

Faculty of Manufacturing Engineering

PREPARATION OF GRAPHENE/MOLYBDENUM DISULFIDE BASED ELECTRODES AND ITS ELECTROCHEMICAL PERFORMANCE IN SUPERCAPACITORS

Raja Noor Amalina binti Raja Seman

Doctor of Philosophy

2019

PREPARATION OF GRAPHENE/MOLYBDENUM DISULFIDE BASED ELECTRODES AND ITS ELECTROCHEMICAL PERFORMANCE IN SUPERCAPACITORS

.

RAJA NOOR AMALINA BINTI RAJA SEMAN

.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

.

Faculty of Manufacturing Engineering

, .

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

.

DECLARATION

I declare that this thesis entitled "Preparation of Graphene/Molybdenum Disulfide Based Electrodes and Its Electrochemical Performance in Supercapacitors" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	H
Name	:	Raja Noor Amalina binti Raja Seman
Date	:	7/11/2019

-

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature

Supervisor Name

:

Date

: Assoc. Prof. Ir. Dr. Mohd Asyadi 'Azam bin Mohd Abid : 7 NoV.2019

DEDICATION

To my beloved family.

-

.

.

ABSTRACT

Supercapacitor is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the supercapacitor cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is to fabricate the molybdenum disulfide (MoS₂), graphene and G/MoS₂ hybrid electrode and their usage as symmetric and asymmetric supercapacitors. The electrode was prepared by using a simple and facile slurry technique. By this, XRD was used to analyze the crystal phase and structure of the as-prepared graphene, MoS₂, and G/ MoS₂ hybrid. The peaks at 14.3°, 33.8°, and 57.5° are attributed to the (002), (100), and (110) plane of MoS2 crystal. From Raman spectroscopy shows the characteristic peaks of graphene (D, G and 2D) and MoS_2 (E^{1}_{2g} band at 377 cm⁻¹ and A_{1g} band at 403 cm⁻¹) are retained in the Raman spectra of G/MoS₂ which can confirm the fact that the hybrid of G/MoS₂ is composed of MoS₂ and graphene. Next, the XPS analysis was carried out to deduce the exact elemental composition of the G/MoS₂. The full scan of the G/MoS₂ gives the characteristic peaks for Mo 3d, S 2p, C 1s and O 1s with their corresponding binding energies. The morphologies and microstructures of the MoS₂, graphene and G/MoS₂ are systematically characterized by FESEM observation. The high resolution of FESEM image further reveals that the MoS₂ structures are constructed with layers of nanosheets. Meanwhile, FESEM image of graphene sheets illustrating the uniformly distributed of graphene into the Ni foam. Also, the inclusion of MoS₂ nanosheets resulted in a rough surface, logically due to co-stacking of MoS₂ nanosheets over the graphene nanosheets. Further, the morphology of the G/MoS₂ was examined by TEM and reveals the crystal lattice structure of MoS₂ and graphene in G/MoS₂. The interlayer spacing of MoS₂ in the hybrid were estimated to be ~0.63 nm, which can be indexed to their (002) lattice planes of hexagonal phase of MoS₂. Regardless of the difference in electrode being used, cyclic voltammetry (CV) analysis from the supercapacitor depicted a relatively good specific gravimetric capacitance (C_{sp}) and rate capability performance. A nearly rectangular-shaped CV curve was observed even at high scan rate. Besides, from the charge-discharge measurement, the symmetrical triangular curves reveal that there is no IR drops or voltage drops because of low internal resistance in the electrodes. Also, the electrode shows excellent discharge behavior and good capacitance retention of up to 10,000 cycles. Thus, this 2D heterostructures may provide excellent rate capabilities, high capacitance, and long lifecycle energy device. This is very promising for the development of high energy and high power density of device for multi-scale applications or industries.

