

Faculty of Electrical Engineering

HARMONIC ELIMINATION PULSE WIDTH MODULATION USING DIFFERENTIAL EVOLUTION TECHNIQUE FOR THREE PHASE VOLTAGE SOURCE INVERTER

Norazelina binti Kamisman

Master of Science in Electrical Engineering

2018

HARMONIC ELIMINATION PULSE WIDTH MODULATION USING DIFFERENTIAL EVOLUTION TECHNIQUE FOR THREE PHASE VOLTAGE SOURCE INVERTER

NORAZELINA BINTI KAMISMAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Harmonic Elimination Pulse Width Modulation using Differential Evolution Technique for Three Phase Voltage Source Inverter" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	······
Name	:Norazelina binti Kamismar
Date	·

APPROVAL

I hereby declare that I have rea	nd this thesis ar	nd in my opinion this thesis is sufficient in terms
of scope and quality for the av	ward of Master	of Science in Electrical Engineering.
Signatu	re	:
Supervi	isor Name	:Dr Azziddin bin Mohamad Razali
Date		:

DEDICATION

Special dedicated to my beloved

Mum, Amilah binti Othman,

Dad, Kamisman bin Sahadi,

also, to my siblings.

ABSTRACT

Differential Evolution (DE) has been gaining popularity among researchers as an effective yet simple evolutionary algorithm to solve the optimization problems. This thesis presents an efficient and reliable DE based solution applied to the Harmonics Elimination Pulse Width Modulation (HEPWM) switching technique for three phase voltage source inverters. The proposed DE algorithm is able to compute optimal switching angles in HEPWM so that the switching scheme is able to eliminate lower order harmonic components of the threephase inverter output voltage. Performance of the DE algorithm is highly affected by the mutant vector which is generated through a specific mutation process. Explanation of DE algorithm execution is given, and the best approach of mutation strategy selection used in DE has been investigated. Computation of DE algorithm and simulation of voltage source inverter using the calculated switching angles are carried out by using Matlab/Simulink software package. The proposed DE algorithm is also applied to the in-house developed experiment set-up which consists of three-phase inverter, gate driver, DC supply, resistive load and dSPACE software (ControlDesk Next Generation version 4.2.1) and dSPACE DS1104 R&D controller board. It has been confirmed through simulation and experiment that the proposed DE is able to eliminate lower order harmonics components and reduce the total harmonic distortion of three phase inverter output voltage.

ABSTRAK

Evolusi Perbezaan (DE) semakin popular di kalangan para penyelidik sebagai algoritma evolusi yang berkesan dan mudah untuk menyelesaikan masalah pengoptimuman. Tesis ini membentangkan penyelesaian berasaskan DE yang cekap dan boleh dipercayai yang digunakan untuk teknik pensuisan Penghapusan Harmonik Permodulatan Denyut Lebar (HEPWM) untuk penyongsang sumber voltan tiga fasa. Algoritma DE yang dicadangkan dapat menghitung sudut suis HEPWM yang optimum agar teknik pensuisan tersebut dapat menghapuskan beberapa urutan rendah komponen harmonik yang terdapat di dalam voltan keluaran penyongsang tiga fasa. Prestasi algoritma DE amat dipengaruhi oleh vektor mutan yang dihasilkan melalui proses mutan yang tertentu. Penerangan kepada proses pelaksanaan algoritma DE diberikan di dalam tesis ini, dan pendekatan didalam pemilihan strategi mutasi terbaik juga dikaji. Pengiraan algoritma DE dan simulasi penyongsang sumber voltan menggunakan sudut pensuisan yang dikira dilakukan dengan menggunakan pakej perisian Matlab / Simulink. Algoritma DE yang dicadangkan juga digunakan pada set percubaan eksperimen yang terdiri daripada penyongsang tiga fasa, get pemacu, bekalan arus terus, beban rintangan dan perisian dSPACE (ControlDesk versi Generasi Baru 4.2.1) dan DS1104 R&D papan kawalan dSPACE. Ia telah disahkan melalui simulasi dan ujikaji bahawa DE yang dicadangkan dapat menghapuskan komponen harmonik yang lebih rendah dan mengurangkan jumlah herotan harmonik penyongsang tiga fasa.

