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ABSTRACT 

Supercapacitor is highly promising energy device due to its electrical charge storage 
performance and significant lifecycle ability. Construction ,of the supercapacitor cell 
especially its electrode fabrication is critical to ensure great application performance. The 
purpose of this research is to fabricate the molybdenum disulfide (MoSz), graphene and 
GIMoS2 hybrid electrode and their usage as symmetric and asymmetric supercapacitors. The 
electrode was prepared by using a simple and facile slurry technique. By this, XRD was used 
to analyze the crystal phase and structure of the as-prepared graphene, MoS2, and GI MoSz 
hybrid. The peaks at 14.3', 33.8", and 57.5" are attributed to the (002), (loo), and (1 10) plane 
of MoS2 crystal. From Raman spectroscopy shows the characteristic peaks of graphene (D, G 
and 2D) and MoS2 (E12g band at 377 cm-I and AI, band at 403 c~n-I) are retained in the Raman 
spectra of GIMoSz which can confirm the fact that the hybrid of GIMoS2 is composed of MoS2 
and graphene. Next, the XPS analysis was carried out to deduce the exact elemental 
composition of the GMoS2. The full scan of the GIMoS2 gives the characteristic peaks for 
Mo 3d, S 2p, C 1s and 0 1s with their corresponding binding energies. The morphologies and 
microstructures of the MoS2, graphene and GIMoS2 are systematically characterized by 
FESEM observation. The high resolution of FESEM image further reveals that the MoSz 
structures are constructed with layers of nanosheets. Meanwhile, FESEM image of graphene 
sheets illustrating the uniformly distributed of graphene into the Ni foam. Also, the inclusion 
of MoS2 nanosheets resulted in a rough surface, logically due to co-stacking of MoS2 
nanosheets over the graphene nanosheets. Further, the morphology of the GIMoS2 was 
examined by TEM and reveals the crystal lattice structure of MoS2 and graphene in GIMoS2. 
The interlayer spacing of MoS2 in the hybrid were estimated to be -0.63 nm, which can be 
indexed to their (002) lattice planes of hexagonal phase of MoS2. Regardless of the difference 
in electrode being used, cyclic voltammetry (CV) analysis from the supercapacitor depicted 
a relatively good specific gravimetric capacitance (Cs,) and rate capability performance. A 
nearly rectangular-shaped CV curve was observed even at high scan rate. Besides, from the 
charge-discharge measurement, the symmetrical triangular curves reveal that there is no IR 
drops or voltage drops because of low internal resistance in the electrodes. Also, the electrode 
shows excellent discharge behavior and good capacitance retention of up to 10,000 cycles. 
Thus, this 2D heterostructures may provide excellent rate capabilities, high capacitance, and 
long lifecycle energy device. This is very promising for the development of high energy and 
high power density of device for multi-scale applications or industries. 



ABSTRAK 

Superkapasitor adalah peranti tenaga yang sangat menarik kerana prestasipenyimpanan cas 
elektrik dan keupayaan kitaran hayat yang penting. Pembinaan sei superkapasitor 
terutamanya fabrikasi elelctrod adalah penting untuk memastikan prestasi aplikasi yang 
hebat. Tujuan penyelidikan ini adalah untuk menyediakan elektrod molibdenum disuljda 
(MoSz), grafin dan hybrid G/MoS2 dan penggunaannya sebagai superlcapasitor simetri dan 
asimetrik. Elelctrod telah disediakan dengan menggunakan teknik campuran separa cair yang 
mudah dan senang. Dengan ini, XRD digunakan untuk menganalisis fasa kristal dan struktur 
grajn yang disediakan, MoS2, dan hibrid G/MoSz. Puncak pada 14.34 33.8' dan 57.5' 
dikaitkan dengan kristal MoSz (002), (100). dan (110). Dari spektroskopi Raman 
menunjukkan puncak ciri-ciri grafin (D, G dan 220) dan MoSz (band ~ ' 2 ~ ~ a d a  3 77 cm-' dan 
AIg pada 403 cm-') dikekalkan dalam spektrum Raman hybrid G/MoS2 yang dapat 
mengesahkan falrta bahawa hibrid G/MoS2 terdiri daripada MoS2 dan grajn. Seterusnya, 
analisis XPS dijalankan untuk menyimpulkan komposisi elemen sebenar hibrid G/MoS2. 
Siaran penuh hibrid G/MoSz memberikan puncak ciri untuk Mo 3d, S Zp, C Is dan 0 Is 
dengan tenaga mengikat yang sama. Morfologi dan mikrostruktur MoS2, grafin dan hibrid 