ABSTRAK

Superkapasitor adalah peranti tenaga yang sangat menarik kerana prestasi penyimpanan cas elektrik dan keupayaan kitaran hayat yang penting. Pembinaan sel superkapasitor terutamanya fabrikasi elektrod adalah penting untuk memastikan prestasi aplikasi yang hebat. Tujuan penyelidikan ini adalah untuk menyediakan elektrod molibdenum disulfida (MoS₂), grafin dan hybrid G/MoS₂ dan penggunaannya sebagai superkapasitor simetri dan asimetrik. Elektrod telah disediakan dengan menggunakan teknik campuran separa cair yang mudah dan senang. Dengan ini, XRD digunakan untuk menganalisis fasa kristal dan struktur grafin yang disediakan, MoS₂, dan hibrid G/MoS₂. Puncak pada 14.3°, 33.8° dan 57.5° dikaitkan dengan kristal MoS₂ (002), (100), dan (110). Dari spektroskopi Raman menunjukkan puncak ciri-ciri grafin (D, G dan 2D) dan MoS₂ (band E^{I}_{2g} pada 377 cm⁻¹ dan Alg pada 403 cm⁻¹) dikekalkan dalam spektrum Raman hybrid G/MoS₂ yang dapat mengesahkan fakta bahawa hibrid G/MoS₂ terdiri daripada MoS₂ dan grafin. Seterusnya, analisis XPS dijalankan untuk menyimpulkan komposisi elemen sebenar hibrid G/MoS₂. Siaran penuh hibrid G/MoS₂ memberikan puncak ciri untuk Mo 3d, S 2p, C 1s dan O 1s dengan tenaga mengikat yang sama. Morfologi dan mikrostruktur MoS₂, grafin dan hibrid G/MoS₂ secara sistematik dicirikan oleh pemerhatian FESEM. Resolusi tinggi imej FESEM dengan lebih lanjut mendedahkan bahawa struktur MoS₂ dibina dengan lapisan nano. Sementara itu, imej FESEM lembaran grafin yang menggambarkan gambarajah secara seragam ke dalam Ni. Juga, kemasukan lapisan nano MoS₂ menyebabkan permukaan yang kasar, secara logiknya disebabkan oleh penyambungan lapisan nano MoS₂ ke atas lapisan nano grafin. Tambahan lagi, morfologi hibrid G/MoS2 diperiksa oleh TEM dan mendedahkan struktur kristal MoS2 dan grafin dalam hibrid G/MoS2. Jarak lapisan dalam MoS2 di dalam hibrid adalah dianggarkan ~ 0.63 nm, yang boleh diindeks ke permukaan (002) fasa heksagon MoS₂. Tanpa mengira perbezaan elektrod yang digunakan, analisa voltammetri siklik (CV) dari superkapasitor menggambarkan kapasitan gravimetrik spesifik (C_{sp}) dan prestasi kadar keupayaan yang agak baik. CV berbentuk persegi panjang hampir diperhatikan walaupun pada kadar imbasan tinggi. Di samping itu, dari pengukuran caj pelepasan, lengkung segitiga simetri mendedahkan bahawa tiada kejatuhan IR atau penurunan voltan kerana rintangan dalaman yang rendah dalam elektrod. Juga, elektrod menunjukkan tingkah laku pelepasan yang sangat baik dan pengekalan kapasiti yang baik sehingga 10,000 pusingan. Jadi, heterostruktur 2D ini boleh memberikan keupayaan kadar yang sangat baik, kapasitan yang tinggi, dan peranti tenaga kitaran hayat yang panjang. Ini sangat menjanjikan untuk pembangunan tenaga tinggi dan ketumpatan kuasa tinggi untuk aplikasi pelbagai skala atau industri.

ACKNOWLEDGEMENTS

First and foremost, thanks to Allah for helping me to complete this thesis. I would like to express my sincere appreciation to my project supervisor, Assoc. Prof. Ir. Dr. Mohd Asyadi 'Azam bin Mohd Abid for the encouragement, advices, suggestions and guidance upon completing my research project.

I am grateful to Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka especially my co-supervisor Dr. Syahriza binti Ismail, assistant engineers in the laboratory, and my friends for the help and tremendous support for my research. I would like to acknowledge JC and Mr. Remy from Metrohm Malaysia, for their help in the usage of Autolab AUT 50430 to measure electrochemical performance (EIS) for my sample used in this work.

Also, 1 would like to acknowledge the UTeM Zamalah Scheme for financial support during my PhD study.

Lastly, I am grateful to my parents, my siblings for the continuous support and encouragement for me to finish up my study. I love you all.

TABLE OF CONTENTS

					PAGE
	LARAT				
	OVAL				
	CATIC RACT				i
ABST					ii
-		EDGEM	ENTS		iii
		CONTE			iv
	OF TA				viii
LIST	OF FIG	JURES			ix
			ATIONS		xiii
		MBOLS			xiv
		BLICA	FIONS		XV
LIST	OF AV	VARDS			xvii
CHAI					
1.		RODUC			1
	1.1	Backg			1
	1.2	Proble	m stateme	nts	• 4
	1.3	Object	ives		6
	1.4	Scope			6
	1.5	Signifi	cant of stu	ıdy	8
	1.6	Thesis	structure		8
2.	LIT	ERATUI	RE REVI	EW	10
	2.1	Introdu	uction		10
	2.2	Energy	y storage d	evices	11
		2.2.1	Convent	ional capacitors	11
		2.2.2	Batteries	5	12
		2.2.3	Superca	pacitors	13
			2.2.3.1	History of supercapacitor	15
			2.2.3.2	Advantages of supercapacitor	15
			2.2.3.3	Challenges of supercapacitor	17
		2.2.4	Compar	ison of different energy storage devices	19
		2.2.5	Main co	mponents in supercapacitor	20
	2.3	Superc	capacitor a	s energy storage device	22
		2.3.1	Applica	tion of supercapacitor	22
			2.3.1.1	Consumer applications	22
			2.3.1.2	,	23
			2.3.1.3		23
			2.3.1.4		24
		2.3.2		hemical double layer capacitor (EDLC)	25
			2.3.2.1	Helmholtz model	25

