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ABSTRACT 

The attention towards organic light emitting diodes (OLEDs) has remarkably increased in 
recent years due to numerous advantages offered. However, the degradation issues 
responsible for the short lifetime of the devices, particularly after being exposed to high 
temperature and humidity has yet to be hlly established, even with the invention of 
encapsulation layers. The root cause of OLED degradations may also be diverse, and hence, 
involving the outcomes and failure mechanisms. Therefore, a comprehensive knowledge on 
this particular subject is essentially important as it is the key to unravel the short lifetime 
issues of OLEDs. Hence, the main purpose of this research is to study the OLED 
performance subjected to high thermal stress and hygrotherrnal effect, specifically via 
non-operated mode. Nonetheless, an optimum discharge time must first be acquired to 
ensure that the parasitic capacitance (due to thin structure of the OLEDs) can be fully 
eliminated for the purpose of data validity. In this study, a batch of commercially-available 
OLEDs has been employed. An onloff cycles approach was employed in which the OLED 
samples were switched-on (Ton) and -off (To&) at a specific time in determining the optimum 
discharge time. For high thermal test, the OLEDs were subjected to several temperatures in 
a controlled oven, including temperatures higher than the glass transition temperature (Tg) 
of the polymer material (-126 "C). Whilst in the hygrothermal aging test, the OLEDs were 
exposed to 85 OC and 85% RH in a humidity chamber at: different exposure time. A black 
box and a chroma-meter were used to monitor the changes in the luminance and voltage- 
drop values, while an interlayer analysis was performed by using focused ion beam (FIB) 
and field emission scanning electron microscope (FESEM) equipment. For this particular 
OLED, the optimum discharge time was found to be at Toff40 S. AS for high thermal test, it 
was observed that the luminance value has dramatically dropped by 90% fiom the initial 
value after the OLEDs were stressed at 135 O C ,  while the voltage-drop greatly escalated fiom 
8.5 V to 30.2 V. The presence of voids between the layers were also evident due to the 
interfacial thermal stress. The voids have allowed the infiltration of moisture and oxygen 
into the device and eventually led to the formation of bubble-like defects on top of the 
cathode's surface. This condition has resulted in deterioration of electrons injection path and 
permanently changed the morphological structures of the devices. Through calculations, it 
was verified that the interfacial thermal stress between the layers can be reduced about 50% 
as the thickness of the polymer layer was increased by two times of its initial dimension. 
While in hygrothermal aging test, two primary modes of failure were observed. The first 
process involves the formation of centered-burst defects, and the second mode is the ring- 
shaped delamination of cathode film. Essentially, both failure modes have destroyed the 
entire aluminum film and permanently changed the morphological surface of the device 
which has led to the total failure of the device. As a conclusion, the findings of this study 
profoundly emphasized on the performance and failure behaviors in OLED under extreme 
conditions, specifically via non-operated mode. 



