

ANALYSIS OF GRID-CONNECTED SOLAR PV SYSTEM INTEGRATED WITH BATTERY ENERGY STORAGE FOR HOSPITAL PUTRAJAYA

SHAIRAM BIN SALLEH

MASTER OF ELECTRICAL ENGINEERING

Faculty of Electrical Engineering

ANALYSIS OF GRID-CONNECTED SOLAR PV SYSTEM INTEGRATED WITH BATTERY ENERGY STORAGE FOR HOSPITAL PUTRAJAYA

Shairam Bin Salleh

Master of Electrical Engineering

ANALYSIS OF GRID-CONNECTED SOLAR PV SYSTEM INTEGRATED WITH BATTERY ENERGY STORAGE FOR HOSPITAL PUTRAJAYA

Shairam Bin Salleh

A thesis submitted in fulfillment of the requirements for the degree of Master of Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitles "Analysis of Grid-Connected Solar PV System Integrated with Battery Energy Storage for Hospital Putrajaya" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Shairam Bin Salleh
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Electrical Engineering.

Signature	:
Supervisor Name	: Assoc. Prof. Ir. Dr. Gan Chin Kim
Date	:

DEDICATION

I dedicate my dissertation work to my beloved mother, my beloved wife and my children with thank you from my heart for supporting me to continue my study. May Allah give all of you a healthy life, wellness and longevity. I love all of you so much.

ABSTRACT

The number of solar photovoltaics (PV) system installation is rising globally. This generates increased competition, with new players entering the market. In turn, this necessitates the need to ensure new technology to respect adequate safety, quality and performance requirements. The biggest challenge in the government hospitals is the high building operational cost. This is because hospitals are equipped with equipment and system that are high in kilowatt demand. In this regard, air conditioning system has the highest operation cost. To address this, the solar PV system integrated with battery energy storage (BES) has been proposed in this work. It could shave the system's maximum demand (MD), which could reduce the electricity bill for the hospital. Therefore, the design of solar PV system integrated with battery energy storage has been carried out with technical and economic analysis. The study takes into the consideration of the voltage profile in order to avoid voltage rise problem in the Hospital Putrajaya's distribution system. This project is expected to shave the MD of the hospital and provide the energy and money saving to the Hospital Putrajaya.

ABSTRAK

Jumlah pemasangan sistem solar fotovoltaik (PV) semakin meningkat di seluruh dunia. Ini menjana persaingan yang semakin meningkat, dengan pemain baru memasuki pasaran. Sebaliknya, ini menyebabkan keperluan semakin meningkat untuk memastikan bahawa produk baru menepati tahap keselamatan, kualiti dan prestasi yang mencukupi. Cabaran terbesar di hospital kerajaan adalah kos operasi yang tinggi terutama kos operasi bangunan. Ini kerana pihak hospital dilengkapi dengan peralatan atau sistem yang mempunyai permintaan yang tinggi dalam beban kilowatt. Sehubungan itu, sistem penyaman udara mempunyai kos operasi tertinggi. Untuk menangani masalah ini, sistem solar PV yang disepadukan dengan penyimpanan tenaga bateri (BES) telah dicadangkan. Sistem solar PV yang disepadukan dengan BES boleh mengurangkan permintaan beban maksimum (MD), yang boleh mengurangkan bil elektrik hospital. Oleh itu, reka bentuk sistem PV solar yang disepadukan dengan BES telah dilakukan dengan melaksanakan analisis teknikal dan ekonom ke atas reka bentuk tersebut. Kajian ini mengambil kira profil voltan untuk mengelakkan masalah peningkatan voltan di sistem pengedaran Hospital Putrajaya. Projek ini dijangka dapat mengurangkan MD dan menyediakan tenaga dan penjimatan wang kepada Hospital Putrajaya.

ACKNOWLEDGMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Assoc. Prof Ir. Dr. Gan Chin Kim from the Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis. Special thanks to all my colleagues, my beloved mother, my beloved wife, my children and siblings for their moral support in completing this master. Lastly, thank you to everyone who had been associated to the crucial parts of realization of this project.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATION	xiv
LIST OF APPENDICES	xv
LIST OF PUBLICATIONS	xvi

CHAPTER

1.	INTRODUCTION		
	1.1	Research Background	1
	1.2	Problem Statement	2
	1.3	Research Objectives	3
	1.4	Scope of Research	3
	1.6	Research Contributions	4

2. LITERATURE REVIEW

3.

2.1	Introdu	ction	6
2.2	PV Mo	dules Characteristic	8
	2.2.1	Open Circuit Voltage and Temperature	9
	2.2.2	Module Current and Irradiance	9
	2.2.3	Maximum Power Point Tracking (MPPT)	10
2.3	Grid –	Connected Inverters	11
	2.3.1	Centralized Inverters	12
	2.3.2	String Inverters	12
	2.4.3	Multi-String Inverters	12
	2.4.4	Module Inverters	13
2.4	Battery	Design	13
	2.4.1	Role of BES	13
	2.4.2	Battery Lifetime	14
	2.4.3	Multilevel Energy Storage	15
2.5	Peak Sl	having Approach	16
	2.5.1	Use of BES During Maximum Demand	16
	2.5.2	Maximum Demand Reduction by Using Solar PV System	
		Integrated with BES	17
RES	EARCH	I METHODOLOGY	19
3.1	Introdu	ction	19
3.2	Site Su	rvey	20
3.3	Climate	e Condition	22
	3.3.1	Sun Irradiance Analysis	22

	3.3.2	Temperature Analysis	23
	3.3.3	Peak Sun Hour Analysis	23
3.4	PV Mo	dules	23
	3.4.1	PV Modules Efficiency	24
	3.4.2	Electrical Characteristic	25
	3.4.3	Fill Factor	26
	3.4.4	Mechanical data	26
3.5	Inverter		27
	3.5.1	Inverter Design	27
	3.5.2	Inverter Characteristics	29
3.6	String a	nd Cable Sizing	29
	3.6.1	String Sizing	29
	3.6.2	Array Sizing	32
	3.6.3	Maximum Modules Sizing	33
3.7	Cable D	Design	33
3.8	System	Protection	34
	3.8.1	Over-current Protection	35
	3.8.2	Surge Protection	35
3.9	Battery	Design	36
	3.9.1	Calculation of The Daily Output Power	36
	3.9.2	Estimation of Battery Sizing	37
3.10	Econom	nic Analysis	39
	3.10.1	Simple Payback	39
	3.10.2	Return of Investment	39
	3.10.3	Capital Cost per Kilowatt	40

RES	SULTS A	ND DISC	USSION	42
4.1	Introdu	ction		43
4.2	Technic	cal Analysi	s	43
	4.2.1	Peak Sun	Hour Analysis	43
	4.2.1	Sun Irrad	liance and Load Analysis	44
	4.2.3	PV Modu	ıles	48
		4.2.3.1	Fill Factor	48
	4.2.4	Inverter		48
		4.2.4.1	Inverter Characteristics	48
		4.2.4.2	String Sizing	49
		4.2.4.3	Array Sizing	51
		4.2.4.4	Maximum Modules Sizing	52
		4.2.4.5	Array and String Design	53
	4.2.5	Cable De	esign	53
	4.2.6	System P	Protection	54
		4.2.6.1	Over-current Protection	54
		4.2.6.1	Surge Protection	54
	4.2.7	Battery D	Design	55
	4.2.8	Estimate	d Output Power of Solar PV System and BES	57
	4.2.9	Load Cha	ange After the Application of Solar PV System	62
		Integrate	d with BES	
	4.2.10	Performa	nce Ratio	67
	4.2.11	Voltage (Change After the Application of Solar PV System	67

40

3.10.4 Levelized Cost of Energy

4.

