
  

* Corresponding author   
E-mail:  asaadutem@yahoo.com  (A. S. Hameed) 
 
2020 Growing Science Ltd.  
doi: 10.5267/j.ijiec.2019.6.005 
 

 

 
 

International Journal of Industrial Engineering Computations 11 (2020) 51–72 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
A new hybrid approach based on discrete differential evolution algorithm to enhancement 
solutions of quadratic assignment problem 

 

 

Asaad Shakir Hameeda*, Burhanuddin Mohd Aboobaidera, Modhi Lafta Mutara and Ngo Hea 
Choona 
 

 

 
Hang Tuah Jaya, 76100, Durian , Communication Technology, Universiti Teknikal Malaysia MelakaFaculty of Information and a

Tunggal, Melaka, Malaysia 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received April  1  2019 
Received in Revised Format  
June 19 2019 
Accepted June 19 2019 
Available online  
June  19  2019 

 The Combinatorial Optimization Problem (COPs) is one of the branches of applied mathematics 
and computer sciences, which is accompanied by many problems such as Facility Layout 
Problem (FLP), Vehicle Routing Problem (VRP), etc. Even though the use of several 
mathematical formulations is employed for FLP, Quadratic Assignment Problem (QAP) is one 
of the most commonly used. One of the major problems of Combinatorial NP-hard Optimization 
Problem is QAP mathematical model. Consequently, many approaches have been introduced to 
solve this problem, and these approaches are classified as Approximate and Exact methods. With 
QAP, each facility is allocated to just one location, thereby reducing cost in terms of aggregate 
distances weighted by flow values. The primary aim of this study is to propose a hybrid approach 
which combines Discrete Differential Evolution (DDE) algorithm and Tabu Search (TS) 
algorithm to enhance solutions of QAP model, to reduce the distances between the locations by 
finding the best distribution of N facilities to N locations, and to implement hybrid approach 
based on discrete differential evolution (HDDETS) on many instances of QAP from the 
benchmark. The performance of the proposed approach has been tested on several sets of 
instances from the data set of QAP and the results obtained have shown the effective performance 
of the proposed algorithm in improving several solutions of QAP in reasonable time.  
Afterwards, the proposed approach is compared with other recent methods in the literature 
review. Based on the computation results, the proposed hybrid approach outperforms the other 
methods. 

© 2020 by the authors; licensee Growing Science, Canada 
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1. Introduction 

 
The emergence of Combinatorial Optimization Problems (COPs) from theory and practice poses a great 
challenge that has continued to attract the attention of practitioners, researchers and academicians 
globally for the last five decades. Facility Layout Problem is an example of such combinatorial problems 
and finding a solution to this problem has remained a major challenge (Scalia et al., 2019). The main 
purpose of finding a solution to this problem is to enable the arrangement of departments within the 
boundaries of the predefined facility such that the functions can efficiently interact with one another, 
while the total cost of mobility is reduced. Many studies have been carried out in the area of facility 
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layout problems, but most of them have only focused on studying facility layout problems in 
manufacturing facilities, with just a few of them analyzing this problem within hospital domain. The 
modelling of FLP was first carried out as a quadratic assignment problem (QAP) by (Koopmans & 
Beckmann, 1957). According to Samanta et al. (2018), these COPs emerge from real-life situations. The 
use of discrete formulations is employed in layout problems which involve determining possible 
positions of facilities prior to their optimization. QAP is commonly used for this kind of problem. The 
QAP is regarded as a problem of NP-Hard combinatorial optimization (Şahinkoç & Bilge, 2018), which 
serves as a model for many real-life applications such as hospital layout, backboard wiring, campus 
layout, scheduling and designing of keyboard typewriter, etc. ever since the QAP was formulated, the 
attention of researchers has been drawn to it because of its importance in theory and practice, and most 
importantly because of how complex it is (Duman et al., 2012; Benlic & Hao, 2013; Kaviani et al., 2014; 
Abdel-Basset et al., 2018a, Cela et al., 2018).  The FLP has been introduced as a QAP in order to identify 
the ideal allocation of N facilities to N locations, where there must be equality between the number of 
locations and number of facilities. Researchers around the world have accepted the complexity associated 
with finding a solution, but now, there is no available polynomial time algorithm that can be used to solve 
QAP. In recent times, the approximate algorithms have been used more than the exact algorithms, 
because it can find the optimal solution with unreasonable time. However, most of the times it is 
impossible to solve a problem that is more than 20 within a reasonable period of time (Abdel-Baset et 
al., 2017). Therefore, researchers are more interested in employing the use of meta-heuristic and heuristic 
approaches to solve huge QAP problems. The motivation of this paper is proposing a novel approximate 
meta-heuristic algorithm that can enable the most efficient allocation of N facilities to N locations (N > 
30) of QAP. It is hoped that this approach will, in turn, enhance the reduction of cost while the problem 
is solved within the shortest time possible. The use of different methods, which are classified as a 
heuristic, meta-heuristic and exact methods has been employed in solving this challenging problem. Out 
of the three categories of methods, researchers are paying more attention to meta-heuristic methods, and 
this is evident in its increased usage in solving problems associated with optimization. Regardless of the 
inability of these methods to solve problems optimally, their efficiency is guaranteed especially when the 
models are complex. One of the meta-heuristic methods that are widely used in models of healthcare 
facility location is Tabu search (TS) (Zhang et al., 2010). Apart from Tabu, there are other methods that 
are used in solving such problems, such as Genetic Algorithm (GA) (Radiah Shariff & Noor Hasnah 
Moin, 2012). Pareto Ant Colony Optimization (P-ACO) (Doerner et al., 2007), and  Simulate Annealing 
(SA) (Syam & Côté, 2010). One of the greatest problems associated with the exact methods is their cost 
of computation with more time, and for this reason, this study is carried out to find the best solutions for 
QAP. In order to achieve this, a new method is proposed in this study. This study seeks to achieve more 
objectives as follows: (i) The major objective of this study is to propose a hybrid approach which 
combines Discrete Differential Evolution (DDE) algorithm and Tabu Search (TS) algorithm for 
enhancing solutions of QAP model, (ii) To minimizethe cost through reducing the distances between the 
locations by finding the best distribution of N facilities from N locations, and (iii) To implement 
HDDETS on many instances of QAP from the benchmark.  
 
The other sections of this paper are as follows. Section 2 introduces the Quadratic Assignment Problem 
QAP. In Section 3 the Review of Literature is provided. In Section 4, the algorithm that has been proposed 
(HDDETS) has been examined and discussed. The Computational Results are discussed in Section 5. 
Lastly, the conclusions and some recommendations for future studies are given in Section 6.   

2. Quadratic Assignment Problem QAP  

The QAP has several real-life applications, which makes it an interesting area of study for researchers 
since its inception (Czapiński, 2013; Abdelkafi et al., 2015; Çela et al., 2017). The QAP mathematical 
model has been presented as follows: 

𝑚𝑖𝑛 𝑓(𝜋) =  
 

n

i

n

j1 1

𝐹௜௝  𝐷గ(௜)గ(௝) 
(1) 
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Overall permutations  P
n
 . 

The model of QAP consists of two matrices each of them size N ×N, N =1, 2, ..., n. 

 The F refers to the flow or weight between each pair of facilities is represented by 𝐹௜௝  denoting 
the flow from facility i to facility j; 

 The D connotes the distance that exist between each pair of locations being represented by 𝐷௜௝ , 
which denotes the distance from location i to location j; 

 π is the best way through which a solution to a QAP problem can be represented.  
 The aim is to allocate N facilities to N locations at a low cost.  