ACKNOWLEDGEMENTS

Praises and thank to Allah for giving me the opportunity to complete this project.

I would like to express my highest gratitude to my supervisors, Dr Azziddin bin Mohamad Razali and Pn Hazilina binti Bahari for their valuable guidance and advices to complete this project.

Special thanks to Assoc. Prof. Dr Awang bin Jusoh and Assoc. Prof. Dr Kasrul bin Abdul Karim, the members of my viva committee for their useful comments and suggestions.

I would like to thank everyone who have contributed ideas and knowledges from the discussions that have been made and the technical support for this project either directly or indirectly.

Last but not least, a deeply appreciations are given to my family and friends for their love, encouragement and moral support.

C Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

			PAGE
DEC	LARA'	TION	
APPI	ROVA	${f L}$	
DED	ICATI	ON	
ABS	TRAC	Γ	i
ABS	ΓRAK		ii
ACK	NOWI	LEDGEMENTS	iii
TAB	LE OF	CONTENTS	iv
LIST	OF TA	ABLES	vi
LIST	OF FI	IGURES	viii
LIST	OF A	PPENDICES	xiii
LIST	OF SY	YMBOLS AND ABBREVIATIONS	xiv
LIST	OF PU	UBLICATIONS	xvii
СНА	PTER		
1.		RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3
	1.3	Research Objective	4
	1.4	Scope of Project	4
	1.5	Project Contribution	5
	1.6	Thesis Outline	5
2.	LITI	ERATURE REVIEW	6
	2.1	Introduction	6
	2.2	Inverter	6
	2.3	Single-Phase Voltage Source Inverter (VSI)	8
		2.3.1 Half Bridge Voltage Source Inverter (VSI)	8
		2.3.2 Full Bridge Voltage Source Inverter (VSI)	10
	2.4	Three-Phase Voltage Source Inverter (VSI)	11
	2.5	Carrier Based Pulse Width Modulation	13
	2.6	Space Vector Pulse Width Modulation	14
	2.7	Selective Harmonic Elimination Pulse Width Modulation	22
		2.7.1 SHEPWM Waveform Synthesis	23
		2.7.2 Unipolar Selective Harmonic Elimination PWM	28
		2.7.3 Bipolar Selective Harmonic Elimination PWM	31
		2.7.4 Solution Methodology for Harmonic Elimination	34
	2.8	Newton Raphson Iterative Method	38
	2.9	Walsh Harmonic Elimination Method	40
	2.10	Evolutionary Algorithms	40
		2.10.1 Evolutionary Algorithms Concept	42
		2.10.2 Types of Evolutionary Algorithms	43
		2.10.3 Memetic Algorithms	43
		2.10.4 Design of Evolutionary Algorithms	45
	2.11	Summary	46

3.		DEVELOPMENT OF SWITCHING TECHNIQUE FOR THREE			
		SE VOLTAGE SOURCE INVERTER USING DIFFERENTIAL			
		DLUTION	47		
	3.1		47		
	3.2		47		
	3.3	Differential Evolution Procedure	49		
		3.3.1 Initial Population	49		
		3.3.2 Mutation	49		
		3.3.3 Crossover	50		
		3.3.4 Selection	50		
		3.3.5 Termination Criteria	50		
		3.3.6 Elitism	51		
		3.3.7 Differential Evolution Strategies	52		
	3.4	Differential Evolution on Harmonic Elimination Pulse Width			
		Modulation (PWM) Technique	55		
	3.5	Parameters Control	58		
		3.5.1 Scaling Factor, <i>F</i> and Crossover Probability, <i>CR</i>	59		
		3.5.2 The Tolerance, <i>VTR</i>	61		
		3.5.3 The Population Size, <i>PS</i>	62		
		3.5.4 Maximum Iteration, G_{max}	63		
	3.6	Switching Angles Values and Trajectories	64		
	3.7	Summary	77		
4.	IMP	LEMENTATION OF DE ON HEPWM IN OPEN LOOP SYSTEM	78		
	4.1	Introduction	78		
	4.2	Open Loop Control Method	78		
	4.3	Simulation Results	81		
	4.4	Hardware Results	92		
	4.5	Summary	117		
5.	IMD	LEMENTATION OF DE ON HEPWM IN CLOSED LOOP			
٥.		TEM	118		
		Introduction	118		
	5.2	Closed Loop Control System	118		
	5.3	Simulation Results	122		
	5.4	Hardware Results	134		
	5.5	Summary	138		
6.	CON	NCLUSION AND RECOMMENDATION	139		
υ.	6.1	Introduction	139		
	6.2	Summary of the Work Done	140		
	6.3	Limitations of the Work	140		
	6.4	Future Work	141		
	U. 1	Tutule WOIR	174		
	EREN		143		
APP	PENDIC	CES	162		

