

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# **Faculty of Manufacturing Engineering**

# SURFACE ROUGHNESS STUDY ON ALUMINIUM IN HIGH SPEED TURNING PROCESS

Mohd Shazwan Bin Dahlan

Master of Manufacturing Engineering (Manufacturing System Engineering)

2019



UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA

## TAJUK: Surface Roughness On Aluminium In High Speed Turning Process

SESI PENGAJIAN: 2017/2018

## Saya MOHD SHAZWAN BIN DAHLAN

mengaku membenarkan Laporan Projek Sarjana ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan Projek Sarjana adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan Projek Sarjana ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (✓)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)



TIDAK TERHAD

Disahkan oleh:

Cop Rasmi: IR. DR. MOHAMAD BIN MINHAT Pensyarah Kanan Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Alamat Tetap:

JABATAN KEJURUTERAAN MEKANIKAL,

POLITEKNIK MUADZAM SHAH,

LEBUHRAYA TUN ABDUL RAZAK, PAHANG.

Tarikh:

Tarikh:

\*\* Jika Laporan Projek Sarjana ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan Projek Sarjana ini perlu dikelaskan sebagai SULIT atau TERHAD.

### DECLARATION

I declare that this thesis entitled "Surface Roughness Study On Aluminium In High Speed Turning Process" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : | -Spin-                  |
|-----------|---|-------------------------|
| Name      | : | MOHD SHAZWAN BIN DAHLAN |
| Date      | : |                         |

### APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Manufacturing Engineering (Manufacturing System Engineering).

IR. DR. MOHAMAD BIN MINHAT Pensyarah Kanan Signature Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka : IR. Dr. MOHAMAD BIN MINHAT Supervisor Name

Date

### DEDICATION

As a young person growing up in the wilderness I have been moved by the annual migration of birds flying south in our winter and returning again in spring. As I grew older I realised how little real wilderness area is left over for them to rest and recover during the transit. This has motivated me to write this paper in the hope that something can be done to at least consolidate what they do have. I dedicate this work to that goal, which has sustained me during its creation. I also dedicate this work to my family especially my mother, father and my be loved wife that with to go through the hardship together until the end.

#### ABSTRACT

Surface integrity was the surface condition of a workpiece after being modified by a manufacturing process and it can change the material's properties. In surface topography, surface roughness (Ra) was concerned with the geometry of the outermost layer of the workpiece texture and the interface exposed with the environment affects several functional attributes of parts, such as friction, wear and tear, light reflection, heat transmission, ability of distributing and holding a lubricant, coating etc. Therefore, the desired surface finish was usually specified and appropriate processes were required to assess and maintain the quality of a component. The objective of the study aims to investigate the influence of machining parameters to the surface roughness value, Ra during high speed turning of aluminium steel material under dry condition. Experimental preparations were made to ensure the smoothness of the experimental operation. Pilot experimental will be conducted to verify all the machine parameter. All equipment used such as the CNC turning machines, microscope were inspected. CNC programming was also prepared before conducting the machining experiment. Using taguchi as the design of the experiment with three parameters such as cutting speed range within 158.96 m/min to 317.93 m/min, feed rate range of 0.1 mm/rev to 0.3 mm/rev and depth of cut range within 0.5 mm until 1.0 mm. From the experiment conduct, best result is 0.279 µm with parameters of 158.96 m/min, 0.2 mm/rev and depth of cut of 0.75 mm. Optimizations of parameters show that by using cutting speed of 172.509 m/min, feed rate of 0.25 mm/rev with depth of cut 0.99 mm; minimum surface roughness (0.014629  $\mu$ m) can be achieved.