 

3. Literature Review    
 

QAP remains a major problem that is yet to have an exact solution. To this end, many researchers have 
invested so many resources into finding the most appropriate solution to this problem, and they have as 
well used several methods with different techniques to solve the problem. In this section, the review of 
literature is presented to show some of the several techniques that other researchers have used to solve 
the QAP. The Discrete Particle Swarm Optimization (DPSO) algorithm was introduced by Pradeepmon 
et al. Sridharan (2016). In a study carried out by Pradeepmon (2018), the DPSO algorithm was modified 
and named Modified DPSO. This development was also aimed at solving the QAP. Also, in (Shukla, 
2015) the Bat Algorithm (BA) was used for the same purpose. Similarly, the study conducted by Riffi  et 
al. (2017) aimed at enhancing the BA search strategy by introducing a new method. In their proposed 
method, the Discrete Bat Algorithm (DBA) was combined with BA, an enhanced uniform crossover, and 
a 2-exchange neighborhood method. The Ant Colony Optimization (ACO) algorithm has been suggested 
by Xia and Zhou (2018). In the research conducted by Abdel-Basset et al. (2018b), a new approach 
known as the WAITS was introduced. The WAITS is integration between meta-heuristic whale 
optimization and the tabu search, hence the name. Similarly, Ahmed (2018) carried out a study in which 
the lexisearch and genetic algorithms were combined to form a hybrid algorithm (LSGA) that can be 
used in solving the QAP effectively. A hybrid method in which the Ant Colony Algorithm was combined 
with Tabu Search algorithm, was proposed by Lv (2012). The experimental data for this proposed hybrid 
algorithm indicated that the smallest average error value was obtained using the proposed hybrid 
algorithm. In research carried out by Da Silva et al. (2012), another hybrid algorithm was proposed. The 
proposed algorithm was an integration of Tabu search meta-heuristics and greedy randomized adaptive 
search procedure (GRASP). Their results showed that the proposed algorithm produced low-cost 
solutions for 50 instances. Similarly, another hybrid algorithm, which is a combination of Simulated 
Annealing and Tabu Search was introduced by Kaviani et al. (2014) as a solution to the QAP. In the 
proposed algorithm, memory structures were used through Tabu search as a means of explaining the 
user-provided set of rules. In contrast to other studies, in a research carried out by (Said  et al., 2014) the 
Genetic algorithm, Simulated Annealing and Tabu Search were compared in terms of execution time. 
The study results revealed that the performance of the Tabu search was better than that of other meta-
heuristic algorithms in terms of execution time for solving practical QAP instances and the algorithm 
demonstrated faster execution time. Another integration was performed by Harris et al. (2015), and in 
their study, they integrated the Tabu Search with Memetic algorithm. Through the restarts, the solution 
space is explored, and the problem of convergence is avoided by the algorithm. Furthermore, the search 
for local optima is intensified using Tabu Search. Findings of their study revealed that the proposed 
algorithm was less time consuming and outperformed other methods in terms of solving real-life 
instances and random instances with high quality. In order to solve the QAP, Lim et al. (2016) proposed 
another hybrid algorithm which is formed by combining the Biogeography-Based Optimization 
Algorithm and Tabu Search. With the use of the proposed hybrid algorithm, the best solutions were found 
for 36 instances out of 37 instances. This shows that the performance of the hybrid algorithm was good.   
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In other studies, attempts were made by researchers to solve the problems of discrete optimization. In 
such studies, modifications were made to the Differential Evolution (DE). An algorithm associated with 
discrete differential evolution (DDE) was proposed by (Pan et al., 2008) for the purpose of computing 
differences in the flow-shop preparation problem. Results of their study showed that the efficiency of the 
proposed algorithm was lower than that of other methods, and this was perceived to be caused using 
probability of low mutation (0.2). However, the DDE algorithm operation is more successful and efficient 
when the local search is used. In a study earlier conducted by Kushida et al. (2012) the DE was modified 
to a discrete optimization problem and afterward used in solving the QAP. Similarly, the use of insertion 
and swap was employed by Tasgetiren et al. (2013) in modifying DDE with the local search-based 
modification. With the use of DDE alongside local search, improvements were observed in the results of 
two kinds of dense and sparse instances of QAPLIB.       

4. Methods 
 

Three phases are involved in this section. In the first phase, discrete differential evolution algorithm 
(DDE) is included, the second phase includes the Tabu search algorithm TS, and finally, in the third 
phase, the proposed hybrid, which is a combination of both TS and DDE is introduced.  

4.1 Discrete Differential Evolution Algorithm (DDE) 
 

One of the most recently introduced Evolutionary Algorithm is the Differential Evolution (DE) 
optimization method, which was first introduced by Storn and Price (1997). The Evolutionary Algorithm 
is regarded as a category of efficient optimization techniques used worldwide to solve a wide range of 
hard problems. DE is known as a global optimizer that is constantly dependent on random space and 
population (Lampinen, 2005). The DE has proven to be more efficient and powerful, and for this reason, 
it is rapidly emerging as a popular optimizer that is used in different areas like the function of continuous 
real value and for solving a combinatorial optimization problem with a discrete decision. In this study, 
the discrete differential algorithm DDE which has been modified by (Tasgetiren et al., 2013) is used.  
The Discrete Differential algorithm DDE is illustrated in the flowchart in Fig. 1. and the steps of it have 
been introduced as follows:  

I. Initialization initialize population matrix π = {π1, π2, π3, …, πNP} randomly. Matrix size NP × ND 
where NP is number of population and ND dimension of problem space.  All population individuals 
should be unique. 
 
II. Evaluate fitness: find the best solution πbt-1 from population π. 
 
III. Mutation: obtain the mutant individual, the following equation can be used: 
 

𝑣௜
௧ =  ቊ

𝑖𝑛𝑠𝑒𝑟𝑡(𝜋௕
௧ିଵ)                    𝑖𝑓(𝑟 < 𝑃௠)  

 𝑠𝑤𝑎𝑝(𝜋௕
௧ିଵ)                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 
(2) 

 
where πbt-1 is the best solution from the previous generation in the target population; Pm is the perturbation 
probability; and swap are simply the single insertion and swap moves, r is a uniform random number 
belong to [0,1]. 

IV. Crossover: obtain the crossover, the following equation can be used: 

𝑢௜
௧ =  ቊ

𝐶𝑅(𝑣௜
௧ , 𝜋௜

௧ିଵ)                      𝑖𝑓(𝑟 < 𝑃௖)                          

 𝑣௜
௧                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

                                                 
(3) 
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where πb
t-1 is the best solution from the previous generation in the target population; Pc is the crossover 

probability; and CR is crossover operation. then the crossover operator is applied to generate the trial 
individual 𝑢௜

௧ Otherwise the trial individual is chosen as 𝑢௜
௧ =  𝑣௜

௧ .  
 
V. Selection: selection is based on fitness function; the following equation can be used: 
 

𝜋௜
௧ =  ൝

𝑢௜
௧                         𝑖𝑓 ቀ𝑓(𝜋௜

௧) < 𝑓(𝜋௜
௧ିଵ)ቁ

 𝜋௜
௧ିଵ                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 
(4) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Flowchart of DDE algorithm 

 

4.2 Tabu Search Algorithm (TS) 

In order to solve the large combinatorial optimization problem, the use of Tabu search (TS) has been 
employed with great success (Van Luong et al., 2010). Despite the efficiency and the meta-heuristic 
strength demonstrated by the TS, it is usually combined with other solutions like evolutionary 
computation. The central idea behind TS involves the specification of a set of moves or a neighborhood 
which can be used in a specific solution so as to enable the generation of a new solution  (Taillard, 1991). 
The neighborhood solution that is considered by TS is to have the best evaluation. In an event that 
improving moves are absent, TS selects the neighborhood solution that has minimal effect in terms of 
degrading the objective function. It is possible to avoid the return to a local optimum that has just been 
visited by using a list of tabu. In an event that tabu moves are perceived as fascinating, the introduction 
of an aspiration criterion is made so that these tabu moves can be selected.  