Integrated with BES

	4.3	Econon	nic Analysis	72
		4.3.1	Income	72
		4.3.2	Investment Cost	72
		4.3.3	Simple Payback	72
		4.3.4	Return of Investment	73
		4.3.5	Capital Cost per Kilowatt	73
		4.3.6	Levelized Cost of Energy	73
	4.4	Summa	ıry	75
5.	CON	CLUSI	ON AND FUTURE WORK	76
	5.1	Conclus	sion	76
	5.2	Future '	Work	77
REFE	EREN	CES		78
APPE	APPENDICES			83

viii

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Standard test condition	24
3.2	Module efficiencies	24
3.3	Reference condition	25
3.4	Electrical characteristic under STC	25
3.5	Electrical characteristic under NOCT	26
3.6	Mechanical data	27
3.7	Module characteristic data	30
3.8	Inverter temperature data	30
4.1	Inverter characteristic data	49
4.2	Minimum and maximum voltage of the string	50
4.3	Minimum and maximum modules per string	50
4.4	Short circuit current of the modules at temperature of 85 °C	51
4.5	Maximum number of string per array	51
4.6	Maximum number of modules	52
4.7	Solar PV design parameter	52
4.8	Solar PV cable parameter	53
4.9	Size of the fuse protection	54
4.10	Size of the surge protection devices	55
4.11	Battery characteristic data	57

4.12	Three phase voltage change for weekday and weekend 1	69
4.13	Three phase voltage change for weekday and weekend 2	69
4.14	Three phase voltage change for weekday and weekend 3	69
4.15	Three phase voltage change for weekday and weekend 4	69
4.16	Three phase voltage change for weekday 5	69
4.17	Single phase voltage change for weekday and weekend 1	70
4.18	Single phase voltage change for weekday and weekend 2	70
4.19	Single phase voltage change for weekday and weekend 3	70
4.20	Single phase voltage change for weekday and weekend 4	70
4.21	Single phase voltage change for weekday 5	70
4.22	Levelized cost of energy calculation factor	69
4.23	Economic analysis	71

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Development of pattern data for renewable energy from 2010 until	7
	2016	
2.2	Intensity versus voltage curve for 12 V PV module	8
2.3	Current and Voltage characteristics of a PV module with	9
	temperature variation	
2.4	Current and Voltage characteristics of a PV module with irradiance	10
	variation	
2.5	Current, Voltage and Power characteristics of a PV module	11
2.6	Inverter configurations a). Central Inverters; b). String Inverters;	11
	c). Multi-String Inverters; d). Module inverters	
2.7	The Integration of Battery Energy Storage Systems and New	14
	Electricity Value Chain	
2.8	Battery's Life Cycle Characteristics	15
2.9	Multilevel Energy Storage Type	16
2.10	Typical battery storage operation	17
2.11	Criteria of MD reduction	18
3.1	Satellite image of Hospital Putrajaya	21
3.2	Electrical of chiller plant room at Hospital Putrajaya	21
3.3	UTEM's Solar Laboratory irradiance data	22

3.4	Putrajaya temperature data	23
4.1	Proposed installation of SPV integrated with BES	42
4.2	Peak sun-hour irradiance	43
4.3	Average load& sun irradiance data for weekday 1	44
4.4	Average load& sun irradiance data for weekend 1	45
4.5	Average load& sun irradiance data for weekday 2	45
4.6	Average load& sun irradiance data for weekend 2	45
4.7	Average load& sun irradiance data for weekday 3	46
4.8	Average load& sun irradiance data for weekend 3	46
4.9	Average load& sun irradiance data for weekday 4	46
4.10	Average load& sun irradiance data for weekend 4	47
4.11	Average load& sun irradiance data for weekend 4	47
4.12	Daily worst condition of the month	47
4.13	Estimated generation power for weekday 1	59
4.14	Estimated generation power for weekend 1	59
4.15	Estimated generation power for weekday 2	60
4.16	Estimated generation power for weekend 2	60
4.17	Estimated generation power for weekday 3	60
4.18	Estimated generation power for weekend 3	61
4.19	Estimated generation power for weekday 4	61
4.20	Estimated generation power for weekend 4	61
4.21	Estimated generation power for weekday 5	62
4.22	Daily worst condition of the month	62
4.23	Load change for weekday 1	63
4.24	Load change for weekend 1	64

