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Highlights:  

 The problem of inclined cracks subjected to normal and shear stress in bonded 

dissimilar materials was formulated.  

 The modified complex potentials function method was used to formulate the 

hypersingular integral equations.  

 The obtained system of hypersingular integral equations was solved numerically 

using the appropriate quadrature formula.  

 The stress intensity factors at the crack tips depend on the elastic constant’s ratio and 

crack geometries.  

 

Abstract. The inclined crack problem in bonded dissimilar materials was 

considered in this study. The system of hypersingular integral equations (HSIEs) 

was formulated using the modified complex potentials (MCP) function method, 

where the continuity conditions of the resultant force and the displacement are 

applied. In the equations, the crack opening displacement (COD) serves as the 

unknown function and the traction along the cracks as the right-hand terms. By 

applying the curved length coordinate method and the appropriate quadrature 

formulas, the HSIEs are reduced to the system of linear equations. It was found 

that the nondimensional stress intensity factors (SIF) at the crack tips depend on 

the ratio of elastic constants, the crack geometries and the distance between the 

crack and the boundary. 

Keywords: complex variable function; bonded dissimilar materials; hypersingular 

integral equation; stress intensity factor. 

1 Introduction 

The stress intensity factors (SIF) at the crack tip are among the physical quantities 

that can be used to analyze crack problems in engineering structures. Systems of 
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HSIEs or singular integral equations have been proposed to find the SIF for crack 

problems in an infinite plane by Nik Long and Eshkuvatov in [1] and Denda and 

Dong in [2], and for half plane elasticity by Chen, et al. in [3] and Elfakhakhre, 

et al. in [4].  

Crack problems in bonded dissimilar materials are discussed in [5-8]. The SIF for 

two inclined cracks in bonded dissimilar materials were calculated using 

Fredholm integral equations with the density distribution as undetermined 

function in [5]. The body forces method and traction free conditions of the cracks 

were used in finding the solution of inclined, kinked and branched cracks in 

bonded dissimilar materials in [6]. The nondimensional SIF for two- and three-

dimensional crack problems in bonded dissimilar materials were computed using 

the finite element procedure based on the ratio of COD in [7]. The HSIEs were 

used to calculate the nondimensional SIF for multiple cracks in the upper part of 

bonded dissimilar materials in [8]. The mixed-mode dynamic of SIF for an 

interface crack in two bonded half planes was investigated by summing the 

extended finite element method and a domain independent interaction integrated 

method in [9]. The nondimensional SIF for the collinear interface cracks in two 

bonded half planes were calculated by combining the solution for an inner and an 

outer collinear crack in [10].  

The objective of this paper was to determine the behavior of nondimensional SIF 

at the crack tips for crack problems in upper and lower parts of bonded dissimilar 

materials subjected to remote shear stress 
1 2x x

p    or normal stress 

1 2y y
p    by using the MCP function method. 

2 Problem Formulation 

The stress components  , ,
x y xy

   , the resultant force function  ,X Y , and the 

displacements  ,u v  are expressed in terms of the two complex potentials 

   '     and    '     as follows: 

    2 2 '
y x xy j j

i          
 

 (1) 

      j j j j j
f Y iX              (2) 

        2
j j j j j j j

G u iv             (3) 
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where x iy    is a complex variable, 
j

G  is the shear modulus of elasticity, 

   3 1
j j j

v v     for plane stress, 3 4
j j

v    for plane strain, 
j

v  is 

Poisson’s ratio and 1,2j   [11]. The derivative of the resultant force Eq. (2) with 

respect to  , yields: 

 
         

 

'
j j j j j j

j

d d
Y iX

d d

N iT


    

 
       
 

 

 (4) 

where the normal (N) and tangential (T) components of traction along the segment 

, d    depend on the position of a point   and the direction of the segment 

d d  . The complex potentials for the crack L in an infinite plane can be 

expressed as [1]: 

  
 1

2
L

g t dt

t
 

 


  (5) 

  
     

 
2

1 1 1

2 2 2
L L L

g t dt g t dt g t tdt

t t t
 

     
  

  
    (6) 

where  g t  is COD function defined by: 

         1 2 ,i g t G u t iv t t L      (7) 

and               u t iv t u t iv t u t iv t
 

      denote the displacements at 

point t and superscript + and – are the upper and lower crack faces, respectively. 