4.3 The proposed algorithm HDDETS     

In Fig. 2 below, the HARDEST algorithm flow chart is presented. The basic steps of the HDDEST are 
addressed as follows: 
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1- Initialization: initialize population matrix π = {π1, π2, π3, …, πNP} randomly. Matrix size NP × ND 
where NP is several population and ND dimension of problem space.  All population individuals should 
be unique. Initialize set Solution Wait for each solution SW = array of NP with zeros and maximum wait, 
and ht (iteration of tabu search). 

2- Evaluate fitness:  to the fined best solution based on the Eq. (1) 

3- Mutation: use the Eq. (2) 

4- Crossover: the crossover has been introduced by Eq. (3). The central idea of crossover is to leverage 
the best benefits from the parent algorithm during the production of the new one, which is often known 
as the hybrid. A wide range of crossover operators are found in the literature, and such crossover 
operators have been proposed by researchers with the aim of solving quadratic assignment problem. In 
this study, the crossover which has been used is referred to as the uniform-like crossover (ULX) which 
was introduced by (Tate & Smith, 1995). The crossover was obtained as follows: 

 The offspring inherits any facility which is has been allocated to the same location in both 
parents 

 The selection of every unallocated facility is carried out randomly so as to ensure that each 
facility that is unassigned is chosen just once. Here, a random selection of one of the parents 
is made. In a situation whereby the location of the chosen facility is unoccupied, the offspring 
inherits it. However, if the location is occupied in the first parent, then an attempt is made to 
allocate the location of the facility from the second parent.  

 Once a location has been allocated to a facility, it is marked. If the facility which is allocated 
to this location in the parent that was used in the previous rule is not allocated, the offspring 
inherits it.  

 

5- apply the TS for a hybrid: TS used to an enhancement of the solution based on some 
characteristics as follows:  
 

i. Intensification: In Intensification the promising area is explored more fully in the hope to find 
the best solutions by using neighborhood search, the size of a neighborhood is n (n − 1) / 2 and 
calculated through the following:  
 
Δcost (π, i, j) = (aii – ajj) (bπ(j) π(j)  − bπ(i) π(j) ) +  (aij – aji) (bπ(j) π(i)  − bπ(i) π(j) ) +  
∑௞ୀଵ,௞ஷ௜,௝

௡  (aik – ajk) (bπ(j) π(k)  − bπ(i) π(k) ) + (aki – akj) (bπ(k) π(j)  − bπ(k) π(i) ) 
(4) 

 
where aii, ajj = 0, i=1, 2, …, n, k =1, 2, 3, …, n such that k ≠ i, k ≠ j  
 

ii.  Tabu list: The tabu list has been used to avoid the solution which visited in the past.  
 
6- Selection: selection is based on fitness function; the following equation can be used: 
 

𝜋௜
௧ =  ቊ

𝑢௜
௧                         𝑖𝑓(𝑓(𝜋௜

௧) < 𝑓(𝜋௜
௧ିଵ))

 𝜋௜
௧ିଵ                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 
(5) 

                     
7- Update solution waiting:  

                                                                        

    𝑆𝑊௜ =  ቊ
0                               𝜋௜

௧ =  𝑢௜
௧

𝑆𝑊௜ +  1                  𝜋௜
௧ =  𝜋௜

௧ିଵ 
 (6) 
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4.3.1 Pseudo-code of HDDETS algorithm 
 
Generate population matrix π = {π1, π2, π3, …, πNP} randomly. Matrix size is NP × ND where NP is the 
number of population and ND is the dimension of problem space. Max_t = number of maximum 
iterations.  Set Solution Wait for each solution SW = array of NP. Max_ht = number of maximum 
iterations of TS. 
 
 
 

While t < max_t 
        For each solution 
  Evaluate fitness: Equation (1) 
  Mutation: Equation (2) 
  Crossover: Equation (3) 
  If (r < 0.5) 

  ht = 1 
  While ht < max_ht 
   For each solution 
                                                    Great neighborhood  
    Evaluate the neighborhood solutions. 

Choose best admissible solutions 𝜋𝑖
ℎ  which not exist in tabu list. 

    Update tabu list. 
                                                   If best tabu solution is better than current solution update current 

solution 
                                                        else  
                                                            Great a new neighborhood 
                                                      end if 
 

   end For 
  end while 
                     else 

                   Selection: Equation (5) 

                     Update solution waiting SWi: Equation (6) 

                           end if 
  if SWi reach to maximum waiting W  

   regenerate the current solution. 
  end  
        end for 
 t = t + 1 
end while  
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Fig. 2.  Flowchart of  HDDETS algorithm 

5. Computational Results  
 
In this section, the efficiency of the proposed algorithm is presented. In order to encode the proposed 
algorithm, MATLAB was employed on a PC with Intel (R) Core (TM) i7-3770 CPU @ 3.40 GHz. Also, 
the PC which was used operates under MS Windows 10 and has a RAM of 4GB. This section consists 
of two parts, and the first part highlights the parameters used for the proposed algorithm, while in the 
second part the results of the study are discussed. The results were obtained using the proposed algorithm. 
The proposed algorithm has been applied to seven categories of instances from QAPLIB as Table 1. 
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Table 1  
Instances of QAP from QAPLIB 
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Tai12a Nug12 Chr12a Esc16a Lipa20a Had12 Sko42 
Tai12b Nug14 Chr12b Esc16b Lipa20b Had14 Sko49 
Tai15a Nug15 Chr12c Esc16c Lipa30a Had16 Sko56 
Tai15b Nug16a Chr15a Esc16d Lipa30b Had18 Sko64 
Tai17a Nug16b Chr15b Esc16e Lipa40a Had20 Sko72 
Tai20a Nug17 Chr15c Esc16f Lipa40b - Sko81 
Tai20b Nug18 Chr18a Esc16g Lipa50a - Sko90 
Tai25a Nug20 Chr18b Esc16h Lipa50b - Sko100a 
Tai25b Nug21 Chr20a Esc16i Lipa60a - Sko100b 
Tai30a Nug22 Chr20b Esc16j Lipa60b - Sko100c 
Tai30b Nug24 Chr20c Esc32a Lipa70a - Sko100d 
Tai35a Nug25 Chr22a Esc32b Lipa70b - Sko100e 
Tai35b Nug27 Chr22b Esc32c Lipa80a - Sko100f 
Tai40a Nug28 Chr25a Esc32d Lipa80b - - 
Tai40b Nug30 - Esc32e Lipa90a - - 
Tai50a - - Esc32g Lipa90b - - 
Tai50b - - Esc32h - - - 
Tai60a - - Esc64a - - - 
Tai64c - - Esc128a - - - 
Tai80a - - - - - - 
Tai80b - - - - - - 
Tai100a - - - - - - 
Tai100b - - - - - - 
Tai150b -      
Tai256c -      

 

5.1 Parameter setting 

In order to determine the most appropriate parameter settings, extensive experiments, as well as many 
runs of the algorithm, were performed. The set values of the parameters for the three algorithms were 
presented in Table 2. The quality of the solutions obtained by using the proposed algorithm can be 
influenced by the set algorithm parameters. To identify the most suitable set of parameter values that 
produce desirable outcomes, numerous tests were performed. 
 