ABSTRAK 

Perhatian terhadap diodpemancar cahaya organik (OLEDs) telah meningkat dengan amat 
memberangsangkan sejak beberapa tahun ini disebabkan oleh banyak kelebihan yang 
ditawarkan. Namun, isu-isu degradasi yang menyebabkan jangka hayat alatperanti tersebut 
pendek, terutamanya selepas terdedah kepada suhu dan kelembapan yang tinggi masih 
belum dapat diselesaikan walaupun terdapatpenghasilan lapisan pengkapsulan. Tambahan 
pula, banyak punca yang boleh ,menyumbang kepada penyusutan OLED, dan seterusnya, 
hasil dan mekanisme kegagalan yang terlibat. Oleh itu, maklumat komprehensif berkaitan 
perkara ini adalah amat penting untuk diperoleh kerana ia merupakan kunci dalam 
menyelesaikan isu jangka hayatpendek bagi OLEDs. Maka, tujuan utama kajian ini adalah 
untuk mengkaji prestasi OLED yang dikenakan tekanan termal tinggi dan kesan 
higrotermal, khusus dalam mod tidak aktiJ: Selain itu, masa pelepasan optimum mestilah 
diperoleh teulebih dahulu bagi memastikan kapasitansi parasit (kerana struktur OLEDs 
yang nipis) dapat disingkirkan sepenuhnya bagi tujuan kesahan data. Dalam w a n  ini, satu 
kelompok OLED komersial telah digunakan. Kaedah kitaran bukahutup telah digunakan di 
mana sampel OLED tersebut dibuka (Ton) dan ditutup (Tab pada masa tertentu bagi 
menentukan masa pelepasan optimum. Bagi ujian tekanan termal tinggi, beberapa bacaan 
suhu telah dikenakan terhadap OLEDs di dalam ketuhar yang terkawul, termasuksuhu yang 
lebih tinggi daripada suhu peralihan kaca (Td bahan polimer (- 126 "9. Dalam ujian 
higrotermal pula, OLEDs telah didedahkan kepada 85 "C dan 85% IW di dalam kebuk 
kelembapan pada masa dedahan yang berbeza. Sebuah kotak hitam dan meter-kioma telah 
digunakan bagi memantau pembahan nilai luminans dan susut-voltan, manakala analisis 
antara lapisan telah dijalankan dengan menggunakan peralatan alur ion berfokus (FIB) dan 
mikvoskop pancaran medan elektron (FESEM). Masa pelepasan optimum bagi OLED ini 
adalah pada Tog 40 S. Bagi ujian tekanan termal tinggi pula, nilai luminans didapati telah 
menurun dengan mendadak sebanyak 90% dari nilai awal selepas OLED didedahkan pada 
suhu 135 "C; manakala susut-voltan telah meningkat dari 8.5 V hingga 30.2 i! Kehadiran 
lowong antara lapisan juga tampak jelas disebabkan oleh tekanan haba antara muka. 
Lowong itu telah membenarkan.penyusupan lembapan dan ohigen ke dalam peranti dan 
akhirnya membawa kepada pembentukan gelembung di atas permukaan katod. Keadaan ini 
telah menyebabkan kemerosotan laluan elektron dan mengubah struktur morfologi peranti 
secava kekal. Melalui pengiraan, didapati bahawa tekanan haba antara lapisan boleh 
dikurangkan kira-kira 50% jika ketebalan polimer dinaikkan dua h l i  ganda daripada 
dimensi asaE. Dalam ujian higrotermal pula, dua mod kegagalan utama teEah direkodkan. 
Proses pertama adalah pembentukan kecacatan berpusat-pecah, dan mod kedua adalah 
pelekungan berbentuk cincin pada lapisan katod. Pada dasarnya, kedua-dua mod tersebut 
telah merosakkan keseluruhan lapisan aluminium dan mengubah morfologi serta telah 
menyebabkan kegagalan peranti secara keseluruhan. Kesimpulannya, hasil kajian ini 
menekankan akan kegagalan tingkah Eaku dalam OLED bawah keadaan melampau, 
khususnya dalam mod tidak akt$ 
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CHAPTER 1 

INTRODUCTION 

1.1 Background study 

The past decades have witnessed the rapid developments and remarkable 

achievements in the field of artificial lightings. Currently, the artificial lightings have 

underpinned the 21St century appliances; fiom the latest medical apparatuses, to the 

applications of modern advertising boards, including advanced display devices such as 

smartphones, televisions and laptops. In upcoming years, the interest in artificial light will 

constantly grow and lead to additional advancements in the light-based applications 

(Vandergriff, 2008). Relatively, the artificial lightings have improved the quality standard 

of living and safety. 

However, the uncontrollable usage of the artificial lightings has caused light 

pollution, especially in crowded populated areas (Holker et al., 2010a; Falchi et al., 2016). 

The light pollution can be defined as the inefficient, unnecessary, misused or excessive 

consumption of artificial light that exhibits numerous adverse effects on health and 

ecosysteln (Hollan, 2008; Holker et al., 2010b). Hence, this undesirable event signifies that 

the electricity (energy) used for lightings is ineffective or merely wasted. 

