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 

Abstract: The dengue epidemiology episode has become one of 

the global phenomena especially the rain forest countries 

including Malaysia. Environmental management, the used of 

chemical and biological environment are control strategies that 

has been proposed and practiced by World Health Organization. 

However, based on statistic al of dengue cases, there is still no 

concrete solution in curbing this problem especially at 

non-accessible places. This paper proposed a study on detection 

Aedes Aegypti larvae in water storage tank by combining transfer 

learning with Faster-RCNN. The purpose of the study is to 

acquire train and validation losses along with detection 

performance metrics. The experimental results disclose that the 

probability detection has scored 97.01% while false alarm has 
scored 5.97%. Those significant value has depicted that the 

trained model has high detection accuracies. 

 

Keywords : Aedes Aegypti larvae detection, Transfer 

learning,  water storage tank. 
 

I. INTRODUCTION 

Dengue is acute febrile diseases that has reached 

alarming rate which haunts Malaysia population. From the 

statistical published by Malaysia ministry of science 

technology and innovation, Malaysia had suffered twice 

increment of dengue cases from the last 3 years [1]. In fact, 

World Health Organization has proposed and practised many 

methods of vector control through environmental 

management, chemical and biological method[2], yet there is 

still no concrete solution in curbing this problem. It is also 

found that, the most critical part to be heeded are 

non-accessible places like artificial container and water 

storage [3]. Hence, this study proposed a detection of Aedes 

Aegypti larvae in water storage tank using transfer learning 

with Faster-RCN detector. Thus, the objective of the study 

was to acquire train and validation losses along with detection 

performance metrics. 

A lot of efforts and discoveries has been put in by many 
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researchers to combat this problem. Many methods are 

discovered including the utilize of neural network in control 

strategies. Neural network has been utilize to recognize and 

predict dengue confirmed case, where it capable to recognize 

and predict based on four important characteristics, which are 

sum of rainfall, average temperature, average relative 

humidity and sum of dengue confirmed cases [4] [5]. Besides, 

neural network also capable to prognosticate defeverscene of 

fever in dengue haemorrgic fever and dengue fever [6]. Not 

just that, neural network also has been utilized to identify 

various type of insects wingbeat frequencies in flight [7]. 

Machine learning has started it widely used when an 

architecture of classifier based on convolutional neural 

network has successfully trained [8]. Nevertheless, 

convolutional neural network has been an enormous success 

in object detection application. In object detection, the first 

advance detector is overfeat, overfeat is a sliding window 

algorithm of convolutional neural network base [9]. However, 

this technique is computational expensive since it convolves 

every pixel in the image. From the problem, region proposal 

method is introduced where the algorithm has several 

approaches in detecting object in images includes create 

bounding box in region of interest and classify it using 

support vector machine. This technique is known as region 

based convolutional neural network or R-CNN [10]. 

Just after R-CNN, this technique has evolved which 

Fast-RCNN is introduced, yet, Faster-RCNN is introduced 

where it has better performance, fast and high accuracy than 

the previous version technique. Object detection is not only 

bounded with region proposal methods, there also others 

methods that been discovered by other researchers include 

YOLO and SSD [11] [12]. YOLO is an algorithm based on 

convolutional neural network which used simple pipeline and 

resulted in high speed detection in real time application. 

Meanwhile, SSD is a technique that been developed to 

performs object localization and classification task in single 

forward pass of the network. As the result, SSD is effective in 

time processing and offer high accuracy in detection. 

Although, SSD can offer effective time processing with high 

accuracy but SSD incapable to process dataset with different 

sizes pixels. Since the datasets is various of sizes, thus, this 

paper has implemented Faster-RCNN in the study. 
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II.  METHODOLOGY 

This section focuses on the development process of Aedes 

Aegypti larvae inside water storage tank. Transfer learning 

becoming one of the popular techniques in machine leaning 

due to its advantages [13]. In this study, transfer learning of 

Inception V2 classifier with Faster-RCNN detector are 

applied to detect the present of Aedes Aegypti larvae in the 

water storage tank. Transfer learning is an application of 

implementing the pre-trained model on performing new task. 

It is improvement of new task, where the learned weight and 

bias of previous training are used in the new task. The used 

pre-trained model has beneficial in training cost and there is 

no need a lot of data in developing new model of different 

task. 