4.25	Load change for weekday 2	64
4.26	Load change for weekend 2	64
4.27	Load change for weekday 3	65
4.28	Load change for weekend 3	65
4.29	Load change for weekday 4	65
4.30	Load change for weekend 4	66
4.31	Load change for weekday 5	66
4.32	Load change for daily worst condition of the system	66
4.33	Three phase voltage change for weekday 1	71
4.34	Single phase voltage change for weekend 1	71
4.35	LCOE of the system for varying interest rates	74

LIST OF ABBREVIATION

AC	-	Alternating Current
AM	-	Air Mass
BES	-	Battery Energy Storage
DC	-	Direct Current
DOD	-	Depth of Discharge
FF	-	Fill Factor
LCOE	-	Levelized Cost of Electricity
MD	-	Maximum Demand
MPPT	-	Maximum Power Point Tracker
MS	-	Malaysia Standard
NOCT	-	Normal Operating Cell Temperature
PSHs	-	Peak Sun Hours
PV	-	Photovoltaic
RE	-	Renewable Energy
SDGs	-	Sustainable Development Goals
SEDA	-	Sustainable Energy Development Authority, Malaysia
SOC	-	State of Charge
STC	-	Standard Test Conditions
UNDP	-	United Nations Development Programme

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	PV Module Data Sheet	79
A2	Inverter Data Sheet	80
A3	Battery Data Sheet	81
B1	OpenDSS Simulation Coding	82

LIST OF PUBLICATIONS

No Publication

CHAPTER 1

INTRODUCTION

1.1 Research Background

Sustainability and sustainable development become more and more popular due to the serious problems faced by human kind such as the risk of depletion of sources and increasing human impact on environment. Sustainability can be described as maintaining welfare over a long-term.

The National Green Technology Policy was launched in 2009 reflects the Malaysian Government's commitment to move towards sustainable construction based on green practices in which will benefit current and future issues related to economic, social and environment and also quality of life. Such policy indicates that government is seriously encouraging the efforts in tackling green issues in the country that complement the global vision on sustainable development (Malaysia Cooperation Production et al. 2012).

Sustainable policy in Malaysia divide into three parts which are renewable energy, energy efficiency and carbon dioxide reduction. Renewable energy systems may be the key for sustainable energy production, but it is important to assess the availability of renewable sources for the specific area, on which a renewable system is planned to be installed. The availability of renewable sources can be challenging to be evaluated, which requires many different factors to consider such as the weather conditions and the potential number of specific sources. Renewable Energy contributed 33% of the global total installed power generating capacity at the end of 2018 (SEDA et al. 2018). The trend to decarbonize the energy sector is strongly driven by government policies and the corporate sector globally.

Ministry of Health Malaysia is currently implementing the Sustainability Program to all government hospital and healthcare institutes in all over Malaysia to support the government's policy on renewable energy. One of their programs is installing the renewable energy generator. They already installed stand-alone solar PV plant at Malaysia National Cancer Institute and Langkawi Hospital. The installed solar PV systems are currently not integrated with Battery Energy Storage (BES). Based on this situation, there are some ideas had been thrown to the Ministry of Health Malaysia. This analysis proposal will assist the Ministry of Health Malaysia in making decisions on solar PV system's procurement.

1.2 Problem Statement

Government hospital biggest problem is the high operation cost especially the building operation cost because hospital need to operate the high load demand equipment or system. For operation cost, the most higher operation cost is going to air conditioning system. Almost 60% of the hospital's utilities bills are coming from the are conditioning system. Air conditioning systems need to be used 24 hours for critical zone such as operation theatre, intensive care unit, clean room and etc. Without air conditioning system, daily operation of the hospital will be interrupted due to possibility of infection to the critical patient especially during the operation. This condition makes the monthly cost of operation become higher due to high maximum demand.

Implementing the distribution generation could give impact to the voltage profile through the entire distribution network. More distribution generation could let the voltage profile over the statutory limits (Charles Sarimuthu et al. 2017). This matter must be