DACE

		2.3.2.2	Gouy-Chapman or diffuse model	26
		2.3.2.3	Stern modification of the diffuse double layer	27
		2.3.2.4	Double layer theory in supercapacitor	28
	2.3.3	Pseudoca	pacitor	29
2.4	Constr	uction of hi	gh energy density supercapacitor	30
	2.4.1	Symmetri	c supercapacitor	32
	2.4.2	Asymmetr	ric supercapacitor	33
	2.4.3	Li-ion hyb	orid supercapacitor	34
2.5	Select	on of the el	ectrode materials for ASC	35
	2.5.1	Negative	electrode materials or Anode	36
		(Carbon-b	based materials)	
		2.5.1.1 A	Activated carbon	37
		2.5.1.2	Carbon nanotube	38
		2.5.1.3	Graphene	40
	2.5.2	Negative	electrode materials or Anode (Metal oxides)	41
	2.5.3	Negative	electrode materials or Anode (Metal nitrides)	43
	2.5.4		lectrode materials or Cathode	44
		(Conducti	ve polymers)	
	2.5.5		lectrode materials or Cathode (Metal oxides)	45
			Ruthenium oxide (RuO ₂)	45
			Manganese oxide (MnO ₂)	46
			Vanadium pentoxide (V ₂ O ₅)	47
			Nickel hydroxide (Ni(OH) ₂)	47
2.6		nges of ASC		48
2.7			s for supercapacitor	49
	2.7.1	•	as representative of carbon material	51
	2.7.2		and properties of graphene	52
	2.7.3	•	of graphene	53
	2.7.4		um disulfide as representative of transition	54
			alcogenides material	
	2.7.5		and properties of MoS ₂	55
	2.7.6	Synthesis		57
	2.7.7	-	hybrids with other 2D analogues	59
2.8		•	percapacitor	61
	2.8.1	Aqueous e	-	62
2.9			izations of supercapacitor electrode	63
	2.9.1		ntification analysis by using X-Ray Powder	64
		Diffractio		
	2.9.2		properties analysis from Raman spectroscopy	65
	2.9.3		nemical state analysis by using X-Ray	66
	a a -		tron Spectroscopy (XPS)	
	2.9.4		orphological analysis by using Field Emission	67
		Scanning	Electron Microscopy (FESEM)	

•

		2.9.5 Morphological analysis by using Transmission Electron Microscopy (TEM)	68		
	2.10		69		
	2.1.0	2.10.1 Cyclic Voltammetry (CV)	69		
		2.10.2 Galvanostatic Charge-Discharge (GCD)	70		
		2.10.3 Electrochemical Impedance Spectroscopy (EIS)	71		
		2.10.4 Determination of energy density and power density	73		
	2.11	Summary	75		
3.	мет	THODOLOGY	77		
	3.1	Introduction	77		
	3.2	Flow chart of the experiment	78		
	3.3	Chemicals and laboratory apparatus	80		
	3.4	Preparation of G/MoS ₂ hybrid electrode	82		
		3.4.1 Current collector preparation and cleaning	82		
		3.4.2 Optimization of PTFE binder ratio	84		
		3.4.3 Fabrication of MoS ₂ , graphene, and G/MoS ₂ hybrid	85		
		electrodes			
		3.4.3.1 Determination of composition G/MoS ₂ hybrid	85		
		electrode			
		3.4.4 Types of aqueous electrolytes	86		
	3.5	Characterization and analysis of G/MoS ₂ hybrid electrode	87		
		3.5.1 Crystallographic and molecular vibration using XRD,	88		
		Raman spectroscopy, and XPS			
		3.5.1.1 X-Ray Diffraction (XRD)	88		
		3.5.1.2 Raman spectroscopy	88		
		3.5.1.3 X-Ray Photoelectron Spectroscopy (XPS)	88		
		3.5.2 Surface morphological analysis by using FESEM and	89		
		TEM			
	3.6	Electrochemical performances of G/MoS ₂ hybrid electrode	89		
		3.6.1 Cyclic Voltammetry (CV)	90		
		3.6.2 Galvanostatic Charge-Discharge (GCD)	91		
		3.6.3 Electrochemical Impedance Spectroscopy (EIS)	92		
		3.6.4 Determination of energy density and power density	92		
	3.7	Cell assembly of G/MoS ₂ hybrid electrode	93		
	3.8	Summary	94		
4.	RES	ULT AND DISCUSSION	95		
	4.1	Introduction	95		
	4.2	Preparation of electrode materials			
		4.2.1 Determination of PTFE binder ratio for supercapacitor	96		
		4.2.2 Optimization of G/MoS ₂ hybrid supercapacitor	100		