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Switch States for Half Bridge Single-Phase Voltage Source Inverter (VSI).	9
2.2	Switching State for a Full Bridge Single-Phase Voltage Source Inverter	
	(VSI).	10
2.3	Switching State for a Three Phase Voltage Source Inverter (VSI).	12
2.4	Switching Vectors, Phase Voltages and Output Line-to-Line Voltages.	16
3.1	The Total Iteration Number for Constant Scaling factor, F and Varies	
	Crossover Probability, CR.	59
3.2	The Total Iteration Number for Constant Crossover Probability, CR and	
	Varies Scaling Factor, F.	60
3.3	The Total Iteration Number for Various Value of Tolerance, VTR.	61
3.4	The Total Iteration Number for Various Value of Population Size, PS.	62
3.5	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=3.	65
3.6	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=4.	66
3.7	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=5.	67
3.8	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=6.	68
3.9	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=7.	69
3.10	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=8.	70

3.11	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=9.	71
3.12	Values of Switching Angles for Various Values of M using Differential	
	Evolution (DE) Technique for N=13.	72

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Single-phase Half-Bridge Voltage Source Inverter (VS1).	9
2.2	Single-Phase Full-Bridge Voltage Source Inverter (VSI).	10
2.3	Three Phase Voltage Source Inverter (VSI).	12
2.4	The Eight-Inverter Voltage Vectors (V ₀ To V ₇).	17
2.5	The Relationship of abc Reference Frame and Stationary dq Reference	
	Frame.	18
2.6	Basic Switching Vectors and Sectors.	19
3.1	A Flow of DE's Generate and Test Loop.	48
3.2	Flowchart of Differential Evolution.	51
3.3	HEPWM Quarter Wave Symmetric Waveform.	56
3.4	Switching Angles versus Modulation Indices for N=3.	73
3.5	Switching Angles versus Modulation Indices for N=4.	74
3.6	Switching Angles versus Modulation Indices for N=5.	74
3.7	Switching Angles versus Modulation Indices for N=6.	75
3.8	Switching Angles versus Modulation Indices for N=7.	75
3.9	Switching Angles versus Modulation Indices for N=8.	76
3.10	Switching Angles Versus Modulation Indices for N=9.	76
3.11	Switching Angles versus Modulation Indices for N=13.	77
4.1	Pulse Generator with Switching Angles for Three Phase Voltage	
	Source Inverter (VSI) with N=5, M=0.8.	78
4.2	Pulse Generator for Phase A with N=5, M=0.8.	79
4.3	Simulink Model for Open Loop Control System for N=5, M=0.8.	80
4.4	Switching Pulses of Phase A, Phase B and Phase C for N=3.	81
4.5	Switching Pulses of Phase A, Phase B and Phase C for N=5.	82
4.6	Switching Pulses of Phase A, Phase B and Phase C for N=7.	83
	viii	