Powell et al. (2008) have reported that over 2,650 billion kilowatt-hours (kwh) has 

been consumed by more than 30 billion lamps across the globe. The electricity associated 

with this occasion is approximately 19% of the worldwide electricity production. 

Correspondingly, more than 1.5 billion tons of greenhouse gas per annum has been released 

into the attosphere. According to the InternationaI Energy Agency (IEA), this includes 

1 



about 1,900 illetric tons of carbon dioxide (COz) emission or equivalent to 70% of COz 

elnanated fiom the world's light vehicles (Azevedo et al., 2009). In fact, almost half of the 

total COz emissions is caused by the production of global electricity, specifically for lighting 

purposes (Bessho and Shimizu, 2012). This particular event is forecasted to be much worse 

ill the approaching years since the usage of the electricity for artificial lightings is expected 

to increase by -20% each year (Holker et al., 2010b). 

Henceforth, the United Nations (UN) has declared the year 20 15 as the International 

Year of Light and Light-based Technologies (UN-IYL) to apprise the public on the 

importance of light; from its technological and manufacturing impacts, to applications in 

healthcare, as well as fiom poor lighting to light pollution (Kyba et al., 2014). The UN-IYL 

201 5 is seemed to be a significant opportunity to enlighten the issues of sustainability and 

development towards the energy-saving products since a small change in lightings would 

have a major impact on the carbon footprint, energy consumption and world's ecological 

condition. 

Through this program, the solid-state lighting (SSL) technology has been introduced 

and proved to be the next promising alternative for display and general lighting applications 

(Kim et al., 2012; Sandahl et al., 2014; Tsao et al., 2014; Pust et al., 2015). Primarily, the 

organic light emitting diodes (OLEDs) have captured a worldwide attention as compared to 

other electronic lamps, including the existing LEDs. This is due to countless potentials 

offered such as higher energy efficiency, recyclable and toxic fiee (Azevedo et al., 2009; De 

Almeida et al., 2014; Kim et al., 201 5). Moreover, Chitnis et al. (2016) also reported that the 

OLEDs have the lowest power consumption while operating; as low as 0.01 W which is 

almost 800 times lesser than the power consumed by normal LEDs (consume about 8 W). 

This condition implies that the energy utilized by the OLEDs is highly effective and efficient. 



This main advantage of OLEDs, Iiowever, is accompanied by a inajor hidden cost - 

where they only have an average service lifetime of merely 10,000 hours (about 1.1 years). 

This circumstance is evidently inadequate for the common household uses and extremely 

incolnpetent for the industrial applications since the conservative lifetime figure for a 

luminaire is normally around 15 years (Tyan, 201 1). The short lifetime of OLEDs is 

predo~ninantly due to poor environmental stability, especially when they are subjected to 

high temperatures or exposed to humidity, oxygen and water vapor. Although a number of 

measures have been performed to improve the performance of OLEDs, their lifetime interval 

is still considered as one of the major hinderances towards the long-term coinmercialization 

success (Aziz and Popovic, 2004; Geffroy et al., 2006; Gardonio et al., 2007; Nenna et al., 

2009; Tyagi et al., 2014; Tyagi et al., 2016). 

Concerning the deficient lifespan of OLEDs, systematic studies are essentially 

needed to provide better understandings and allow the new emerging technology to achieve 

an expanded stability and become more viable in the upcoming years. Thus, a definite 

understanding of failure mechanisms in OLEDs is essentially important to be comprehended 

as it is the key to solve the short lifetime and stability issues of OLEDs. 

Therefore, the failure mechanisms, as well as the modes of failure were investigated 

after the OLEDs being subjected to high thermal stresses and hygrothermal effects. 

Following these, the interlayer characterizations were performed to elucidate the OLEDs' 

performances at a nanoscale level. The knowledge gained -&om this study is significant to 

findamentally comprehend the scientific explanations behind the induced-failure for hrther 

improvements of OLEDs applications. 