Table 2  
Parameter setting 

Parameter 
 

Value 
NP Number of Population  200 
Maximum Iterations  100 
Pm Perturbation Probability of Mutation 0.7 
Pc Perturbation Probability of Crossover 0.8 
Ph Probability of Hybrid  0.5 
Maximum waiting for solutions updates 10 
Tabu list length  10 
Maximum iterations of TS 25 
Number of runs 10 

 

5.2 Results and Discussions 

This section shows the computational results of the efficiency of the proposed algorithm. The suggested 
algorithm HDDETS has been run on 10 different instances made up of problems that are referred to as 
follows: Tai, Nug, Chr, Esc, Lipa, Had, and Sko. Table3 shows the instances which have been used in 
this study. The QAP size falls within the range of 12 to 256. Many statistical analyses have been carried 
out for every instance which include the best solution, worst solution, average solution, best gap, worst 
gap, average gap, standard deviation, and time. The experiment show the effect of integrating the tabu 
search algorithm TS with the discrete differential evolution algorithm DDE. The performance of the 
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algorithm which is proposed in this study HDDETS was evaluated by comparing it with other algorithms. 
Specific criteria which include quality of solution and measured running times were used in comparing 
the algorithms. The use of quality of solution criterion for comparison of algorithms is more appropriate 
in heuristic and estimation methods, especially (in optimization). On the other hand, the running time 
comparison criterion is the most appropriate for exact algorithms. However, in a case where the produced 
solutions are similar in terms of quality, comparison of running times of approximation algorithms and 
heuristics will be suitable. This work focused on solution quality. The accuracy of an algorithm is 
calculated using a percentage deviation or gap. In this study, the solution quality criterion was used in 
calculating the accuracy, which is calculated through the question below: 

Gap = (CBest - C*) /   C*
  ×100, (7) 

where CBest is the best objective value found over 10 runs, while C* is the best-known value taken from 
QAPLIB. The results of the proposed algorithm (HDDETS) are presented in Table 3. The results are 
discussed using three scenarios as follows:  

Scenario 1: 
 

The proposed algorithm was applied to the cases shown in Table 1. All the numerical results were 
excellent and have been presented in Table 3. It was found that the proposed algorithm achieved an 
accuracy of 100 % in 83 test instances out of 105 test instances. These excellent results can be attributed 
to the use of an algorithm feature that can continuously improve all the solutions in each iteration until 
the best solution is reached. The strength of this algorithm is due to the integration of the diversification 
property of the algorithm DDE with the intensification feature of TS algorithm, as well as the use of tabu-
list which prevents the recurrence of solutions that have been visited in the past.     

  
Results of the HDDETS algorithm for some instances from QAPLIB 
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Nug12 578 HDDETS 578 578 578 0 0 0 0.514 0 
Nug14 1014 HDDETS 1014 1014 1014 0 0 0 0.432 0 
Nug15 1150 HDDETS 1150 1150 1150 0 0 0 0.378 0 

Nug16a 1610 HDDETS 1610 1610 1610 0 0 0 0.573 0 
Nug16b 1240 HDDETS 1240 1240 1240 0 0 0 0.461 0 
Nug17 1732 HDDETS 1732 1732 1732 0 0 0 4.204 0 
Nug18 1930 HDDETS 1930 1930 1930 0 0 0 0.526 0 
Nug20 2570 HDDETS 2570 2570 2570 0 0 0 1.889 0 
Nug21 2438 HDDETS 2438 2438 2438 0 0 0 2.275 0 
Nug22 3596 HDDETS 3596 3596 3596 0 0 0 1.672 0 
Nug24 3488 HDDETS 3488 3488 3488 0 0 0 1.99 0 
Nug25 3744 HDDETS 3744 3744 3744 0 0 0 3.201 0 
Nug27 5234 HDDETS 5234 5234 5234 0 0 0 1.299 0 
Nug28 5166 HDDETS 5166 5166 5166 0 0 0 43.434 0 
Nug30 6124 HDDETS 6124 6148 6126 0 0.391 0.039 3.273 0.123 

           
Chr12a 9552 HDDETS 9552 9552 9552 0 0 0 0.518 0 
Chr12b 9742 HDDETS 9742 9742 9742 0 0 0 0.281 0 
Chr12c 11156 HDDETS 11156 11156 11156 0 0 0 0.558 0 
Chr15a 9896 HDDETS 9896 9896 9896 0 0 0 1.077 0 
Chr15b 7990 HDDETS 7990 7990 7990 0 0 0 0.369 0 
Chr15c 9504 HDDETS 9504 9504 9504 0 0 0 2.026 0 
Chr18a 11098 HDDETS 11098 11098 11098 0 0 0 1.01 0 
Chr18b 1534 HDDETS 1534 1534 1534 0 0 0 0.522 0 
Chr20a 2192 HDDETS 2192 2192 2192 0 0 0 2.057 0 
Chr20b 2298 HDDETS 2298 2298 2298 0 0 0 50.772 0 
Chr20c 14142 HDDETS 14142 14142 14142 0 0 0 0.849 0 
Chr22a 6156 HDDETS 6156 6156 6156 0 0 0 51.954 0 
Chr22b 6194 HDDETS 6194 6194 6194 0 0 0 64.016 0 
Chr25a 3796 HDDETS 3796 3796 3796 0 0 0 9.588 0 
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Results of the HDDETS algorithm for some instances from QAPLIB (Continued) 
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Sko42 15812 HDDETS 15812 15818 15814 0 0.037 0.015 20.864 0.019 
Sko49 23386 HDDETS 23386 23440 23403 0 0.23 0.072 27.001 0.063 
Sko56 34458 HDDETS 34458 34580 34503 0 0.354 0.131 623.89 0.132 
Sko64 48498 HDDETS 48498 48902 48622 0 0.833 0.255 858.975 0.241 
Sko72 66256 HDDETS 66316 66626 66429 0.09 0.558 0.261 368.841 0.136 
Sko81 90998 HDDETS 91060 91524 91313 0.068 0.578 0.346 1624.424 0.18 
Sko90 115534 HDDETS 115756 116498 116046 0.192 0.834 0.443 1727.96 0.197 