	4.2.3		al and properties of MoS ₂ , graphene, and	105
			hybrid electrodes	105
		4.2.3.1	Phase identification of MoS ₂ , graphene, and G/MoS ₂ hybrid by using XRD	105
		4.2.3.2	Structural properties of MoS ₂ , graphene, and G/MoS ₂ hybrid by using Raman spectroscopy	107
	4.2.4		chemical state of MoS_2 , graphene, and G/MoS_2	110
	105	•	electrodes by using XPS	110
	4.2.5		logical analyses of as-prepared MoS ₂ ,	113
			e, and G/MoS ₂ hybrid electrodes	110
		4.2.5.1	5	113
		4.2.5.2	Structural analysis of G/MoS ₂ hybrid by using TEM	115
4.3	Electro	chemical j	performances of MoS ₂ , graphene, and G/MoS ₂	117
		supercapa		
	4.3.1	Symmet	tric supercapacitor in aqueous electrolytes for	119
		MoS ₂ , g	raphene, and G/MoS ₂ hybrid	
		4.3.1.1	Electrochemical performances of MoS ₂	120
			supercapacitor in 6M KOH, 1M H ₂ SO ₄ , and	
			0.5M Na ₂ SO ₄ electrolytes	
		4.3.1.2	Electrochemical performances of graphene	127
			supercapacitor in 6M KOH, 1M H ₂ SO ₄ , and	
			0.5M Na ₂ SO ₄ electrolytes	
		4.3.1.3	Electrochemical performances of G/MoS ₂	138
			hybrid supercapacitor in 6M KOH,	
			1M H ₂ SO ₄ , and 0.5M Na ₂ SO ₄ electrolytes	
	4.3.2	Asymm	etric supercapacitor in aqueous electrolytes	151
		4.3.2.1	Electrochemical performances of ASC	151
			G//MoS ₂ electrodes in 6M KOH, 1M H ₂ SO ₄ ,	
			and 0.5M Na ₂ SO ₄ electrolytes	
		4.3.2.2	Electrochemical performances of ASC	160
			G//G/MoS ₂ electrodes in 6M KOH,	
			1M H ₂ SO ₄ , and 0.5M Na ₂ SO ₄ electrolytes	
	4.3.3	Compar	ison of electrochemical performances of	168
		~	pacitors by using Ragone plot	
4.4	Summa			172
CON	CLUSI	ON AND I	RECOMMENDATIONS	174
5.1	Conclu	sion	•	174
5.2		mendations 170		
2.2	iccom	mondation		170

REFERENCES

5.

177

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between conventional capacitors, batteries, fuel cells, and supercapacitors (Bubna et al., 2012)	20
2.2	Capacitance value of electrode materials in different aqueous electrolytes	59
3.1	Materials for MoS ₂ , graphene, and G/MoS ₂ hybrid electrode fabrication	80
3.2	Equipment for MoS ₂ , graphene, and G/MoS ₂ hybrid electrode fabrication	81
3.3	Current collector information	82
3.4	The amount of graphene and MoS ₂ composition	85
3.5	The sizes of bare and hydrated ions, and ionic conductivity values (Zhong et al., 2015)	87
3.6	Cyclic voltammetry parameter	90
3.7	GCD parameter	91
4.1	Slurry composition of graphene electrodes	97
4.2	$C_{\rm sp}$ of graphene electrodes with different ratio of PTFE binder	98
4.3	The G/MoS ₂ hybrid electrodes description	101
4.4	$C_{\rm sp}$ of G/MoS ₂ hybrid electrodes calculated from CV	103
4.5	$C_{\rm sp}$ of G/MoS ₂ hybrid electrodes calculated from GCD at 1 mA	105
4.6	Calculation of average weight of MoS ₂ , graphene, G/MoS ₂ , G//MoS ₂ , and G//G/MoS ₂ hybrid electrodes	118
4.7	C_{sp} (in F g ⁻¹) for MoS ₂ , graphene, and G/MoS ₂ electrodes from CV analyses	141
4.8	C_{sp} (in F g ⁻¹) for ASC G//MoS ₂ and ASC G//G/MoS ₂ electrodes from CV analyses	165