Consider two cracks 
1

L  and 
2

L  in the upper and lower parts of a bonded 

dissimilar material, respectively, and the conditions for remote shear stress and 

normal stress are: 

 
1 2 1 2

1 2 1 2

1 1 1 1
,

x x y y
E E E E
      (8) 

where  1 1 1
2 1E G v   and  2 2 2

2 1E G v   are Young’s modulus of elasticity 

for upper and lower parts of bonded dissimilar materials, respectively, and 

assuming other stress is zero. The MCP function for crack 
1

L  can be described 
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by summation of the principal     1 1
,

p p
     and complementary 

    1 1
,

c c
     parts of the complex potentials as follows: 

      1 1 1p c
        (9) 

      1 1 1p c
        (10) 

where the principal parts of complex potentials are referred to an infinite plane 

elasticity. For crack 
2

L  the complex potentials are represented by  2
   and 

 2
  . Applying continuity conditions to the resultant force Eq. (2) and 

displacement functions Eq. (3), then substitute Eqs. (9) and (10) and after some 

manipulations the following complex potentials are obtainable: 

      1 1 1 1 1
,

c p p b
S L           

 
 (11) 

 
     

   

1 2 1 1 1

2

1 1 1
' ' ,

c p p

p p b
S L

     

    

  


    


 (12) 

      2 2 1 2
1 ,

p b
S L         (13) 

          2 1 2 1 1 1 2
1 ,

p p b
S L              (14) 

where    1 1
   

p p , 
b

L  is the boundary, 
1

S  and 
2

S  are the upper and lower 

parts of bonded dissimilar materials, respectively, and 
1 2
,  are bi-elastic 

constants defined as: 

 2 1 1 2 2 1

1 2

1 1 2 2 2 1

, .
G G G G

G G G G

 

 

 
 

 
 (15) 

The HSIEs for the cracks in both the upper and lower parts of bonded dissimilar 

materials involve four traction components       0 0
1,2, 1,2

jk
N t iT t j k   , 

which can be divided into two groups. The first two tractions     10 10 11
N t iT t  

and     20 20 21
N t iT t  are obtained when the observation point is placed at 

points 
10 1
t L  and 

20 2
t L , respectively, caused by  1 1

g t  at 
1 1
t L . The traction 

for     10 10 11
N t iT t  can be obtained by summing the principal and 

complementary parts. Substituting Eqs. (5) and (6) into Eq. (4) yields the 
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principal part, and substituting Eqs. (11) and (12) into Eq. (4) gives the 

complementary part of the traction. Then, letting point   approaches 
10

t  on the 

crack and changing d d   into , yields: 

              

 

 
       

1 1 1

10 10 10 10 10 1011 1 1

1 1 1

1 1 10 1 1 1 2 1 10 1 1 12

1 10

1 1 1
, ,

2 2

p c

L L L

N t iT t N t iT t N t iT t

g t dt
hp A t t g t dt A t t g t dt

t t  

    

  


  
 (16) 

where 

         

        

           

10

1 1 10 1 1 10 1 3 1 10 5 1 10 4 1 10

10

1 1 10 10

4 1 10 4 1 10 6 1 10 2 4 1 10

1 1 10 10

10 1

2 1 10 2 1 10 1 4 1 10 4 1 10 6 1 10 3 1 10

10 1

, , , , ,

, , , ,

, , , , , ,

dt
A t t B t t B t t B t t B t t

dt

dt dt dt dt
B t t B t t B t t B t t

dt dt dt dt

dt dt
A t t B t t B t t B t t B t t B t t

dt dt

   



   



 
     

 

 

and 

 

 
 

 

 

 
 

 
 

 
 

 

2

1 101 10

1 1 10 2 2

1 101 10 1 10

1 10 1 10 1 101 10

2 1 10 3

1 10 1 10 1 101 10

13 1 10 1 10 3

1 10

4 1 10 2

1 10

10

5 1 10

1
, 1

, 2

1
, 2

1
,

2 3
,

t t dt dt
B t t

dt dtt t t t

t t t t dt dt dt dt
B t t

t t dt dt dt dtt t

B t t t t t

t t

B t t

t t

t
B t t

 
 

 
   
 

   
         

   
 








 

 

  

 

 
 

