maximum acceleration of 8 m/s2 which are 

in the performance range for precision mechanism.  
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ABSTRAK 

 

 

Penggerak elektromagnetik lelurus mendapat perhatian yang ketara disebabkan oleh 

kemajuan terkini dalam elektronik kuasa dan kaedah kawalan moden. Selain itu, industri 

perkilangan bergantung pada sistem kedudukan yang lebih cepat dan tepat dalam alat mesin 

bagi memenuhi permintaan toleransi mesin yang semakin meningkat. Berbanding kepada 

penggerak pneumatik dan hidraulik, penggerak elektromagnetik lelurus mempunyai tindak 

balas dinamik yang pantas, kecekapan tenaga yang tinggi, dan ketepatan kedudukan yang 

tinggi. Dalam tesis ini, penggerak bertukar keengganan lelurus (LSRA) tiga fasa yang 

berbentuk tiub dicadangkan untuk aplikasi dalam perusahaan pembikinan separuh pangalir. 

Struktur tiub LSRA seolah-olah menjadi struktur yang menarik bagi tujuan perindustrian 

kerana bentuknya yang tertutup dan ketiadaan daya normal berbanding dengan jenis LSRA 

yang berbentuk satah. Di samping itu, LSRA tiub mempunyai pembinaan yang tegap, kos 

pembuatan dan penyelenggaraan yang rendah, keupayaan tolerasi kegagalan yang baik dan 

kebolehpercayaan yang tinggi dalam persekitaran yang kasar menjadikannya alternatif 

yang menarik kepada penggerak lelurus magnet kekal. Walau bagaimanapun, LSRA tuib 

mempunyai penggerak yang panjang menyebabkan peningkatan kemungkinan ubah bentuk 

berlaku pada penggerak semasa pembikinan. Oleh itu, reka bentuk penggerak baharu 

dicadangkan untuk mengatasi masalah tersebut dengan memisahkan badan penggerak 

kepada aci penggerak, tuib magnet dan tuib tanpa magnet. Tambahan, reka bentuk 

penggerak tersebut turut membolehkan jarak beroperasi diubah dengan menambahkan atau 

mengeluarkan tuib pada aci penggerak tanpa mengubah aci penggerak yang sedia ada. 

Kemudian, tatacara rekabentuk dari spesifikasi reka bentuk dan penentuan struktur sampai 

ke pengoptimuman parameter penggerak ditunjukkan dalam tesis ini. Kajian ini dicapai 

melalui simulasi dengan menggunakan analisis Kaedah Unsur Terhingga (FEM) dan 

prestasinya dinilai berdasarkan daya tujah yang dihasilkan. Prototaip LSRA tiub yang 

dibikin adalah mengikut reka bentuk yang telah dioptimumkan. Untuk memacu LSRA tiub 

ini, tiga penguat arus tinggi yang berbeza bersama-sama dengan algoritma pensuisan 

digunakan untuk menghasilkan pensuisan isyarat yang betul kerana kaedah ini adalah 

mudah dan ringkas sementara pengetahuan yang luas mengenai penukar kuasa elektronik 

tidak diperlukan. Seterusnya, ciri-ciri daya tujah dan gerakkan LSRA tiub dinilai untuk 

mengesah reka bentuk penggerak dan menentu kelakuan LSRA tiub menerusi eksperimen 

gelung terbuka. LSRA tiub yang dibina berkebolehan menghasilkan daya tujah maksimum 

sebanyak 0.65 N yang mana daya hujahnya berada di dalam julat yang diperlukan untuk 

beroperasi dalam tujuan pembikinan separuh pengalir. Dengan menggunakan gerakan 

salingan gelung terbuka, tindak balas dinamik oleh LSRA tiub mampu mencapai halaju 

maksimum sebanyak 210 mm/s dan pecutan maksimum sebanyak 8 m/s di mana prestasinya 

berada dalam julat prestasi bagi mekanisme kepersisan.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

This chapter highlights the background of the study, problem statement, objectives 

and scopes of the project. Background of study is a brief exposition on different types of 

linear actuators that are being researched and the problem statement dictates the core issue 

that is to be addressed by this research. Meanwhile, the objectives serve as a benchmark of 

the research while the scopes define the limits and boundaries of the project in overseeing 

the project upon completion. Lastly, the thesis outline of the research is described at the end 

of this chapter. 

 

1.2 Background 

 A linear actuator is a device that converts different forms of energy into linear motion. 

The linear actuator has been subjected to research and development for over 100 years and 

their concept has been known since the time of rotary motors, but the usefulness of linear 

actuator is not fully realized until many years later. Unlike linear motor, linear actuator 

focuses on achieving high precision motion performance with compact structure instead of 

high force performance. Therefore, the development of the linear actuator is focusing on 

three main aspects which are positioning accuracy, positioning speed and acceleration. 

However, the force performance of the actuator is not highlighted as long as the actuator met 

the performance range for precision mechanism (Oiwa et al., 2011;  Sato, 2013;  Maslan et 

al., 2019). The linear actuator provides a viable solution to numerous actuation requirements, 



2 

 

and it can be rotary, flat, tubular or converting rotary motion to linear motion. The 

application of linear actuator is wide-ranging from industrial applications to consumer goods 

such as industrial transportation system, vehicle suspension system, industrial robot and 

machine tool, industrial of semiconductor fabrication and medical instrument. 