•

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Molybdenum disulfide atomic structure (He and Que, 2016)	1
1.2	An example of hydrothermal process and G/MoS ₂ heterostructures	3
	formation mechanism (Yang et al., 2017)	
2.1	The drawing of schematic diagram of conventional capacitor	11
2.2	The drawing of charging-discharging in LIB	13
2.3	(a) The mechanism of CD process for EDLC and (b) energy storage	14
	mechanism for pseudocapacitor (Jost et al., 2014)	
2.4	Common symmetric electrode cell component for supercapacitor	21
2.5	Helmholtz model (Pilon et al., 2015)	26
2.6	Gouy-Chapman or diffuse model (Pilon et al., 2015)	27
2.7	Stern modification of the diffuse double layer (Pilon et al., 2015)	28
2.8	Schematic illustration of the as-fabricated asymmetric supercapacitor	31
	(ASC) device based on manganese sulfide (MnS) nanocrystal as the	
	positive electrode and EDAC as the negative electrode (Chen et al.,	
	2016)	
2.9	The drawing of symmetric supercapacitor	32
2.10	The drawing of ASC	34
2.11	The drawing of Li-ion supercapacitor	35
2.12	Several forms of carbon nanostructures (Al-Jumaili et al., 2017)	39
2.13	Schematics of CVD graphene grown on (a) metals with high carbon	54
	solubility, (b) Copper foil, (c) Copper enclosure, and (d) sapphire	
	(Chen et al., 2015)	
2.14	(a) TMDs crystal structures of MX ₂ . (b) Three-dimensional model of	57
	the MoS_2 crystal structure in 1T and 2H types (Lv et al., 2015)	
2.15	Schematic representation of the electrochemical lithiation process for	58
	synthesis of 2D nanosheets from layered bulk materials (Chhowalla	
	et al., 2013)	
2.16	Variety of electrolytes for supercapacitors	63
2.17	XRD patterns of 3DG, MoS_2 and GS-5 (Sun et al., 2016)	65
2.18	Raman spectra of GO, pure MoS ₂ , and MoS ₂ /graphene composites (Thangappan et al., 2016)	66
2.19	High resolution XPS spectra of MoS ₂ raw powder showing the S 2p	67
2.17	(a) and Mo 3d (b) binding regions (Bissett et al., 2015)	07
	(a) and wro od (b) binding regions (Dissen of all, 2015)	

2.20	SEM images of the G/MoS ₂ composite (a and b), pristine graphene	68
	(c) (Thangappan et al., 2016)	
2.21	TEM images of graphene (A), and MoS ₂ -graphene composites (B); HRTEM image of MoS ₂ -graphene composites (Huang et al., 2013)	68
2.22	CV curves of (A) MoS ₂ particles and (B) hierarchical MoS ₂ /G	70
	nanobelts at different scan rates (C) CV curves of the electrodes at	
	10 mV s^{-1} (D) areal capacitances of the electrodes at different scan	
	rates (Jia et al., 2017)	
2.23	GCD curves of MoS ₂ -graphene composites at different current	71
	densities (1, 2.5, 5 and 10 A g^{-1}) (Huang et al., 2013)	
2.24	Nyquist plots of the MoS ₂ , graphene and MoS ₂ -graphene composites	72
	electrode in 1.0 M Na ₂ SO ₄ in the frequency range from 0.1 to 100	
	kHz at open circuit potential with an ac perturbation of 5 mV. Inset:	
	magnified high frequency regions (Huang et al., 2013)	
2.25	Ragone plot for various energy storage devices (Simon and Gogotsi,	73
	2008)	
3.1	Flow chart of experiment	79
3.2	A piece of current collector with 15 mm diameter	82
3.3	Schematic illustration of G/MoS ₂ hybrid slurry coated onto Ni foam	82
3.4	Ni foam cleaning process flow	84
3.5	(a) Major components of supercapacitor, and (b) illustration of	93
	G/MoS ₂ hybrid electrode inside con cell	
4.1	CV curves in a potential range of 0.0-1.0 V at different scan rates in	98
	6M KOH electrolyte	
4.2	GCD curves at different currents for three different ratio	99
4.3	Cycling stability tested at applied current of 3 mA in 6M KOH electrolyte	100
4.4	CV curves for five different compositions at 1–60 mV s ⁻¹	102
4.5	CD curves for five different compositions at 0.6 to 1 mA in 6M	104
	KOH electrolyte	
4.6	XRD patterns of MoS ₂ , graphene, and G/MoS ₂ hybrid	106
4.7	Raman spectra of MoS ₂ , graphene, and G/MoS ₂ hybrid	107
4.8	Wide range XPS spectra of G/MoS ₂ hybrid	110
4.9	XPS spectra of C 1s of G/MoS ₂ hybrid	111
4.10	XPS spectra of Mo 3d of G/MoS ₂ hybrid	112
4.11	XPS spectra of S 2p of G/MoS ₂ hybrid	112
4.12	FESEM image of MoS ₂	113
4.13	FESEM image of graphene sheet	114
4.14	FESEM image of G/MoS ₂ hybrid	115
4.15	TEM image of G/MoS ₂ hybrid	116
4.16	CV of MoS ₂ electrodes at scan rate 1 mV s ⁻¹ in three different	121
	electrolytes measured from 0.0 to 1.0 V	

