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ABSTRACT 

 

 

Mecanum-wheeled robot (MWR) has always been the limelight of mobile robot 

engineering and industrial applications due to its capability to manoeuvre from one 

position to another, achieving prominences of being time-saving and space-saving. 

However, as Mecanum wheel is made up of rollers, the MWR suffers from uncertainties 

arose from slippage, dynamic wheel radius and centre of mass, nonlinear actuation and et 

cetera. These factors complicate the control of the MWR. Merely kinematic and dynamic 

modellings are often inadequate to develop a path-trackable MWR control system. In other 

words, modelling and quantifying the uncertainties are often compulsory as shown in the 

literatures, but these further increase the complexity of the control system. Therefore, in 

this research, an Output-scheduled Fractional-order Proportional-integral (OS FOPI) 

controller is proposed as a simpler approach, with achievement of various complex path 

tracking as end result. First of all, the MWR in this research has two computer ball mice as 

positioning sensors to realize a 3-DOF localization, and four brushed DC geared motors 

rated at 19 RPM as actuators for Ø60 mm Mecanum wheels. The nonlinearities of the 

actuators are linearized based on open-loop step responses and are estimated by using 

polynomial regression. However, the nonlinearities are not completely eradicated and are 

significant especially during low RPM operation. Therefore, the OS FOPI controller which 

has fractional integral nonlinear properties is implemented. A conditional integral-reset 

anti-windup is supplemented to overcome controller saturation caused by the slow RPM 

actuations. Next, unlike conventional control method for MWR, the proposed control 

system does not require modellings of kinematics, dynamics and uncertainties in order to 

achieve path tracking. This is due to the output-scheduling method, which involves 

mathematical operation that linearly maps the summation of two angles – robot’s 

immediate heading angle and angle between positions, into gains that control each 

Mecanum wheel. In addition, the output-scheduling method is directly a displacement-

controlled approach and thus requires no unit conversion from velocity to displacement. 

Overall, the proposed control system is more intuitive and straightforward. The 

effectiveness of the OS FOPI controller is evaluated with OS P controller and OS PI 

controller. The experiment results show that all three output-scheduling controllers 

successfully achieve trackings of complex-shaped paths. However, the OS FOPI controller 

exhibits better tracking performance than the others with overall 28 % and 40 % of 

improvements on integrals of absolute error (IAE) and squared error (ISE), respectively. In 

addition, among the OS PI and OS FOPI controllers, OS FOPI controller outperforms the 

former with 17 % lesser path tracking vibration. In conclusion, successful trackings of 

various complex-shaped paths are experimentally demonstrated with a simpler control 

system. 
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ABSTRAK 

 

 

Robot beroda Mecanum (MWR) selalu menarik perhatian kejuruteraan robot bermudah-

alih dan aplikasi berindustri disebabkan keupayaannya untuk manuver dari satu 

kedudukan ke kedudukan yang lain dan mencapai kecemerlangan seperti penjimatan masa 

dan minimum ruang untuk beroperasi. Walaubagaimanapun, disebabkan roda Mecanum 

terdiri daripada penggelek, MWR berdepan dengan ketidakpastian yang timbul daripada 

tergelinciran, jejari roda Mecanum dan pusat jisim robot yang berdinamik, pergerakan 

yang tidak lurus dan lain-lain. Faktor-faktor ini merumitkan pengawalan MWR. Selalunya, 

semata-mata permodelan kinematik dan dinamik adalah tidak mencukupi untuk mencapai 

penjejakan laluan; permodelan dan pengiraan ketidakpastian adalah diwajibkan seperti 

yang ditunjukkan dalam literatur. Tetapi, permodelan dan pengiraan tersebut menambah 

kerumitan terhadap sistem kawalan MWR. Justeru, dalam penyelidikan ini, pengawal 

kamiran-berkadar susunan berpecahan keluaran berjadual (OS FOPI) dicadangkan 

sebagai pendekatan yang lebih mudah untuk mencapai penjejakan laluan berkomplikasi 

tinggi. Mula-mulanya, MWR dilengkapi dengan dua tetikus komputer jenis berbola untuk 

merealisasikan lokalisasi bertiga-darjah-kebebasan, dan empat DC motor berberus, 

bergear dan bernilai 19 RPM digunakan untuk menggerakkan Ø60 mm roda Mecanum. 