Sko100a 152002 HDDETS 152316 154014 152725 0.206 1.323 0.475 2969.776 0.382 
Sko100b 153890 HDDETS 154168 155054 154600 0.18 0.756 0.461 1490.758 0.189 
Sko100c 147862 HDDETS 148148 149426 148753 0.193 1.057 0.602 2930.167 0.325 
Sko100d 149576 HDDETS 149762 150512 150217 0.124 0.625 0.428 1472.923 0.15 
Sko100e 149150 HDDETS 149514 151034 150024 0.244 1.263 0.585 6488.738 0.341 
Sko100f 149063 HDDETS 149714 150464 149919 0.454 0.958 0.592 1265.821 0.144 
Tai12a 224416 HDDETS 224416 224416 224416 0 0 0 0.508 0 
Tai12b 39464925 HDDETS 39464925 39464925 39464925 0 0 0 0.684 0 
Tai15a 388214 HDDETS 388214 388214 388214 0 0 0 0.847 0 
Tai15b 51765268 HDDETS 51765268 51765268 51765268 0 0 0 0.81 0 
Tai17a 491812 HDDETS 491812 491812 491812 0 0 0 5 0 
Tai20a 703482 HDDETS 703482 706786 704026 0 0.469 0.077 5.653 0.167 
Tai20b 122455319 HDDETS 122455319 122455319 122455319 0 0 0 0.511 0 
Tai25a 1167256 HDDETS 1167256 1174422 1170285 0 0.613 0.259 7.848 0.209 
Tai25b 344355646 HDDETS 344355646 344355646 344355646 0 0 0 13.46 0 
Tai30a 1818146 HDDETS 1818146 1818146 1818146 0 0 0 57.4 0 
Tai30b 637117113 HDDETS 637117113 637117113 637117113 0 0 0 29.794 0 
Tai35a 2422002 HDDETS 2422002 2431810 2423613 0 0.404 0.066 29.589 0.131 
Tai35b 283315445 HDDETS 283315445 283315445 283315445 0 0 0 57.4 0 
Tai40a 3139370 HDDETS 3141431 3151727 3148060 0.065 0.393 0.276 138.357 0.087 
Tai40b 637250948 HDDETS 637250948 650062131 638532066 0 2.01 0.201 416.445 0.635 
Tai50a 4938796 HDDETS 4989160 5010958 5002852 1.019 1.461 1.297 768.214 0.162 
Tai50b 458821517 HDDETS 458821517 460726849 459656699 0 0.415 0.182 48.479 0.194 
Tai60a 7205962 HDDETS 7281638 7338518 7309055 1.05 1.839 1.43 921.089 0.263 
Tai60b 608,215,054 HDDETS 7205962 608501817 640242782 0.047 5.265 1.526 42.188 1.616 
Tai64c 1855928 HDDETS 1855928 1855928 1855928 0 0 0 8.308 0 
Tai80a 13499184 HDDETS 13642148 13749540 13690956 1.059 1.854 1.42 1195.736 0.215 
Tai80b 818415043 HDDETS 818415043 831997039 824550128 0 1.659 0.749 1399.883 0.561 
Tai100a 21125314 HDDETS 21269898 21395720 21342495 1.069 1.667 1.414 2740.755 0.202 
Tai100b 1185996137 HDDETS 1187179912 1212182931 1191632007 0.099 2.208 0.475 1553.481 0.624 
Tai150b 498896643 HDDETS 501892435 508173332 505261057 0.6 1.859 1.275 9402.76 0.442 
Tai256c 44759294 HDDETS 44786418 44838798 44813276 0.06 0.177 0.12 41014.57 0.041 
Esc16a 68 HDDETS 68 68 68 0 0 0 0.533 0 
Esc16b 292 HDDETS 292 292 292 0 0 0 0.634 0 
Esc16c 160 HDDETS 160 160 160 0 0 0 0.577 0 
Esc16d 16 HDDETS 16 16 16 0 0 0 0.532 0 
Esc16e 28 HDDETS 28 28 28 0 0 0 0.55 0 
Esc16f 0 HDDETS 0 0 0 0 0 0 0.426 0 
Esc16g 26 HDDETS 26 26 26 0 0 0 0.472 0 
Esc16h 996 HDDETS 996 996 996 0 0 0 0.473 0 
Esc16i 14 HDDETS 14 14 14 0 0 0 0.629 0 
Esc16j 8 HDDETS 8 8 8 0 0 0 0.737 0 
Esc32a 130 HDDETS 130 130 130 0 0 0 7.953 0 
Esc32b 168 HDDETS 168 168 168 0 0 0 1.924 0 
Esc32c 642 HDDETS 642 642 642 0 0 0 2.276 0 
Esc32d 200 HDDETS 200 200 200 0 0 0 2.184 0 
Esc32e 2 HDDETS 2 2 2 0 0 0 1.835 0 
Esc32g 6 HDDETS 6 6 6 0 0 0 1.907 0 
Esc32h 438 HDDETS 438 438 438 0 0 0 1.896 0 
Esc64a 116 HDDETS 116 116 116 0 0 0 9.927 0 
Esc128a 64 HDDETS 64 64 64 0 0 0 55.614 0 
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Results of the HDDETS algorithm for some instances from QAPLIB (Continued) 
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Lipa20a 3683 HDDETS 3683 3683 3683 0 0 0 1.351 0 
Lipa20b 27076 HDDETS 27076 27076 27076 0 0 0 1.011 0 
Lipa30a 131178 HDDETS 131178 131178 131178 0 0 0 9.965 0 
Lipa30b 151426 HDDETS 151426 151426 151426 0 0 0 5.141 0 
Lipa40a 31538 HDDETS 31538 31844 31684 0 0.97 0.461 16.246 0.487 
Lipa40b 476581 HDDETS 476581 476581 476581 0 0 0 6.946 0 
Lipa50a 62093 HDDETS 62093 62629 62451 0 0.863 0.576 42.387 0.398 
Lipa50b 1210244 HDDETS 1210244 1210244 1210244 0 0 0 32.891 0 
Lipa60a 107218 HDDETS 107897 108019 107959 0.633 0.747 0.69 463.998 0.034 
Lipa60b 2520135 HDDETS 2520135 2969956 2742733 0 17.849 8.832 433.066 9.311 
Lipa70a 169755 HDDETS 170787 170858 170824 0.607 0.649 0.629 1056.769 0.014 
Lipa70b 4603200 HDDETS 4603200 5475784 5285704 0 18.956 14.8267 470.74 7.818 
Lipa80a 253195 HDDETS 254506 254695 254590 0.517 0.592 0.551 719.781 0.023 
Lipa80b 7763962 HDDETS 7763962 9293826 9131465 0 19.7047 17.613 176.991 6.189 
Lipa90a 360630 HDDETS 362307 362601 362480 0.465 0.546 0.513 2000.489 0.026 
Lipa90b 12490441 HDDETS 12490441 15002587 14479768 0 20.112 15.926 1851.828 8.395 
Had12 1652 HDDETS 1652 1652 1652 0 0 0 0.784 0 
Had14 2724 HDDETS 2724 2724 2724 0 0 0 0.583 0 
Had16 3720 HDDETS 3720 3720 3720 0 0 0 0.437 0 
Had18 5358 HDDETS 5358 5358 5358 0 0 0 0.674 0 
Had20 6922 HDDETS 6922 6922 6922 0 0 0 0.837 0 

 

Scenario 2: 

All solutions for all cases mentioned in the database of QAP are divided into two types: 
 

 Optimal Solution (OPT) 
 Best Known Solution (BKS)  

 

In this study, the number of instances that have the Optimal Solution is 77 instances and the number of 
instances that have the Best-Known Solution is 28 instances. An Optimal Solution can be obtained by 
the proposed algorithm in 73 instances out of 77 instances and it can produce Best Known Solution in 10 
instances out of 28 instances. The first comparison was done in this study to evaluate the effectiveness 
of the proposed algorithm HDDETS. The proposed algorithm was compared with TS and DDE. In Table 
4, the results of the comparison are presented, and it can be observed from the results that the HDDETS 
outperformed DDE and TS in all instances. Afterward, another comparison has been carried out between 
the proposed algorithm and another algorithm in the literature. Prior to the proposal of a hybrid algorithm 
in this study, a new approach called whale algorithm integrated with Tabu search for quadratic 
assignment problem (WAITS) had been introduced by (Abdel-Basset et al., 2018a). A comparison was 
done between the WAITS and the algorithm proposed in this study. Based on the outcome of the 
comparison, the performance of WAITS is better than that of other algorithms in terms of solving QAP. 
More so, it can produce an optimal solution for many instances of QAP.  

Table 4 shows the comparison between our proposed HDDETS and WAITS. The main contribution of 
this study is providing an improved solution for QAP, especially that which has not produced an optimal 
solution. For instance, in the case of (Tai50a, Tai80b, Tai100a, and Tai150b) the best gap of this instance 
was reached at (1.57 %, 1.20 %, 2.04 %, and 1.76 % respectively) compared with the solution in a dataset 
of QAP. By applying our proposed algorithm to solve the instance (Tai50a, Tai80b, Tai100a, and 
Tai150b) this gap was reduced to (0 %, 0 %, 1.146 %, and 0.6 % respectively). Table 4 shows our 
contribution in terms of providing improved solutions for QAP. In the instances of (Sko49, Sko56, 
Sko64, Sko72, Sko100b, and Sko100e), many researchers have developed several optimization methods 
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to improve the solutions of these instances so that they can reach the best or the same values within the 
database for QAP. So far, the best gap has been found for these cases by WAITS as follows: (0.13 %, 
0.08 %, 0.07 %, 0.27 %, 0.74 %, and 0.76 %, respectively). Another contribution of the algorithm 
HDDETS is enhancing the solutions of these instances; the results produced by HDDETS were found to 
be better than those of WAITS. More so, HDDETS reached the best gap of (0 %, 0 %, 0 %, 0.09 %, 0.18 
%, and 0.124 %, respectively). Below are the figures (Figs. 3-9) that show the gaps obtained from the 
algorithms in Table 4. In Table 5 below, a summary of the comparison results between HDDETS and 
WAITS is presented. 