3

4.17	CV of MoS ₂ electrodes at various scan rates in three different	122
	electrolytes measured from 0.0 to 1.0 V	
4.18	CD curves of MoS_2 electrodes at three different electrolytes	124
4.19	Capacitance retention of MoS ₂ electrodes over 10, 000	125
	charge/discharge cycles	
4.20	EIS Nyquist plots of MoS ₂ electrodes in three different electrolytes	126
4.21	CV of graphene electrodes at scan rate 1 mV s^{-1} in three different	128
	electrolytes measured from 0.0 to 1.0 V	
4.22	CV of graphene electrodes at various scan rates in three different	130
	electrolytes measured from 0.0 to 1.0 V	
4.23	CD curves of graphene electrodes at three different electrolytes	133
4.24	Capacitance retention of graphene electrodes over 10, 000	135
	charge/discharge cycles	
4.25	EIS Nyquist plots of graphene electrodes in three different	136
	electrolytes	
4.26	CV of G/MoS ₂ hybrid electrodes at scan rate 1 mV s ^{-1} in three	139
	different electrolytes measured from 0.0 to 1.0 V	
4.27	CV of G/MoS ₂ hybrid electrodes at various scan rates in three	140
	different electrolytes measured from 0.0 to 1.0 V	
4.28	CD curves of G/MoS ₂ hybrid electrodes at three different	145
	electrolytes	
4.29	Capacitance retention of G/MoS ₂ hybrid electrodes over 10, 000	148
	charge/discharge cycles	
4.30	EIS Nyquist plots of G/MoS ₂ hybrid electrodes in three different	150
	electrolytes	
4.31	CV of ASC G//MoS ₂ electrodes at scan rate 1 mV s ⁻¹ in three	152
	different electrolytes measured from 0.0 to 1.2 V	
4.32	CV of ASC G//MoS ₂ electrodes at various scan rates in three	153
	different electrolytes measured from 0.0 to 1.2 V	
4.33	CD curves of ASC G//MoS ₂ electrodes at three different electrolytes	155
4.34	Capacitance retention of ASC G//MoS ₂ electrodes over 10, 000	156
	charge/discharge cycles	
4.35	EIS Nyquist plots of ASC G//MoS ₂ electrodes in three different	158
	electrolytes	
4.36	CV of ASC G//G/MoS ₂ electrodes at scan rate 1 mV s ⁻¹ in three	161
	different electrolytes measured from 0.0 to 1.2 V	
4.37	$CV \text{ of ASC } G//G/MoS_2 \text{ electrodes at various scan rates in three}$	162
	different electrolytes measured from 0.0 to 1.2 V	
4.38	CD curves of ASC G//G/MoS ₂ electrodes at three different	164
	electrolytes	
4.39	Capacitance retention of ASC G//G/MoS ₂ hybrid electrodes over	165
	10, 000 charge/discharge cycles	- • •

4.40	EIS Nyquist plots of ASC G//G/MoS2 electrodes in three different	167
	electrolytes	
4.41	Ragone plots of MoS ₂ , graphene, G/MoS ₂ hybrid symmetric	169
	supercapacitors and G//MoS ₂ and G//G/MoS ₂ ASCs	

.

.

÷

ì,

LIST OF ABBREVIATIONS

.