4.7	Switching Pulses of Phase A, Phase B and Phase C for N=9.	84
4.8	Switching Pulses of Phase A, Phase B and Phase C for N=13.	84
4.9	Phase Voltage of Van, Vbn and Vcn without Filter.	85
4.10	Phase Voltage for Phase A, Phase B and Phase C with Filter.	86
4.11	Line Current for Three-Phase Voltage Source Inverter without Filter.	86
4.12	Line Current for Three-Phase Voltage Source Inverter with Filter.	87
4.13	Line Voltage, Vab for Three-Phase Voltage Source Inverter without Filter.	87
4.14	Line Voltage, Vab for Three-Phase Voltage Source Inverter with Filter.	88
4.15	Total Harmonic Distortion (THD) Spectrum of Phase Voltage for N=3.	89
4.16	Total Harmonic Distortion (THD) Spectrum of Phase Voltage for N=5.	90
4.17	Total Harmonic Distortion (THD) Spectrum of Phase Voltage for N=7.	90
4.18	Total Harmonic Distortion (THD) Spectrum of Phase Voltage for N=9.	91
4.19	Total Harmonic Distortion (THD) Spectrum of Phase Voltage for N=13.	91
4.20	Switching Pulses of N=3 for Top Switches of Three-Phase Inverter.	93
4.21	Line Voltage of Three-Phase Voltage Source Inverter for Phase A, Vab	
	for N=3 (66.67 V/div, 5 ms/div).	94
4.22	Line Voltage of Three-Phase Voltage Source Inverter for Phase B, Vbc	
	for N=3 (66.67 V/div, 5 ms/div).	94
4.23	Line Voltage of Three-Phase Voltage Source Inverter for Phase C, Vca	
	for N=3 (66.67 V/div, 5 ms/div).	95
4.24	Phase Voltage of Three-Phase Voltage Source Inverter for Phase A, Van	
	for N=3 (44.44 V/div, 10 ms/div).	96
4.25	Phase Voltage for Phase B, Vbn for N=3 (44.44 V/div, 10 ms/div).	96
4.26	Phase Voltage for Phase C, Vcn for N=3 (44.44 V/div, 10 ms/div).	97
4.27	Phase Voltage for Phase A after Filter for N=3 (67 V/div, 10 ms/div).	97
4.28	Line Current of Three-Phase Voltage Source Inverter for N=3 without filter.	98
4.29	Line Current of Three-Phase Voltage Source Inverter for N=3 with filter.	98
4.30	Total harmonic Distortion (THD) of Phase Voltage, Van of Three-Phase	
	Voltage Source Inverter for N= 3 using Oscilloscope.	99
4.31	THD Spectrum of Phase Voltage of Three-Phase Voltage Source Inverter	
	for $N=3$.	100
4.32	THD Spectrum of Line Voltage of Three-Phase Voltage Source Inverter	
	for $N=3$.	100

4.33	Switching Pulses for N=5 For Three-Phase Voltage Source Inverter.	101
4.34	Line Voltage of Three Phase Voltage Source Inverter for Phase A for N=5.	102
4.35	Phase Voltage of Three Phase Voltage Source Inverter for Phase A	
	for N=5 (44.44 V/div, 10 ms/div).	102
4.36	Total Harmonic Distortion (THD) Spectrum of Phase Voltage, Van	
	of N=5 using Oscilloscope.	103
4.37	THD Spectrum of Phase Voltage of Three-Phase Voltage Source Inverter	
	of N=5.	104
4.38	THD Spectrum of Line Voltage of Three-Phase Voltage Source Inverter	
	of N=5.	104
4.39	Switching Pulses for N=7 for Three-Phase Voltage Source Inverter.	105
4.40	Line Voltage of Three Phase Voltage Source Inverter for Phase A	
	for $N=7$.	106
4.41	Phase Voltage of Three Phase Voltage Source Inverter for Phase A	
	for N=7 (44.44 V/div, 5 ms/div).	106
4.42	Total Harmonic Distortion (THD) Spectrum of Phase Voltage, Van	
	of N=7 using Oscilloscope.	107
4.43	THD Spectrum of Phase Voltage of Three-Phase Voltage Source Inverter	
	of N=7.	108
4.44	THD Spectrum of Line Voltage of Three-Phase Voltage Source Inverter	
	of N=7.	108
4.45	Switching Pulses for N=9 for Three-Phase Voltage Source Inverter.	109
4.46	Line Voltage of Three-Phase Voltage Source Inverter for Phase A	
	for N=9.	110
4.47	Phase Voltage of Three-Phase Voltage Source Inverter for Phase A	
	for N=9 (44.44 V/div, 5 ms/div).	110
4.48	Total Harmonic Distortion (THD) Spectrum of Phase Voltage of N=9.	111
4.49	THD Spectrum of Phase Voltage of Three-Phase Voltage Source Inverter	
	of N=9.	112
4.50	THD Spectrum of Line Voltage of Three Phase Voltage Source Inverter	
	of N=9.	112
4.51	Switching Pulses for N=13 for Three-Phase Voltage Source Inverter.	113