@ G/MoSz secara sistematik dicirikan oleh pemerhatian FESEM. Resolusi tinggi imej FESEM 
dengan lebih lanjut mendedahkan bahawa strulctur MoS2 dibina dengan lapisan nano. 
Sementara itu, imej FESEM lembaran grafin yang menggambarkan gambarajah secara 
seragam ke dalam Ni. Juga, kemasukan lapisan nano MoSz menyebabkan permukaan yang 
kasar, secara logiknya disebabkan oleh penyambungan lapisan nano MoSz ke atas lapisan 
nano grafin. Tambahan lagi, morfologi hibrid G/MoS2 diperiksa oleh TEM dan mendedahkan 
struktur kristal MoSz dan grafin dalam hibrid G/MoSz. Jarak lapisan dalam MoSz di dalam 
hibridadalah dianggarkan - 0.63 nm, yang boleh diindeks kepermukaan (002) fasa heksagon 
MoSz. Tanpa mengira perbezaan elektrod yang digunalan, analisa voltammetri siklik (CV) 
dari superkapasitor menggambarkan kapasitan gravimetrik spes$k (C,) dan prestasi kadar 
keupayaan yang agak baik. CV berbentuk persegi panjang hampir diperhatikan walaupun 
pada kadar imbasan tinggi. Disamping itu, daripengukuran cajpelepasan, lengkung segitiga 
simetri mendedahkan bahawa tiada kejatuhan IR atau penurunan voltan kerana rintangan 
dalaman yang rendah dalam elelctrod. Juga, elektrod menunjukkan tingkah la& pelepasan 
Yang sangat baik dan pengekalan kapasiti yang baik sehingga 10,000 pusingan. Jadi, 
heterostruktu~ 2 0  ini boleh memberikan keupayaan kadar yang sangat baik, kapasitan yang 
tinggi, dan peranti tenaga kitaran hayat yang panjang. Ini sangat menjanjikan untuk 
pembangunan tenaga tinggi dan ketumpatan kuasa tinggi untuk aplikasi pelbagai skala atau 
industri. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Currently new electrode materials are under intense study to be used in 

supercapacitor applications, including transition metal oxides, metal hydroxides, and 

conducting polymers. Compared with other electrode materials such as carbon based ,, . 

. ~. ., 

materials, these electrode materials give high capacitance. Despite having high capacitance,:.' :.. . .:? -. .; 
. . .. >..?,? .-. - - . . 

a e s e  electrode materials possess low electrical conductivity, leading to inferior cycling ' ' .. 

@ability as well as lower energy and power densities. 
. . . . . . .  . . . . 

Graphene, composed of carbon atoms arranged in a honeycomb lattice, has been . .  .:;.:.: .: 
. .  . . . . 

shown to possess unique properties. Additionally, the transition metal chalcogenide' <':: j 

molybdenum disulfide (MoSz) (Figure 1.1) shows prospects for various applications, 

including supercapal ' r, because of the unique atomic structure analogues with graphene 

(Cao et al., 2013; Ht 2013; He and Que, 2016). 

a *a b 

s.. --. 
.. 

. . , .  . 
Figure 1 . l  : Molybdenum disulfide atomic s t  ~ ~ ~ u r e  (He and Que, 201 6) 

Research into green and renewable energy materials is expanding, as well as the 

market fQr lo,w cost light-weight electrochemical energy storage systems. Among energy 

. . .  . . . .  
. . . .  . . . . . . . . . . . . . . .  



storage devices, supercapacitors are one of the most popular energy storage devices 

contrasted with batteries because of their long life stabilities, fast charge-discharge 

processes, and high power density (Lu et al., 2013a). 

Fabrication of superior electrode materials with well design structures is a crucial 

factor to increase high electrochemical performance of the energy storage devices such as 

high energy density an 

d high power density (Cakici et al., 2017; Chen et al., 2017). Layered MoS2 is 

analogous to the two-dimensional (2D) structure of graphene. The intercalation of electrolyte 

ions is permitted from the usage of MoS2 as an electrode material in supercapacitors. 

Thus, the key factor that determines the storage mechanism of supercapacitor is the 

diameter of electrolyte ion as well as matching of the interlayer spacing (Zhou et al., 2017). 

The construction of 2D hybrid heterostructures of graphene and MoSz (GIMoS2) is believed 

to allow strongly coupled nanohybrid materials with optimized functionalities for 

supercapacitor application. 

In addition, chemical vapor deposition (CVD), reduction-induced in situ self- 

assembly, chemical assembly, and the hydrothermal method (Figure 1.2) are simple methods 

which provide a unique approach for the synthesis of GIMoS2 for energy storage applications 

(Yang et al., 2017). These novel materials and the fabrication of symmetric and asymmetric 

supercapacitors are important in meeting energy and power demands. 

Asymmetric supercapacitors (ASCs) are composed of two dissimilar electrodes such 

as carbon and pseudocapacitive materials based electrodes (Wu et al., 2014; Sun et al., 2015). 

Commonly, the negative electrode in ASC is composed of carbon based materials including 

graphene, carbon nanotube, and activated carbon. Meanwhile, metal oxides and conducting 

polymers are the example of the positive electrode in ASC. 