1 10 1 1010 10

3 4

10 101 1

106 1 10 1 10 3

101

2 6

1
, 2 .

t t t t t t

t t t t

B t t t t t

t t

   


 

   
 



 

10 10
dt dt
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Eq. (16) represents a single crack in the upper part of a bonded dissimilar 

material. Substituting Eqs. (13) and (14) into Eq. (4) and applying Eqs. (5) and 

(6) yields the traction for     20 20 21
N t iT t  as follows: 

 

      
 

 
   

   

2 2

2

1 1 1

20 20 2 3 1 20 1 1 1221

1 20

4 1 20 1 1 1

1 1
1 ,

2

1
,

2

L L

L

g t dt
N t iT t A t t g t dt

t t

A t t g t dt

 



   




 



 (17) 

where 

   
 

 
 

 
 

   

      
 

1 20

3 1 20 1 22 2

1 20 1 201 20

1 20

4 1 20 2 12

1 201 20

1 20

1 202 20 1 1 1 2 3

1 201 20

1 1
, 1 1

1
, 1 1

1
1 2 1 2 .

dt dt
A t t

dt dt t tt t

dt dt
A t t

dt dtt t

dt dt
t t t t

dt dtt t

   


 
    

 

       
 



 

The second two tractions     10 10 12
N t iT t  and     20 20 22

N t iT t  are 

obtained when the observation points are placed at 
10 1
t L  and 

20 2
t L , 

respectively, caused by  2 2
g t  at 

2 2
t L . In this process we need to introduce 

two bi-elastic constants defined as follows: 

 1 2 2 1 1 2

3 4

2 2 1 1 1 2

,
G G G G

G G G G

 

 

 
 

 
 (18) 

which is evaluated by changing the subscript 1 to 2 and 2 to 1 in Eq. (15). The 

system of HSIEs for two cracks 
1

L  and 
2

L  in both the upper and the lower parts 

of a bonded dissimilar material is obtained as follows: 

               10 10 10 10 10 1011 121
N t iT t N t iT t N t iT t      (19) 

               20 20 20 20 20 2022 212
.N t iT t N t iT t N t iT t      (20) 

In solving the system of HSIEs for a single crack in the upper part Eq. (16) and 

two cracks in both the upper and the lower parts Eqs. (19) and (20) of a bonded 

dissimilar material, it is well known that the curved length coordinate method can 



 Stress Intensity factor for Cracks Problems 671 
 

be used to transform the integral along the cracks into real axis 
j

s  with an interval 

of 2
j

a  [1,3]. The COD function  g t  is defined as follows: 

      2 2

j j j
j j j j j jt t s

g t a s H s


   (21) 

where        1 2
, 1,2

j j j j j j
H s H s iH s j   . 

3 Results and Discussions 

The SIF at the crack tips 
j

A  and 
j

B  of the crack  1,2
j

L j   are defined as 

follows:  

    1 2 1 1
2 lim '

j jj Aj

A AA t t
K iK t t g t a F 


     (22) 

    1 2 2 2
2 lim '

j jj B j

B BB t t
K iK t t g t b F 


     (23) 

where 1 2j j jA A A
F F iF   and 1 2j j jB B B

F F iF   are the nondimensional SIF at 

crack tips 
j

A  and 
j

B , respectively. 

Consider an inclined crack with length 2R in the upper part of a bonded dissimilar 

material subjected to remote stress 
1 2

  
y y

p  as defined in Figure 1.  

 

Figure 1 An inclined crack in a bonded dissimilar material. 
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Table 1 shows the nondimensional SIF when 90  o
 and 2h R  varies for 

different elastic constant ratios 
2 1

G G . Our numerical results are completely in 

agreement with those of Isida and Noguchi [6]. It is found that the Mode I 

nondimensional SIF, 
1

F , at crack tip 
1

A  is equal to 
1

F  at tip 
2

A , whereas the 

Mode II nondimensional SIF, 
2

F , at crack tip 
1

A  is equal to the negative of 
2

F  

at tip .  