4.52	Line voltage of Three-Phase voltage Source inverter for Phase A	
	for N=13 (66.67 V/div, 5 ms/div).	114
4.53	Phase Voltage of Three-Phase Voltage Source Inverter for Phase A	
	for N=13 (44.44 V/div, 5 ms/div).	114
4.54	Total Harmonic Distortion (THD) Spectrum of Phase Voltage of N=13.	115
4.55	THD Spectrum of Phase Voltage of Three-Phase Voltage Source Inverter	
	of N=13.	116
4.56	THD Spectrum of Line Voltage of Three-Phase Voltage Source Inverter	
	of N=13.	116
5.1	Control Structure for Closed Loop Control System.	119
5.2	Simulink Model of Closed Loop System.	120
5.3	Modulation Index Calculator of Closed Loop System.	121
5.4	Sine Generator of Closed Loop System.	121
5.5	Switching Pulses of N=3 for Closed Loop System.	122
5.6	Switching Pulses for Phase A, Phase B and Phase C for N=5 for Closed	
	Loop System.	123
5.7	Switching Pulses for Phase A, Phase B and Phase C for N=7 for Closed	
	Loop System.	123
5.8	Switching Pulses for Phase A, Phase B and Phase C for N=9 for Closed	
	Loop System.	124
5.9	Switching Pulses for Phase A, Phase B and Phase C for N=13 for Closed	
	Loop System.	125
5.10	Three-phase Output Voltage for Closed Loop System.	125
5.11	Reference Voltage of Phase A.	126
5.12	Measured Output Voltage of Phase A.	126
5.13	Measured Output Voltage in dq axis.	127
5.14	Three Phase Output Current.	127
5.15	Output Current in dq axis.	127
5.16	Synchronous Reference Frame Angle.	128
5.17	Modulation Index of the Closed Loop System for Varies Voltage	
	Reference.	129
5.18	Modulation Index of the Closed Loop System for Constant Voltage	
	Reference.	129

5.19	Switching Angles for N=3 Provides from LUT for Constant Voltage	
	Reference.	130
5.20	Switching Angles for N=5 Provides from LUT for Constant Voltage	
	Reference.	131
5.21	Switching Angles for N=7 Provides from LUT for Constant Voltage	
	Reference.	132
5.22	Switching Angles for N=9 Provides from LUT for Constant Voltage	
	Reference.	132
5.23	Switching Angles for N=13 Provides from LUT for Constant Voltage	
	Reference.	133
5.24	Hardware Setup to Implement Differential Evolution on HEPWM.	135
5.25	Switching Pulses for Phase A, Phase B and Phase C of N=3.	136
5.26	Phase Voltage Output from Three Phase Voltage Source Inverter for N=3.	137
5.27	Line Voltage Output from Three Phase Voltage Source Inverter for N=3.	137

xii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Matlab Code of Differential Evolution Algorithm	162