To acquire training and test patch images, the images 

containing of Aedes Aegypti larvae is first annotate. The 

purpose of annotate the Aedes Aegypti larvae region in 

images is to create the ground so that the model could be 

learned the localization during the training or validation. In 

this study, 446 annotated images of Aedes Aegypti larvae 

were used with size of 680 pixels x 510 pixels. Yet it divided 

into 3 parts, where 406 images were used for training 10 

images for validation and 20 images for the test. The 

validation technique of holdback validation was applied in the 

studied. Fig. 1 and Fig. 2 illustrate the overall of the 

experiments flow chart and the annotation process of Aedes 

Aegypti larvae images in creating the datasets. 

 

 

Fig. 1: Flow chart of overall process 

 

Fig. 2: Annotation process of Aedes Aegypti larvae 

images 

 

Faster-RCNN is a state-of-the-art of object detection which 

rely on region proposal network algorithms to hypothesize the 

object locations. Region proposal network or RPN is an 

algorithm develop based on fully-convolutional network that 

predicts objectness score and object bounds at each position 

at same time [14]. By combining the transfer learning of 

Inception V2 COCO with the Faster-RCNN, object detection 

is possible to be made. After trained model were obtained, the 

model was test for it ability in generalization by feeding it 

with unseen and unobserved images so that the model 

performance can be measure. As the result of detection, the 

model is able to classify and localize the Aedes Aegypti 

larvae. 

III. RESULT AND DISCUSSION 

The following Fig.s show the result and analysis from the 

Aedes Aegypti detection model via transfer learning. Fig. 

show the total loses and the average precision of 

Faster-RCNN  

 
Fig. 3: Train and validation loss of the model 
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Fig. 3 showed result of the total losses of the learned model. 

The losses are including box classification, box localization, 

RPN classification and RPN objectness losses. The losses are 

also compared between train and validation losses. The 

purpose of comparing the losses are to ensure the training had 

enough capacity in training so that it can perform with the 

maximal accuracy [15]. From the plot, it showed that the train 

losses have decline drastically from 1.25 to 0.4 in only 500 

training steps, Then, it remains decreasing slowly until 1700 

training step before it starts to increase back. Meanwhile, the 

validation set also showed the good result in decreasing it 

cross-entropy error. The losses have drastically reduced from 

1.7 to 0.4 in 500 steps. Then it persistent slowly decrease until 

2500 steps. 

 

 

Fig. 4: Result of the average precision for validation 

set 

 
Fig. 4 showed the result of the average precision of 

Faster-RCNN for the validation set. Average precision is one 

of the metrics used to measure the accuracy of the detection. It 

is the average maximum precision at different recall values 

[16]. From the graph, the average precision of the model is 

continuously increase up to 1 until 1900 training step before it 

starts to saturated. To define a good train model, it is based on 

the losses and precision plot of the learned model. 

In the losses graph, it showed that the train losses start to 

increase at training step of 1900 while the validation losses 

are remaining decreased. In this case, the training is over 

fitting where the model starts to learn noises. There is close 

relationship between the losses and average precision. As the 

model over fitting, the average precision of the learning 

model cannot be increase anymore. Thus, the optimal 

capacity can be adapted into model is the weight and bias at 

1900 where the generalization gap is smaller. 

There are many ways to test object detection performance. 

In this study, probability of detection, Pd and probability of 

false alarm, Fa are widely adopted to evaluate detection 

performances. A good detection model is defined of high Pd 

and low Fa. The probabilities are formulated as [17] 
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Where Ndetect_larva is the number of detected larva, Nfalse_larva 

is the number of false detected larva and Ntotal_larva is the total 

of larva in the images based on the annotated ground truth. 

 

Table 1: Floating-point operations necessary to 

classify a sample 

Model Ntotal_ 

larva 

Ndetect_ 

larva 

Nfalse_ 

larva 

Pd Fa 

Faster- 

RCNN 

134 130 8 0.9701 0.059

7 

 

The results showed that the number of detected larvae is 

130, the number of false detected larvae is 8 and the total 

larvae in the 20 images is 134. Based on the probabilities 

formulation, it is clearly depicted that the learned model is 

good model, which the probability of detection is greater than 

probability of false alarm, where 97.01% against 5.97%. 

Although, there is false alarm in the detection, it can neglect 

since the value are small. Fig. 5 shows the learned model in 

performing detection of Aedes Aegypti larvae. 

 

 

 

Fig. 5: Learned model in performing detection of 

Aedes Aegypti larvae 
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IV. CONCLUSION 

 

To conclude, trained inference graph has successfully 

produced to detect and localize Aedes Aegypti larvae in 

images. Faster-RCNN detector is used with transfer learning 

to perform the Aedes Aegypti larvae detection. The results 

reveal that the model has achieved satisfactory probability of 

detection and performed better in probability of false alarm. 

Further study should focus on detecting small objects in 

image to improve detection of Aedes Aegypti larvae. 
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