  
Comparative results between DDE, TS, HDDETS, and WAITS algorithms for QAP 

 
No. 

 
Problem 

 

 
Best-Known 

Solution 

 
DDE 

 

 
TS 

 
HDDETS 

 
WAITS 

 
Best gap 

 

 
Best gap 

 
Best gap 

 
Best gap 

1 Chr12a 9552 0 3.810 0 0 
2 Chr12b 9742 0 0 0 0 
3 Chr12c 11156 2.312 2.312 0 0 
4 Chr15a 9896 0 9.256 0 0 
5 Chr15b 7990 14.167 23.329 0 0 
6 Chr18a 11098 27.967 26.872 0 0 
7 Chr18b 1534 30.365 11.155 0 0 
8 Chr20a 2192 1.825 7.561 0 0 
9 Chr20b 2298 13.594 20.255 0 1.56 

10 Chr20c 14142 15.665 13.838 0 0 
11 Chr22a 6156 40.347 35.384 0 0.16 
12 Chr22b 6194 9.096 8.219 0 0 
13 Chr25a 3796 8.653 7.426 0 0 
14 Esc16a 68 0 0 0 0 
15 Esc16b 292 0 0 0 0 
16 Esc16c 160 0 0 0 0 
17 Esc16d 16 0 0 0 0 
18 Esc16e 28 0 0 0 0 
19 Esc16f 0 0 0 0 0 
20 Esc16g 26 0 0 0 0 
21 Esc16h 996 0 0 0 0 
22 Esc16i 14 0 0 0 0 
23 Esc16j 8 0 15.3846 0 0 
24 Esc32a 130 20 14.2857 0 0 
25 Esc32b 168 19.047 0 0 0 
26 Esc32c 642 0 0 0 0 
27 Esc32d 200 0 0 0 0 
28 Esc32e 2 0 0 0 0 
29 Esc32g 6 0 0.91324 0 0 
30 Esc32h 438 0.913 0 0 0 
31 Esc64a 116 0 0 0 0 
32 Esc128a 64 34.375 0 0 0 
33 Lipa20a 3683 1.710 2.1721 0 0 
34 Lipa20b 27076 14.791 0 0 0 
35 Lipa30a 131178 1.844 1.7529 0 0 
36 Lipa30b 151426 15.766 15.7998 0 0 
37 Lipa40a 31538 1.417 1.4554 0 0 
38 Lipa40b 476581 19.009 18.2678 0 0 
39 Lipa50a 62093 1.3673 1.3705 0 0 
40 Lipa50b 1210244 19.278 19.2295 0 0 
41 Lipa60a 107218 1.221 1.2759 0.633 0 
42 Lipa60b 2520135 21.013 21.2654 0 0 
43 Lipa70a 169755 1.122 1.1611 0.607 0 
44 Lipa70b 4603200 22.022 22.1949 0 0 
45 Lipa80a 253195 1.029 1.0861 0.517 0.55 
46 Lipa80b 7763962 23.047 23.4897 0 0 
47 Lipa90a 360630 0.963 1.0559 0.465 0.50 
48 Lipa90b 12490441 23.243 24.0423 0 0 
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Comparative results between DDE, TS, HDDETS, and WAITS algorithms for QAP (Continued)  

 
No. 

 
Problem 

 

 
Best-Known 

Solution 

 
DDE 

 

 
TS 

 
HDDETS 

 
WAITS 

 
Best gap 

 

 
Best gap 

 
Best gap 

 
Best gap 

49 Nug12 578 1.73 2.422 0 0 
50 Nug14 1014 2.366 0 0 0 
51 Nug16a 1150 2.782 0.173 0 0 
52 Nug16b 1610 2.608 0.993 0 0 
53 Nug17 1240 3.225 1.774 0 0 
54 Nug18 1930 0.923 1.732 0 0 
55 Nug20 2570 0.310 0.932 0 0 
56 Nug21 2438 1.400 1.4 0 0 
57 Nug22 3596 1.230 2.297 0 0 
58 Nug24 3488 1.724 0.166 0 0 
59 Nug25 3744 2.216 2.867 0 0 
60 Nug27 5234 1.442 1.121 0 0 
61 Nug28 5166 1.528 3.248 0 0 
62 Nug30 6124 3.832 4.065 0 0.52 
63 Sko42 15812.0 2.567 4.3638 0 0 
64 Sko49 23386 1.599 4.8833 0 0.13 
65 Sko56 34458 2.704 5.2876 0 0.08 
66 Sko64 48498 3.365 5.2909 0 0.07 
67 Sko72 66256 3.595 6.7164 0.09 0.27 
68 Sko81 90998 3.356 6.2815 0.068 0.19 
69 Sko90 115534 3.661 7.1183 0.192 0.56 
70 Sko100a 152002 3.326 7.2039 0.206 0.76 
71 Sko100b 153890 3.184 6.6723 0.18 0.74 
72 Sko100c 147862 3.907 7.3799 0.193 0.99 
73 Sko100d 149576 3.866 7.3394 0.124 0.98 
74 Sko100e 149150 3.886 7.3067 0.244 0.76 
75 Sko100f 149036 3.616 6.899 0.454 0.95 
76 Had12   1652 0.121 0 0 0 
77 Had14  2724 0.22 0 0 0 
78 Had16 3720 0.86 0 0 0 
79 Had18  5358 0.298 0.074 0 0 
80 Had20  6922 1.126 0.086 0 0 
81 Tai12a 224416 0 3.842 0 0 
82 Tai12b 39464925 2.8496 4.263 0 0 
83 Tai15a 388214 2.043 0.16898 0 0 
84 Tai15b 51765268 0.339 2.4024 0 0 
85 Tai20a 491812 2.983 0.90165 0 0 
86 Tai20b 703482 4.592 4.3505 0 0 
87 Tai25a 122455319 1.743 1.6315 0 0 
88 Tai25b 1167256 4.216 4.0909 0 0 
89 Tai30a 344355646 2.039 6.5651 0 0.48 
90 Tai30b 1818146 4.548 5.5332 0 0 
91 Tai35a 637117113 3.502 4.0868 0 0.06 
92 Tai35b 2422002 4.777 6.3761 0 0 
93 Tai40a 3139370 2.157 0.092568 0 0.52 
94 Tai40b 637250948 4.748 6.9324 0.065 0.005 
95 Tai50a 637250948 0.0769 11.4704 0 1.57 
96 Tai50b 4938796 5.246 12.7767 1.019 0.05 
97 Tai60a 458821517 3.388 13.2447 0 1.93 
98 Tai60b 7205962 4.609 1.974 0.047 0.74 
99 Tai64c 1855928 0.4175 2.4024 0 0 

100 Tai80a 13499184 5.665 0.90165 1.059 1.90 
101 Tai80b 818415043 7.486 4.3505 0 1.20 
102 Tai100a 21125314 5.743 1.6315 1.146 2.04 
103 Tai100b 1185996137 7.116 4.0909 0.099 0.50 
104 Tai150b 498896643 8.6079 6.5651 0.6 1.76 
105 Tai256c 44759294 1.5643 2.1909 0.06 0.26 

 
 
 



A. S. Hameed et al.  / International Journal of Industrial Engineering Computations 11 (2020) 65

 
Below the figures which show the gaps obtained from the performance of the algorithms in Table 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. comparison among DDE, TS, HDDETS, and WAITS 
 

  
Fig. 3.  Comparison on instance Chr Fig.  4. Comparison on instance Nug 

  
Fig. 5. Comparison on instance Esc Fig. 6. Comparison on instance Sko 

  
Fig. 7. Comparison on instance Lipa Fig. 8. Comparison on instance Lipa 
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Fig. 9. Comparison on instance Tai 

Table 5 presents a summary of the comparison results between HDDETS and WAITS. 