#### ABSTRAK

Integriti permukaan adalah keadaan permukaan bahan kerja selepas diubahsuai oleh proses pembuatan dan ia boleh mengubah sifat bahan. Dalam topografi permukaan, kekasaran permukaan (Ra) berkenaan dengan geometri lapisan terluar tekstur bahan kerja dan antara muka yang terdedah dengan persekitaran memberi kesan kepada beberapa ciri-ciri fungsian bahagian, seperti geseran, haus dan lusuh, refleksi cahaya, penghantaran haba, keupayaan mengedarkan dan memegang pelincir, salutan dan lain lain. Oleh itu, kemasan permukaan yang dikehendaki biasanya ditentukan dan proses yang sesuai diperlukan untuk menilai dan mengekalkan kualiti komponen. Objektif kajian ini bertujuan untuk mengkaji pengaruh parameter pemesinan pada nilai kekasaran permukaan, Ra semasa pengalihan kelajuan tinggi bahan keluli aluminium di bawah keadaan kering. Persiapan percubaan dibuat untuk memastikan kelancaran operasi eksperimen. Percubaan perintis akan dijalankan untuk mengesahkan semua parameter mesin. Semua peralatan yang digunakan seperti mesin turn CNC, mikroskop diperiksa. Pengaturcaraan CNC juga disediakan sebelum menjalankan eksperimen pemesinan. Menggunakan taguchi sebagai reka bentuk eksperimen dengan tiga parameter seperti jarak laju pemotongan dalam 158.96 m / min hingga 317.93 m / min, julat kadar suapan 0.1 mm / rev ke 0.3 mm / rev dan kedalaman potongan jarak dalam 0.5 mm hingga 1.0 mm. Daripada tingkah laku percubaan, hasil terbaik adalah 0.279 µm dengan parameter 158.96 m / min, 0.2 mm / rev dan kedalaman potong 0.75 mm. Pengoptimuman parameter menunjukkan bahawa dengan menggunakan kelajuan pemotongan 172.509 m / min, laju suapan 0.25 mm / rev dengan kedalaman pemotongan 0.99 mm; kekasaran permukaan minimum (0.014629 µm) boleh dicapai.

#### ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to my supervisor, IR.Dr. Mohamad Bin Minhat, whose contribution in stimulating suggestions and encouragement, helped me to coordinate my project especially in writing this report.

Furthermore I would also like to acknowledge with much appreciation the crucial role of the staff of Mr Ahmad Huzairi Bin Baharuddin, who gave the permission to use all required equipment and the necessary materials to complete the task "Surface Roughness On Aluminium In High Speed Turning Process". Last but not least, many thanks to my friend that guiding and give idea and opinions as to achieving the goal. I have to appreciate the guidance given by other supervisor as well as the panels especially in our project presentation that has improved our presentation skills thanks to their comment and advices.

# TABLE OF CONTENTS

|     |       |                                      | PAGE |
|-----|-------|--------------------------------------|------|
| AB  | STRA  | CT                                   | i    |
| ТА  | BLE ( | OF CONTENTS                          | iii  |
| LIS | ST OF | TABLES                               | v    |
| LIS | ST OF | FIGURES                              | vi   |
| СН  | IAPTE | <b>R</b>                             |      |
| 1.  |       | FRODUCTION                           | 1    |
|     | 1.1   | Project Background                   | 1    |
|     |       | Problem Statement                    | 3    |
|     | 1.3   | Objectives                           | 4    |
|     | 1.4   | Scope of study                       | 4    |
|     | 1.5   | Significance of Study                | 5    |
| 2.  | LIT   | ERATURE REVIEW                       | 6    |
|     | 2.1   | Aluminium as material                | 6    |
|     | 2.2   | Turning process                      | 11   |
|     |       | 2.2.1 Types of Turning Operation     | 13   |
|     | 2.3   | Cutting Parameters                   | 14   |
|     |       | 2.3.1 Cutting Speed (v)              | 14   |
|     | 2.4   | High Speed Machining                 | 16   |
|     |       | Dry Machining                        | 19   |
|     |       | Surface Integrity                    | 20   |
|     |       | Surface Roughness                    | 21   |
|     |       | Design of Experiments                | 23   |
|     |       | Taguchi Experimental Design          | 25   |
|     |       | Factorial Method                     | 31   |
|     | 2.11  | Response Surface Methodology (RSM)   | 33   |
| 3.  | ME    | THODOLOGY                            | 36   |
|     | 3.1   | Process Flow                         | 37   |
|     | 3.2   | Experimental Equipment and Materials | 38   |
|     |       | 3.2.1 CNC Turning Centre             | 38   |
|     |       | 3.2.2 Workpiece Material             | 39   |
|     |       | 3.2.3 Cutting Tool                   | 39   |
|     |       | 3.2.4 Tool Holder                    | 40   |
|     | 3.3   | Design of Experiment                 | 41   |
|     | 3.4   | Surface Roughness Tester             | 43   |