Table 1 Nondimensional SIF for a Crack Parallel to the Interface (Figure 1) 

G G2 1  SIF 
2h R  

0.1 0.2 0.3 0.4 0.5 

0.0 

F1A2 5.9498 2.9055 2.0810 1.7138 1.5110 

F1A2[6] 5.9490 2.9050 2.0810 1.7140 1.5110 

F2A2 3.0300 0.9940 0.4936 0.2890 0.1849 

F2A2[6] 3.0310 0.9940 0.4940 0.2890 0.1850 

0.5 

F1A2 1.1765 1.1522 1.1295 1.1083 1.0899 

F1A2[6] 1.1760 1.1520 1.1300 1.1080 1.0900 

F2A2 0.0950 0.0721 0.0562 0.0428 0.0322 

F2A2[6] 0.0950 0.0720 0.0560 0.0430 0.0320 

2.0 

F1A2 0.8831 0.8994 0.9125 0.9242 0.9348 

F1A2[6] 0.8830 0.8990 0.9130 0.9240 0.9350 

F2A2 -0.0670 -0.0489 -0.0383 -0.0302 -0.0235 

F2A2[6] -0.0670 -0.0490 -0.0380 -0.0300 -0.0240 

Figure 2 shows the nondimensional SIF when 0.9R h  and   varies. It is 

observed that at crack tip A1 (Figure 2(a)), as   increases 
1

F  increases and 
2

F  

increases for 
050  , whereas 

1
F  decreases and 

2
F  increases as 

2 1
G G  

increases.  

  
(a) SIF at crack tip A1 (b) SIF at crack tip A2 

Figure 2 SIF when 0.9R h   and  varies (Figure 1). 

2
A
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At crack tip A2 (Figure 2(b)), as 
 
increases 

1
F  increases and 

2
F  increases for 

050  . As 2 1G G  increases 
1

F  decreases at crack tip A2 and, 
2

F  increases for 

060   and decreases for . 

Consider the two inclined cracks in the upper and lower parts of a bonded 

dissimilar material subjected to remote stress 
1 2x x

p    displayed in Figure 

3.  

 

Figure 3 Two inclined cracks in a bonded dissimilar material. 

Figure 4 shows the nondimensional SIF at all cracks tips for two inclined cracks 

for different values of 
2 1

G G  when 
1 2

20o    and R h  varies (Figure 3). It 

is observed that as R h  and 
2 1

G G  increase 
1

F  increases at crack tips B1 and B2, 

whereas at crack tips A1 and A2, 1
F  increases as R h  increases and 

1
F  decreases 

as 
2 1

G G  increases.  

As 
2 1

G G  increases 
2

F  decreases at crack tip A1 and increases at crack tip B1. As 

R h  and 
2 1

G G  increase 
2

F  does not show any significant difference at crack 

tips A2 and B2. 

The nondimensional SIF when 
1

  varies for 0.9R h   and 
2

45o   at all cracks 

tips are presented in Figure 5. It is found that as 
1

  and 
2 1

G G  increase 
1

F  

060 
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decreases at crack tips A1 and A2. But 
2

F  increases for 
1

45o   at crack tips A1 

and A2, and as 
2 1

G G  increases 2F  decreases at crack tip A1, and does not show 

any significant difference at crack tip A2. At crack tip B1, 1
F  increases for 

1
20o   and decreases for 

1
20o  , and 

1
F  increases as 

2 1
G G  increases.  

At crack tip B2, 1
F  decreases for 

1
40o   and increases as 

2 1
G G  increases for 

1
40o  . However 

2
F  does not show any significant differences at crack tips B1 

and B2 as 
1

  and 
2 1

G G  increase.  

  
(a) SIF at crack tip A1 (b) SIF at crack tip A2 

  
(c) SIF at crack tip B1 (d) SIF at crack tip B2 

Figure 4 SIF when 1 2 20o   and  varies (Figure 3). R h
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(a) SIF at crack tip A1 (b) SIF at crack tip A2 

  
(c) SIF at crack tip B1 (d) SIF at crack tip B2 

Figure 5 SIF when 2 45  o , 0.9R h  and 1  varies (Figure 3). 

4 Conclusion 

An inclined crack in the upper part and two inclined cracks in the upper and lower 

parts of a bonded dissimilar material subjected to remote stress with different 

elastic constants 
1

G  and 
2

G  were studied. The systems of HSIEs for these 

problems were formulated by using the MCP function method. The behavior of 

the nondimensional SIF at all crack tips depends on the ratio of elastic constants, 

the crack geometries and the distance between the crack and the boundary. 
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