  
Summary of the comparison results between HDDETS and WAITS 

Category 

 

Name of 

Problem 

Number of 

Instances 

Type of Solution  HDDETS 

 

WAITS 

OPT BKS OPT BKS OPT BKS 

1 Tai 25 10 15 10 7 8 3 
2 Nug 14 14 - 14 - 13 - 

3 Chr 13 13 - 13 - 11 - 

4 Esc 19 19 - 19 - 19 - 

5 Lipa 16 16 - 12 - 14 - 

6 Had 5 5 - 5 - 5 - 

7 Sko 13 - 13 - 3 - 1 
Sum  105 77 28 73 10 70 4 

 

Scenario 3:  
 

In the next step, the effect and validation of the proposed algorithm HDDETS are presented. This is 
achieved by comparing the proposed algorithm with other algorithms. The most robust and latest 
algorithms were used for the comparison. Table 6 shows the results of the comparison between HDDETS 
and four other algorithms.  Comparisons between HDDETS and the following algorithms were done:  
 

 Discrete Bat Algorithm (DBA)  (Riffi et al., 2017) 
 Development of modified discrete particle swarm (DPSO)  (Pradeepmon, 2018) 
 Biogeography-Based Optimization Algorithm Hybridized with Tabu Search (BBOTS) (Lim et 

al., 2016)  
 A hybrid algorithm combining lexisearch and genetic algorithms (LSGA) (Ahmed, 2018)     

 

For the compared cases in Table 6, the first comparison which was between HDDETS and DBA, it was 
found that the DBA can reach the optimal solution for 35 out of 54 instances and reach to Best Known 
Solution for 5 out of 21 instances.  While the HDDETS has been solved 54 optimal solutions out of 54 
instances, this implies that the gap of the best value found was 0 %. On another hand, it was observed 
that the HDDETS can reach the Best-Known Solution for 12 out of 21 instances. The results obtained by 
the DBA algorithm are as follows: the optimal solution was achieved for (8 instances from case Bur out 
of 8 instances, 5 instances from the case Chr out of 5 instances, 10 instances  from the case Esc out of 10 
instances, 3 instances from the case Nug out of 15 instances, and 9 instances from the case Tai out of 
10). For the best-known solution in case Tai, the DBA can reach 4 instances out of 14 instances, the best 
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value for the best average gap report is 0.872 %. HDDETS can found 8 best-known solutions out of 14 
instances with the best value is 0.333 % of the average gap. Next test for the best-known solution has 
been applied on a case Sko, the results show DBA found 1 best-known solution out for 7 instances with 
the best average gap value is 0.208 %. Whereas HDDETS has been reached to 4 best-known solutions 
out for 7 instances and the best average gap is 0.05 %.   

The next comparison was between HDDETS and DPSO; DPSO has been tested on 23 instances of QAP 
which produced optimal solutions. The results have shown that one optimal solution was found, and the 
results recorded the best value for an average gap for the rest of the instances at 0.618 %. When the 
HDDETS was applied to these instances, it was found that HDDETS has the capability of improving all 
the 23 instances, while reducing the gap to 0 % for all these instances. Similarly, the proposed algorithm 
has been compared with BBOTS, and this algorithm was applied in 5 cases (Bur, Chr, Esc, Nug, and Tai) 
of QAP. The results of these comparisons are as follows: in the case of Bur, the best value of the average 
gap was found to be 0.003 %. On the other hand, results obtained from the proposed algorithm HDDETS 
achieved an average gap of 0 %. For cases Chr, the difference between the results was obvious, where 
the performance of HDDETS was better than BBOTS; the average gap obtained by HDDETS was 0.185 
%, while the best average gap was 0 %. The results of the comparison were equal to an average gap for 
both BBOTS and HDDETS algorithms in case Esc. For the case of  Nug, the results for BBOTS in terms 
of the best value for the average gap was 0.019 %, while it was found that the HDDETS can lower the 
average gap to 0 %.  On the other hand, for instances (tai12a, tai15a, tai17a, tai20a, tai30a, and tai80a) 
the BBOTS algorithm was used to solve these cases, and the average gap of 0.892 % was achieved, while 
the use of HDDETS to solve these instances enhanced the reduction of the best average rate to 0 %.   
 

 
Comparison among DBA, DPSO, BBOTS, and HDDETS  

No. Problem Type of Solve 
 

DBA DPSO BBOTS HDDETS 

OPT BKS Best Solve Gap Best 
Solve 

Gap Best 
Solve 

Gap Best Solve Gap 

1 bur26a 5,426,670 - 5,426,670 0 5434783 0.150 5426670 0.028 5,426,670 0 
2 bur26b 3,817,852 - 3,817,852 0 3824420 0.172 3817852 0 3,817,852 0 
3 bur26c 5,426,795 - 5,426,795 0 5428396 0.030 5426795 0 5,426,795 0 
4 bur26d 3,821,225 - 3,821,225 0 3821419 0.005 3821225 0 3,821,225 0 
5 bur26e 5,386,879 - 5,386,879 0 5387320 0.008 5386879 0 5,386,879 0 
6 bur26f 3,782,044 - 3,782,044 0 3783123 0.029 3782044 0 3,782,044 0 
7 bur26g 10,117,172 - 10,117,172 0 10118542 0.014 10117172 0 10,117,172 0 
8 bur26h 7,098,658 - 7,098,658 0 7099677 0.014 7098658 0 7,098,658 0 
9 chr12a 9552 - 9552 0 - - 9552 0 9552 0 
10 chr12b 9742 - 7990 - - - 9742 0 9742 0 
11 chr12c 11156 - - - - - 11156 0 11156 0 
12 chr15a 9896 - - - - - 9896 0 9896 0 
13 chr15b 7990 - - 0 - - 7990 0.298 7990 0 
14 chr15c 9504 - - - - - 9504 0 9504 0 
15 chr18a 11098 - 11,098 0 - - 11098 0.079 11098 0 
16 chr18b 1534 - - - - - 1534 0 1534 0 
17 chr20a 2192 - - - - - 2192 0.876 2192 0 
18 chr20c 14142 - 14,142 0 - - 14142 0.604 14142 0 
19 chr25a 3796 - 3796 0 - - - - 3796 0 
20 esc16a 68 - 68 0 - - 68 0 68 0 
21 esc16b 292 - 292 0 - - 292 0 292 0 
22 esc16c 160 - 160 0 - - 160 0 160 0 
23 esc16d 16 - 16 0 - - - - 16 0 
24 esc16e 28 - 28 0 - - - - 28 0 
25 esc16f 0 - 0 0 - - - - 0 0 
26 esc32a 130 - 130 0 - - - - 130 0 
27 esc32e 2 - 2 0 - - - - 2 0 
28 esc32g 6 - 6 0 - - - - 6 0 
29 esc64a 116 - 116 0 - - - - 116 0 
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Comparison among DBA, DPSO, BBOTS, and HDDETS (Continued) 