# TABLE OF CONTENTS

| CH | CHAPTER PAGE             |                                    | PAGE |
|----|--------------------------|------------------------------------|------|
| 4. | RES                      | SULT AND DISCUSSION                | 44   |
|    | 4.1                      | Surface Roughness                  | 44   |
|    | 4.2                      | Surface Roughness Modeling         | 47   |
|    |                          | 4.2.1 Analysis of Variance (ANOVA) | 47   |
|    |                          | 4.2.2 Model Diagnostics Plot       | 51   |
|    |                          | 4.2.3 Model Graphs                 | 53   |
|    | 4.3                      | Optimization of Parameter          | 58   |
| 5. | CO                       | NCLUSION AND RECOMMENDATION        | 63   |
|    | 5.1                      | Conclusions                        | 63   |
|    | 5.2                      | Recommendations                    | 64   |
|    | REFERENCES66APPENDICES70 |                                    |      |

# LIST OF TABLES

| TABLE | TITLE                                                          | PAGE |
|-------|----------------------------------------------------------------|------|
| 2.1   | Type of aluminium alloys                                       | 7    |
| 2.2   | Wrought aluminium ally designation system                      | 9    |
| 2.3   | Subdivisions of T Temper – Thermally Treated                   | 10   |
| 2.4   | Process parameters and levels                                  | 26   |
| 2.5   | Levels of process parameters used Taguchi L9 Orthogonal Array  | 30   |
| 2.6   | Experimental design using orthogonal array                     | 30   |
| 2.7   | Experimental conditions in the 23 factorial design for the     |      |
|       | hypothetical weight loss intervention                          | 32   |
| 2.8   | Central composite inscribed (cci) design and experimental      |      |
|       | responses                                                      | 34   |
| 3.1   | Cutting parameters and their levels                            | 41   |
| 3.2   | Array selector                                                 | 42   |
| 3.3   | Experiment matrix generated by Design Expert                   | 42   |
| 4.1   | Experimental results                                           | 45   |
| 4.2   | Comparison between actual and predicted Surface Roughness      | 50   |
| 4.3   | Criteria for each factor to optimize the parameter             | 59   |
| 4.4   | Solution suggested                                             | 59   |
| 4.5   | Optimum data selected for experiment validation with the error | 61   |

| FIG | URE TITLE                                                       | PAGE |
|-----|-----------------------------------------------------------------|------|
|     |                                                                 |      |
| 2.1 | Basic concept turning operation                                 | 13   |
| 2.2 | Types of tool for turning process                               | 13   |
| 2.3 | Surface integrity diagram                                       | 21   |
| 2.4 | Surface roughness diagram                                       | 22   |
| 2.5 | Process factors and responses                                   | 24   |
| 2.6 | Simple illustration of DOE                                      | 25   |
| 2.7 | Process parameters and responses                                | 29   |
| 3.1 | CNC turning machine                                             | 38   |
| 3.2 | Aluminium alloy (6061 – T6)                                     | 39   |
| 3.3 | Coated carbide insert tool                                      | 39   |
| 3.4 | Schematic geometry of insert tool                               | 40   |
| 3.5 | Cutting tool holder                                             | 40   |
| 3.6 | Surface roughness profilometer                                  | 43   |
| 4.1 | Graphical representations for the experiments results           | 46   |
| 4.2 | ANOVA for surface roughness model                               | 47   |
| 4.3 | Regression statistic                                            | 48   |
| 4.4 | Comparison between experiment and predicted surface roughness   | 50   |
| 4.5 | Normal probability plot of residuals for surface roughness data | 52   |