Ketidaklurusan yang timbul pada motor diluruskan melalui tindakbalas MWR dalam 

keadaan gelung terbuka dan dianggari dengan menggunakan regresi berpolinomial. 

Walaubagaimanapun, ketidaklurusan tersebut tidak dapat dihapuskan sepenuhnya dan 

menjadi ketara terutamanya pada operasi berRPM rendah. Oleh itu, pengawal OS FOPI 

yang mempunyai susunan berpecahan digunakan. Sebuah anti-penggulungan bersyarat 

bertujuan menetapkan semula integrasi digunakan bagi mengatasi masalah ketepuan yang 

disebabkan oleh keperlahanan motor tersebut. Seterusnya, tidak seperti cara pengawalan 

berkonvensional, sistem kawalan yang dicadangkan tidak memerlukan permodelan-

permodelan kinematik, dinamik dan ketidakpastian untuk mencapai penjejakan laluan. Hal 

ini disebabkan penggunaan cara keluaran berjadual, di mana cara ini melibatkan operasi 

matematik yang memetakan jumlah dua sudut – sudut orientasi MWR dan sudut antara 

dua posisi secara lurus, ke nilai untuk mengawal roda Mecanum. Tambahan pula, cara ini 

mengawal posisi secara langsung dan tidak memerlukan penukaran unit. Secara 

keseluruhannya, sistem kawalan yang dicadangkan adalah lebih intuitif dan berterus 

terang. Keberkesanan pengawal OS FOPI disahkan dan dibandingkan dengan pengawal 

OS P dan pengawal OS PI. Hasil ujikaji menunjukkan bahawa ketiga-tiga pengawal 

berkeluaran berjadual berjaya mencapai penjejakan bagi laluan yang berkomplikasi 

tinggi. Tetapi, pengawal OS FOPI menunjukkan penjejakan yang lebih unggul dengan 

masing-masing mengurangkan ralat penjejakan sebanyak 28 % dan 40 % bagi integrasi 

ralat bermutlak dan berkuasa dua. Tambahan pula, pengawal OS FOPI mencapai 17 % 

kurang getaran berbanding dengan pengawal OS PI. Secara kesimpulannya, penjejakan 

laluan telah berjaya dicapai dengan menggunakan sistem kawalan yang lebih mudah. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Mecanum wheel was born in the era when industrial revolution is vigorously rising, 

and industrial automation is heavily emphasized, which was during 1970s. Bengt Erland 

Ilon, who is commonly known as the ‘father’ of Mecanum wheel, had the ambition of 

producing manoeuvring omni-directional mobile robot. He then redesigned the 

conventional wheel into a wheel whose circumference is made up of rollers with all angled 

at a specific angle and as a result, manoeuvrability is realized (Ilon, 1975). This pioneering 

design is then named after a Swedish company that he was working with – the Mecanum 

AB company. Despite having more sophisticated physical design than conventional wheel, 

the Mecanum wheel is well-accepted and had expeditiously gained popularity since then. 