No. Problem Type of Solve 
 

DBA DPSO BBOTS HDDETS 

OPT BKS Best Solve Gap Best 
Solve 

Gap Best 
Solve 

Gap Best Solve Gap 

30 nug12 578 - - - 582 0.692 578 0 578 0 
31 nug14 1014 - - - 1016 0.197 1014 0 1014 0 
32 nug15 1150 - - - 1164 1.217 1150 0 1150 0 
33 nug16a 1610 - - - 1630 1.242 1610 0 1610 0 
34 nug16b 1240 - - - 1240 0.000 1240 0 1240 0 
35 nug17 1732 - - - 1750 1.039 1732 0.012 1732 0 
36 nug18 1930 - - - 1936 0.311 1930 0 1930 0 
37 nug20 2570 - 2570 0 2570 0 2570 0 2570 0 
38 nug21 2438 - 2438 0 2444 0.246 2438 0 2438 0 
39 nug22 3596 - - - 3602 0.167 3596 0 3596 0 
40 nug24 3488 - - - 3578 2.580 3488 0 3488 0 
41 nug25 3744 - - - 3766 0.588 3744 0 3744 0 
42 nug27 5234 - - - 5294 1.146 5234 0 5234 0 
43 nug28 5166 - - - 5228 1.200 5166 0.209 5166 0 
44 nug30 6124 - 6124 0 6206 1.339 6124 0.065 6124 0 
45 tai12a 224,416 - 224,416 0 - - 224416 0 224416 0 
46 tai12b 39,464,925 - 39,464,925 0 - - - - 39464925 0 
47 tai15a 388,214 - 388,214 0 - - 388214 0 388214 0 
48 tai15b 51,765,268 - 51,765,268 0 - - - - 51765268 0 
49 tai17a 491,812 - 491,812 0 - - 491812 0.093 491812 0 
50 tai20a 703,482 - 703,482 0 - - 705622 0.677 703482 0 
51 tai20b 122,455,319 - 122,455,319 0 - - - - 122455319 0 
52 tai25a 1,167,256 -  1,172,754 0.47 - - - - 1167256 0 
53 tai25b 344,355,646 - 344,355,646 0 - - - - 344355646 0 
54 tai30a - 1,818,146 1,831,272 0.72 - - 1843224 1.795 1818146 0 
55 tai30b 637,117,113 - 637,117,113 0 - - - - 637117113 0 
56 tai35a - 2,422,002 2,438,440 0.67 - - - - 2422002 0 
57 tai35b - 283,315,445 283,315,445 0 - - - - 283315445 0 
58 tai40a - 3,139,370 3,139,370 1.3 - - - - 3150391 0 
59 tai40b - 637,250,948 637,250,948 0 - - - - 637250948 0.065 
60 tai50a - 4,938,796 5,042,654 2.10 - - - - 4965748 0 
61 tai50b - 458,821,517 458,830,119 0 - - - - 458821517 1.019 
62 tai60a - 7,205,962 7,387,482 2.5 - - - - 7266970 0 
63 tai60b - 608,215,054 608,414,385 0.03 - - - - 1855928 1.05 
64 tai64c - 1,855,928 1,855,928 0 - - - - 13616880 0 
65 tai80a - 13,499,184 13,810,130 2.30 - - 13841214 2.788 818415043 1.059 
66 tai80b - 818,415,043 819,367,807 0.11 - - - - 818415043 0 
67 tai100a - 21,052,466 21,541,326 2.3 - - - - 21285950 1.146 
68 tai100b - 1185996137 1188168753 0.18 - - - - 1187179912 0.099 
69 sko42 - 15,812 15,812 0 - - - - 15812 0 
70 sko49 - 23,386 23,421 0.14 - - - - 23386 0 
71 sko56 - 34,458 34,524 0.19 - - - - 34458 0 
72 sko64 - 48,498 48,656 0.32 - - - - 48498 0 
73 sko72 - 66,256 66,422 0.25 - - - - 66256 0.09 
74 sko81 - 90,998 91,252 0.27 - - - - 91008 0.068 

75 sko90 - 115,534 115,874 0.29 - - - - 115578 0.192 

Finally, the performance of the proposed algorithm HDDETS was compared with another algorithm 
contained in the literature review of this study. This algorithm is a hybrid algorithm which is a 
combination of lexisearch and genetic algorithms (LSGA) proposed by (Ahmed, 2018). The results of 
this comparison have been presented in table 7.  It was found that in the instances (Tai20a, Tai30a, 
Tai40a, Tai50a, Tai60a, Tai80a, Tai100a, Tai20b, Tai30b, Tai40b, Tai50b, Tai60b, Tai80b, Tai100b, 
Tai150b), the LSGA algorithm was able to solve this case with the best value of average gap of 0.665 
%, while the proposed algorithm HDDETS reduced this value to 0.004 %. On the other hand, the LSGA 
algorithm solved the instances (sko42, sko49, sko81, sko90, sko100a, sko100d), and the algorithm was 
able to find the best average gap which was 0.191%, while the HDDETS reinforced the solutions of these 
instances and it obtained an average gap of 0.093 % for these instances. Below Fig. 11 and Fig. 12 show 
the best gaps obtained from the performance of the algorithms in Table 7.   
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Comparison among LSGA and HDDETS 

Instance BKS LSGA 
 

HDDETS Instance BKS LSGA 
 

HDDETS 

Gap % Gap % Gap % Gap % 
Tai20a 703,482 0.48 0 sko42 15,812 0 0 
Tai30a 1,818,146 1.06 0 sko49 23,386 0.14 0 
Tai40a 3,139,370 1.62 0 sko81 90,998 0.1 0.068 
Tai50a 4,938,796 1.49 0 sko90 115,534 0.33 0.192 
Tai60a 7,205,962 1.53 0 sko100a 152,002 0.26 0.206 
Tai80a 13,499,184 1.53 0 - - - - 
Tai100a 21,052,466 1.53 0 - - - - 
Tai20b 122,455,319 0 0 - - - - 
Tai30b 637,117,113 0 0 - - - - 
Tai40b 637,250,948 0 0 - - - - 
Tai50b 458,821,517 0 0 - - - - 
Tai60b 608,215,054 0 0 - - - - 
Tai80b 818,415,043 0.01 0 - - - - 

Tai100b 1,185,996,137 0.01 0.065 - - - - 
Tai150b 498,896,643 0.72 0 - - - - 

AVERAGE gap  0.665 0.004   0.191 0.093 

Below Figures have been shown the gaps obtained from the performance of the algorithms in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Comparative study 1 between LSGA and HDDETS 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.  Comparative study 2 between LSGA and HDDETS 
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Fig. 12.  Comparison on Average best for QAP 

 

6. Conclusion  

In this paper, a Discrete Differential Evolution algorithm hybrid with Tabu Search HDDETS has been 
proposed with the aim of enhancing the solution of QAP. The limitation of the standard Discrete 
Differential Evolution algorithm is the low level of accuracy of solutions obtained for QAP problems, 
and this limitation has been alleviated by the proposed approach. The comparative results have shown 
that HDDETS algorithm outperforms the classic DDE and TS. The HDDETS algorithm has enhanced 
the solutions of QAP. Seven different case studies including 105 instances have been tested and used in 
analyzing the performance of the proposed HDDETS. The effect of the HDDETS algorithm on 
improving solutions was clear and has been discussed in the results and discussions section of this paper. 
The results showed the contribution of HDDETS to improving solutions of QAP. The HDDETS 
produced 73 optimal solutions out of 77 and has reached up to 10 best-known solutions out of 28. These 
are the best values obtained by the HDDETS compared to other recently proposed algorithms in the 
literature review in this paper. It is recommended that future research focus on the application of 
HDDETS algorithm in a real-world application such as Campus Layout or Hospital Layout. Another 
future work can focus on applying our proposed algorithm in other combinatorial optimization problems 
such as scheduling models or vehicle routing problem. 
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