•

AC	-	Activated Carbon	
ASC	-	Asymmetric Supercapacitor	
CNT	-	Carbon Nanotube	
СР	-	Conducting Polymer	
$C_{ m sp}$	-	Specific Gravimetric Capacitance	
CV	-	Cyclic Voltammetry	
CVD	-	Chemical Vapor Deposition	
ED	-	Energy Density	
EDLC	-	Electrochemical Double Layer Capacitor	
EIS	-	Electrochemical Impedance Spectroscopy	
FESEM	-	Field Emission Scanning Electron Microscopy	
G	-	Graphene	
GCD	-	Galvanostatic Charge-Discharge	
H_2SO_4	-	Sulfuric Acid	
KOH	-	Potassium Hydroxide	
LIB	-	Lithium Ion Battery	
MoS_2	-	Molybdenum Disulfide	
Na ₂ SO ₄	-	Sodium Sulfate	
NMP	-	N-Methyl-2-pyrrolidone	
PTFE	-	Polytetrafluoroethylene	
TEM	-	Transmission Electron Microscopy	
TMD	-	Transition Metal Dichalcogenide	
XRD	-	X-Ray Powder Diffraction	
XPS	-	X-Ray Photoelectron Spectroscopy	
2D	-	Two Dimensional	

xiii

LIST OF SYMBOLS

.

.

F g ⁻¹	-	Farad per gram
g	-	Gram
k	-	Kilo
m	-	Meter
e	-	Electron
mA	-	MiliAmpere
mV s ⁻¹	-	MiliVolts per second
μm	-	Micrometer
nm	-	Nanometer
Pa	-	Pascal
S	-	Second
W kg ⁻¹	-	Watts per kilogram
Wh kg ⁻¹	-	Watts hour per kilogram
°C	-	Degree celcius
V	-	Voltage
W	-	Watt
CV		Cyclic voltammetry
Ψ0	-	Electrode potential
Ψ	-	Potential

LIST OF PUBLICATIONS

(i) Peer reviewed journals

- Seman, R.N.A.R., Azam, M.A. and Ani, M.H., 2018. Graphene/transition Metal Dichalcogenides Hybrid Supercapacitor Electrode: Status, Challenges, and Perspectives. *Nanotechnology*, 29(50), pp. 502001–502025.
- Azam, M.A., Talib, E. and Seman, R.N.A.R., 2018. Direct Deposition of Multi-Walled Carbon Nanotubes onto Stainless Steel and YEF foils using a Simple Electrophoretic Deposition for Electrochemical Capacitor Electrode. *Materials Research Express*, 6(1), pp. 015501–015508.
- Azam, M.A., Mudtalib, N.E.S.A.A. and Seman, R.N.A.R., 2018. Synthesis of Graphene Nanoplatelets from Palm-Based Waste Chicken Frying Oil Carbon Feedstock by Using Catalytic Chemical Vapour Deposition. *Materials Today Communications*, 15, pp. 81–87.
- 4. Lau, K.T., Azam, M.A. and Seman, R.N.A.R., 2018. Influence of Pulsed Electrophoretic Deposition of Graphitic Carbon Nanotube on Electrochemical Capacitor Performance. *Journal of Engineering Science and Technology*, 13(2), pp. 295–308.
- Azam, M.A., Seman, R.N.A.R., Zulkifli, M.F., Mohamed, M.A. and Ani M.H., 2018. Carbon Nanomaterials Derived from Malaysia's Highway Road Asphalt Waste as Electrode for Supercapacitor. *Journal of Materials and Environmental Sciences*, 9 (7), pp. 2164–2168.
- Azam, M.A., Seman, R.N.A.R. and Effendi S.M., 2017. Preparation of Hydrous Ruthenium Oxide/Activated Carbon Electrode and Its Supercapacitive Performance in 6M KOH. Journal of Advanced Manufacturing Technology (JAMT), 11(2), pp. 1–8.
- Azam, M.A., Alias, F.M., Tack, L.W., Seman, R.N.A.R. and Taib, M.F.M., 2017. Electronic Properties and Gas Adsorption Behaviour of Pristine, Silicon-, and Boron-Doped (8, 0) Single-Walled Carbon Nanotube: A First Principles Study. *Journal of Molecular Graphics and Modelling*, 75, pp. 85–93.
- Seman, R.N.A.R., Azam, M.A. and Mohamad, A.A., 2017. Systematic Gap Analysis of Carbon Nanotube-Based Lithium-Ion Batteries and Electrochemical Capacitors. *Renewable and Sustainable Energy Reviews*, 75, pp. 644–659.