The linear actuator can be classified into three major types. There are hydraulic 

actuator, pneumatic actuator and electric actuator. Hydraulic actuator has the advantages of 

high power to weight ratio, high reliability and high durability. However, it requires a large 

time constant and continuous pressurized liquid which increases the energy consumption of 

actuator operation. Moreover, the hydraulic actuator exhibits highly nonlinearity due to dry 

friction and subjected to leakage which makes it suitable for non-precision applications that 

requiring high force performance (Mantovani et al., 2018). Pneumatic actuator, on the other 

hand is capable of providing high force density with relatively low cost due to cheap power 

source and easy maintenance. As the air is compressible fluid, the force of the pneumatic 

actuator is slightly lower than the hydraulic actuator. However, the pneumatic actuator tends 

to be highly nonlinear due to the air compressor and complex friction in the chamber. This 

increases the complexity of control and degrades the overall performance of the actuator 

towards precision applications (Al-Ibadi et al., 2018). Therefore, both hydraulic and 

pneumatic actuator only applicable for non-precision heavy applications which require high 

force performance. 

Recently, linear direct-drive mechanism rapidly becomes an area of interest in the 

field of high speed and high precision machine tools because of their potential to overcome 

the inherent limitations of the traditional electric actuator such as ball screw system. The 

direct-drive method eliminating the mechanical transmission devices which contribute to 

low friction, eliminate backlash and reduce the mover mass and thus high precision 

performance can be achieved (Siadatan et al., 2017). Linear electromagnetic actuator such 



3 

 

as linear synchronous actuator and linear induction motor are electric actuators with direct-

drive properties. To provide a high speed and high force performance, most of the 

electromagnetic actuators are utilizing the permanent magnet which has a strong attractive 

force. However, the utilized of permanent magnet leads to the actuator’s cost rises and high 

cogging force which significantly affects the positioning accuracy in the ultra-precision 

actuator (Saadha et al., 2018). 

Linear switched reluctance actuator (LSRA), on the other hand has a magnet-free 

structure, thus LSRA is free from the above problems caused by the permanent magnet. 

Typically, the LSRA is only constructed with several physical parts; i.e. stator, mover and 

phase windings which are simple and cost-effective (Yusri et al., 2018). Besides that, LSRA 

offers fast response, low maintenance, simpler and more robust configuration than 

permanent magnet linear actuator which leads to a reliable and low-cost system (Wang et al., 

2018b). These advantages make LSRA a promising alternative actuator to permanent magnet 

linear actuator. LSRA may have lower force production for approximately 60 % compared 

to permanent magnet linear actuator, but lighter weight mover compensates for this (Amorós 

et al., 2015). The efficiency of LSRA is not very important, and the previously described 

advantages of the LSRA are more significant.  

The structure of the LSRA can be divided into planar single-sided, planar double-

sided and tubular topology. The simplest structure of LSRA is planar single-sided topology. 

This structure has a large normal force due to the asymmetrical air gap causes high friction 

force in the system and thus reduces the force density (Maslan et al., 2017). In high precision 

positioning applications, the effect of friction force in the system can lead to significant 

positioning error. On the other hand, planar double-sided LSRA has a balance normal force 

with twice the air gaps and coils compared to planar single-sided LSRA, which indicates the 

generated thrust force is expected to be doubled (Wang et al., 2016a). However, planar 
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double-sided LSRA still suffers from low force production compared to the permanent 

magnet actuator which limits the applications of LSRA. Henceforth, tubular LSRA has been 

proposed and employed to improve the force performance and increase the diversity of 

LSRA application. This is because the tubular LSRA fully utilized the actuator volume 

which contributes to larger force production compared to the planar type LSRA (Chen et al., 

2017). Besides that, the symmetrical structure of tubular LSRA in all direction eliminates 

the normal force as well as radial force. However, tubular LSRA utilizes more material 

compared to planar type LSRA (Chen et al., 2017). 

Several kinds of research reported the design of LSRA which focuses on achieving 

precision positioning. A planar single-sided micro LSRA with short travelling distance was 

developed by Liu and Chiang (2004) for micro positioning stages. As the proposed LSRA 

was designed for precision motion application, the maximum generated force only has 0.34 

N. Then, Pan et al. (2009, 2013) designed a planar single-sided LSRA for high precision X-

Y table with short travelling distance while the maximum thrust force generated at 3 A was 

approximately 6 N. Besides that, Maslan and Sato, (2018) proposed a thin and compact 

planar double-sided LSRA with disposable-film mover for precise positioning control 

purposes that to be operated in hazardous environment. The developed LSRA has short 

travelling distance and capable of generating maximum thrust force for approximately 4 mN 

at 3.33 A. Meanwhile, Saidi et al. (2018) designed a tubular LSRA for actuating the left 

ventricular assist device with maximum thrust of 4.82 N at 5.9 A. The high precision 

positioning capability of the proposed LSRA is important to control actuator stroke position 

and the blood flow to the body.  

Based on the background studies, it can be observed that the designs of the LSRA 

are focusing on short travelling distance range with precision motion performance. 

According to the Japan Society for Precision Engineering (JSPE), a precision actuator has 