LIST OF SYMBOLS AND ABBREVIATIONS

 a_k - kth Switching Angle

a_n - Fourier Coefficient

CR - Crossover Rate

F - Scaling Factor

fs - Sampling Frequency

 G_{max} - Maximum Generation

Ha - Upper Boundary

La - Lower Boundary

M - Modulation Index

Number of Harmonic Eliminated

PS - Population Size

 r_1 , r_2 , r_3 , r_4 - Mutual Integer

 T_s - Sampling Time

 $u_{i,g}$ - Trial Vector

 V_d - Voltage on d-axis

 V_{dc} - DC link Voltage

 V_i - Input Voltage

 $v_{i,g}$ - Mutant Vector

 V_o - Output Voltage

 V_q - Voltage on q-axis

xiv

 V_{ref} - Reference Voltage

VTR - Tolerance

 $x_{i,g}$ - Target Vector

AC - Alternating Current

ASD - Adjustable Speed Drive

CBPWM - Carrier Based Pulse Width Modulation

CSI - Current Source Inverter

DC - Direct Current

DE - Differential Evolution

EA - Evolutionary Algorithm

EMI - Electromagnetic Interference

EP - Evolutionary Programming

ES - Evolutionary Strategies

FACTS - Flexible Alternating Current Transmission System

GA - Genetic Algorithm

GP - Genetic Programming

HEPWM - Harmonic Elimination Pulse Width Modulation

HWS - Half Wave Symmetry

IGBT - Insulated Gate Bipolar Transistor

PI - Proportional Integral

PSO - Particle Swarm Optimization

PWM - Pulse Width Modulation

QWS - Quarter Wave Symmetry

RMS - Root Mean Square

SHEPWM - Selective Harmonic Elimination Pulse Width Modulation

SPWM - Sinusoidal Pulse Width Modulation

SVPWM - Space Vector Pulse Width Modulation

THD - Total Harmonic Distortion

UPS - Uninterruptible Power Supply

VAR - Voltage Ampere Reactive

VSC - Voltage Source Converter

VSI - Voltage Source Inverter

LIST OF PUBLICATIONS

- Azziddin M. Razali, Norazelina Kamisman, Jurifa Mat Lazi and Norhazilina Bahari, "Differential Evolution Technique of HEPWM for Three-Phase Voltage Source Inverter", ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 14, July 2016.
- Azziddin M. Razali, Norazelina Kamisman, Jurifa M. Lazi, Norhazilina Bahari, and Wahidah A. Halim, "Differential evolution technique in solving HEPWM switching angles of three-phase voltage source inverter," in *Power and Energy (PECon)*, 2016 IEEE International Conference on, 2016, pp. 489-494.
- 3. Azziddin. M. Razali, Norazelina Kamisman, Jurifa M. Lazi, and Norhazilina Bahari, "HEPWM using differential evolution technique for three phase voltage source inverter," in *Energy Conversion (CENCON)*, 2015 IEEE Conference on, 2015, pp. 325-330

CHAPTER 1

INTRODUCTION

1.1 Background

Differential Evolution (DE) has been gaining popularity among researchers as an effective yet simple evolutionary algorithm to solve the optimization problems. Performance of differential evolution algorithm is mainly affected by the mutant vector which is developed through a specific mutant operation. This project presents an efficient and reliable DE-based solution for Harmonic Elimination Pulse Width Modulation (HEPWM), applied to the three-phase voltage source inverter (VSI).

The proposed differential evolution algorithm is able to eliminate lower order harmonics for the output voltage of three-phase VSI. The equations to calculate switching pulse angles are derived from a nonlinear transcendental equation of the VSI quarter-wave symmetric PWM output voltage. The generated switching pulse angles are able to generate bipolar PWM output voltage and eliminate several numbers of low order harmonic components.

The objective function used in DE algorithm is able to computes the corresponding switching angles of the bipolar output voltage for any number of harmonic components to be eliminated. While minimizing the objective function, the individual selected harmonics can be controlled within allowable limits by incorporating the constraints in the differential evolution algorithm. Some differential evolution strategies are used to solve the global optimization problem.

The scaling factor *F* is varied randomly within a certain range and the auxiliary set is employed to enhance the population diversity. An extensive angle error analysis will be carried out to determine the accuracy of the algorithm in comparison to the exact solution. The advantages of the proposed algorithm include simplicity in real implementation and flexibility in generating PWM output voltage waveforms. Simulation and experimental setup will be carried out to verify the workability of the proposed algorithm.

HEPWM methods remain of greatest interest for the control of high-voltage high power VSI, where the main concerns are minimizing the switching losses and HEPWM provides an ideal solution, especially for inverters that are operated in a low switching frequency range (less than 1kHz). The advantages of HEPWM over the conventional sinusoidal PWM (SPWM) for voltage source inverter, as listed below:

- a) About 50% reduction in the inverter switching frequency is achieved which contributes to a diminution in the switching losses of the VSI.
- b) For a given VSI switching frequency, the incidence of the first non-zero harmonic is almost double in PWM scheme, resulting in a greater pole switching waveform harmonic spectrum.
- c) Lower order harmonics can be eliminated by reducing harmonic interference to the system.
- d) Higher voltage gain due to over-modulation is possible, leading to higher utilization of the power conversion process.

Considering these issues, HEPWM can be a useful alternative to the more popular SPWM, especially for the high-power inverters used in the mains and drives applications. For this reason, this research proposes a simple off-line HEPWM scheme that can be suitably implemented using a fixed-point microprocessor.