- Tack, L.W., Azam, M.A. and Seman, R.N.A.R., 2017. Structural and Electronic Properties of Transition-Metal Oxides Attached to a Single-Walled CNT as a Lithium-Ion Battery Electrode: A First-Principles Study. *The Journal of Physical Chemistry A*, 121 (13), pp. 2636–2642.
- Azam, M.A., Zulkapli, N.N., Dorah, N., Seman, R.N.A.R., Ani, M.H., Sirat, M.S., Ismail, E., Fauzi, F.B., Mohamed, M.A. and Majlis, B.Y., 2017. Critical Considerations of High Quality Graphene Synthesized by Plasma-Enhanced Chemical Vapor Deposition for Electronic and Energy Storage Devices. *ECS Journal of Solid State Science and Technology*, 6(6), pp. M3035–M3048.
- Seman, R.N.A.R., Azam, M.A. and Mohamed M.A., 2016. Highly Efficient Growth of Vertically Aligned Carbon Nanotubes on Fe-Ni Based Metal Alloy Foils for Supercapacitors. *Advances in Natural Sciences: Nanoscience and Nanotechnology*, 7(4), pp. 045016-045024.

(ii) Conference presentation

- Electrochemical performance of molybdenum disulfide Supercapacitor Electrode in potassium hydroxide and sodium sulfate electrolytes, 5th International Conference and Exhibition on Sustainable Energy and Advanced Materials Holiday Inn Melaka, 16–19 October 2017 (Oral presentation).
- 2. Effects of PTFE binder ratio on the performance of graphene supercapacitor, ISoRIS'17, Ramada Hotel, Melaka, 18 & 19 July 2017 (Oral presentation).

LIST OF AWARDS

- 29th International Invention, Innovation & Technology Exhibition 2018
 Place: KLCC Convention Centre Kuala Lumpur
 Date: 10–12 May 2018
 ITEX 2018 Silver medal
- UTeM Research and Innovation Expo (UTeMEX) Date: 17 November 2017 Place: FTK Universiti Teknikal Malaysia Melaka Jury Special award & Gold award
- Seoul International Invention Fair (SIIF 2016)
 Date: 1–2 December 2016, Korea
 Place: Seoul, Korea
 Silver Medal
- 4. Malaysia Technology Expo 2016 (MTE 2016)
 Date: 18–20 February 2016
 Place: PWTC Kuala Lumpur
 Special Award & Gold Award

xvii

CHAPTER 1

INTRODUCTION

1.1 Background

Currently new electrode materials are under intense study to be used in supercapacitor applications, including transition metal oxides, metal hydroxides, and conducting polymers. Compared with other electrode materials such as carbon based materials, these electrode materials give high capacitance. Despite having high capacitance, these electrode materials possess low electrical conductivity, leading to inferior cycling stability as well as lower energy and power densities.

Graphene, composed of carbon atoms arranged in a honeycomb lattice, has been shown to possess unique properties. Additionally, the transition metal chalcogenide molybdenum disulfide (MoS₂) (Figure 1.1) shows prospects for various applications, including supercapacitors, because of the unique atomic structure analogues with graphene (Cao et al., 2013; Hu et al., 2013; Shi et al., 2013; He and Que, 2016).

Figure 1.1: Molybdenum disulfide atomic structure (He and Que, 2016)

Research into green and renewable energy materials is expanding, as well as the market for low cost and light-weight electrochemical energy storage systems. Among energy

storage devices, supercapacitors are one of the most popular energy storage devices contrasted with batteries because of their long life stabilities, fast charge-discharge processes, and high power density (Lu et al., 2013a).

Fabrication of superior electrode materials with well design structures is a crucial factor to increase high electrochemical performance of the energy storage devices such as high energy density an

d high power density (Cakici et al., 2017; Chen et al., 2017). Layered MoS_2 is analogous to the two-dimensional (2D) structure of graphene. The intercalation of electrolyte ions is permitted from the usage of MoS_2 as an electrode material in supercapacitors.

Thus, the key factor that determines the storage mechanism of supercapacitor is the diameter of electrolyte ion as well as matching of the interlayer spacing (Zhou et al., 2017). The construction of 2D hybrid heterostructures of graphene and MoS_2 (G/MoS₂) is believed to allow strongly coupled nanohybrid materials with optimized functionalities for supercapacitor application.

In addition, chemical vapor deposition (CVD), reduction-induced in situ selfassembly, chemical assembly, and the hydrothermal method (Figure 1.2) are simple methods which provide a unique approach for the synthesis of G/MoS_2 for energy storage applications (Yang et al., 2017). These novel materials and the fabrication of symmetric and asymmetric supercapacitors are important in meeting energy and power demands.

Asymmetric supercapacitors (ASCs) are composed of two dissimilar electrodes such as carbon and pseudocapacitive materials based electrodes (Wu et al., 2014; Sun et al., 2015). Commonly, the negative electrode in ASC is composed of carbon based materials including graphene, carbon nanotube, and activated carbon. Meanwhile, metal oxides and conducting polymers are the example of the positive electrode in ASC.