This is due to the superiorities of being time-saving and space-saving offered by the 

manoeuvring Mecanum wheel are highly desirable by many automation and robotic 

industries (Dickerson and Lapin, 1991). In addition, the wheel was reported in the past 

(Dillmann et al., 1993) and recent (Olimpiu et al., 2014) literatures for having high load 

capacity. Today, the application of Mecanum wheel has quickly escalated from industrial 

robotic manipulator (Hörmann et al., 1991) and automated guided vehicle (Dillmann et al., 

1994) to non-industrial application such as humanoid manipulator for kitchen (Asfour et al., 

2008), robotic waiter for restaurant (Cheong et al., 2016), rehabilitation (Phichitphon 

Chotikunnan et al., 2017), just to name a few. The contribution by the technology is 

undeniably evidently. 
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However, the heavy price of being manoeuvrable is, the Mecanum-wheeled robot 

(MWR) is highly prone to various uncertainties such as inconsistent wheel radius, shifting 

of centre of mass, dynamic wheel-floor friction, nonlinearity and so on. All these factors 

lead to an ultimate drawback i.e. slippage. The inconsistency within the wheel radius is 

originated from the gaps between consecutive rollers. Such phenomenon had been noticed 

in early years and is said to be unavoidable (Dickerson and Lapin, 1991). Whereas in 

recent years, the characteristic was visualized and studied through simulation and 

experiment (Villiers and Tlale, 2012). Such varying or oscillating properties of the 

Mecanum wheel may be relatively small and can be assumed as insignificance, but it 

certainly has the potential to cause instability (Han et al., 2009). While the shifting of 

centre of mass and dynamic wheel-floor friction are partially originated from the 

inconsistent wheel radius, physical factor such as mechanical limitation and floor 

properties are also the compelling factors of the uncertainties. In additional with the 

nonlinearity i.e. unique characteristic of each actuators (brushed DC geared motors in this 

research), occurrence of slippage is very common among the MWR especially during 

lateral motion (Nagatani et al., 2000;  Rohrig et al., 2010). Therefore, under the presence of 

these uncertainties, the control of MWR in achieving complex path tracking is inevitably a 

challenging task. 

Over the past decades, various types of control structure have emerged for path-

trackable MWR. One of the earliest control method reported for the MWR was by using 

velocity profiles, in which the MWR was controlled with designated angular velocities so 

that it will stop at desired position (Dillmann et al., 1993). Other than that, Proportional-

integral-derivative (PID) controller was more preferred during the 1990s (Wu et al., 

1994;  Bühler et al., 1995). Since PID controller is single-input single-output (SISO), more 

than one PID controllers are then needed in order to control all Mecanum wheels. 
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Therefore, during 2000s, a multi-input multi-output (MIMO) intelligent controller such as 

fuzzy logic control (FLC) stepped in as an alternative. Generally, modelling of the FLC is 

based on human intelligence or experience, thus making it flexible and robust towards 

uncertainties (Kumile and Tlale, 2005). Meanwhile, PID controller remains ubiquitous due 

to its simplicity, but with additional efforts such as position rectification and corrective 

methods needed to improve the existing control structure. (Viboonchaicheep et al., 

2003;  Shimada et al., 2005). Presently, in 2010s, both FLC and PID controller are 

remained but have incorporated with many advanced schemes such as heuristic online 

parameter tuning, gain-scheduling, nonlinear modelling and many more. Meanwhile, 

adaptive, robust and artificial intelligent controllers have started taking place significantly 

and display promising path tracking performance under the presence of the uncertainties. 

Among the above-mentioned controllers, kinematic and dynamic modellings are 

frequently found in the MWR plant model and are represented as compulsory elements in 

the hierarchy of the MWR control system. While these modellings assume ideal situation, 

extra effort such as modelling of uncertainties or introduction of dynamic parameters is 

required, which is exactly the case of the modern controllers mentioned earlier. It is 

undeniable that these controllers successfully counteract the uncertainties and achieved 

decent path tracking performance, however, as more and more supplementary advanced 

scheme is added into the existing classical controller, the overall control system and 

modelling process become sophisticated and time-consuming. Eventually, or perhaps it is 

already happening now that the current trend gives an impression that complex control 

structure is mandatory in order to develop a robust path-trackable MWR. Straightforward 

and intuitive control system for the MWR may no longer be an anticipation or convincing 

approach in the future.  