# FIGURE

# TITLE

### PAGE

| 4.6  | Plot of residual versus predicted response of surface roughness data | 52 |
|------|----------------------------------------------------------------------|----|
| 4.7  | One factor plot of surface roughness versus cutting speed            | 53 |
| 4.8  | One factor plot of surface roughness versus cutting feed rate        | 54 |
| 4.9  | One factor plot of surface roughness versus cutting depth of cut     | 54 |
| 4.10 | Interaction graphs of factors versus surface roughness               | 55 |
| 4.11 | Interaction graphs of factors versus surface roughness               | 55 |
| 4.12 | 3D surface plot for surface roughness model                          | 56 |
| 4.13 | 3D surface plot for surface roughness model                          | 56 |
| 4.14 | Contour plot of surface roughness model                              | 57 |
| 4.15 | Contour plot of surface roughness model                              | 57 |
| 4.16 | Solution selected                                                    | 60 |
| 4.17 | Solution selected                                                    | 60 |
| 4.18 | Solution selected                                                    | 60 |
| 4.19 | Ramps for each factors and response requirement of the               |    |
|      | combination selected                                                 | 61 |
| 4.20 | Response surface contour for prediction of surface roughness value   | 62 |
| 4.21 | 3D surface plot prediction for surface roughness model               | 62 |

| FIG | URE TITLE                                                       | PAGE |
|-----|-----------------------------------------------------------------|------|
|     |                                                                 |      |
| 2.1 | Basic concept turning operation                                 | 13   |
| 2.2 | Types of tool for turning process                               | 13   |
| 2.3 | Surface integrity diagram                                       | 21   |
| 2.4 | Surface roughness diagram                                       | 22   |
| 2.5 | Process factors and responses                                   | 24   |
| 2.6 | Simple illustration of DOE                                      | 25   |
| 2.7 | Process parameters and responses                                | 29   |
| 3.1 | CNC turning machine                                             | 38   |
| 3.2 | Aluminium alloy (6061 – T6)                                     | 39   |
| 3.3 | Coated carbide insert tool                                      | 39   |
| 3.4 | Schematic geometry of insert tool                               | 40   |
| 3.5 | Cutting tool holder                                             | 40   |
| 3.6 | Surface roughness profilometer                                  | 43   |
| 4.1 | Graphical representations for the experiments results           | 46   |
| 4.2 | ANOVA for surface roughness model                               | 47   |
| 4.3 | Regression statistic                                            | 48   |
| 4.4 | Comparison between experiment and predicted surface roughness   | 50   |
| 4.5 | Normal probability plot of residuals for surface roughness data | 52   |

rotating cylindrical part. The cutting tool is fed linearly in a direction parallel to the axis of rotation. In turning, the parameters condition of cutting speed, feed rate and depth of cut are need to be selected properly in order to optimize the turning operation.

Another aspect that needs to be considered in affecting the surface integrity of material is the material to be machined. In most industrial common application, mild steel is the most common form of steel as its price is relatively low while it provides material properties that are acceptable for many applications. Mild steel has allowed carbon content (up to 0.3%) and is therefore neither extremely brittle nor ductile. It becomes malleable when heated, and so can be forged. It is also often used where large amounts of steel need to be formed, for example as structural steel. Mild steel material is widely used in basically the most common industrial products, such as bolts, nuts, sheet, plate, and tubes, and for machine components that do not require high strength. This includes motorcycle frames, automobile chassis, cookware and etc. But due to peculiar characteristics such suffer from yield-point runout and has a relatively low tensile strength (Degarmo, 2003). It is, highly susceptible to corrosion (rusting) when exposed to moisture and has several typical problems which usually can be identified by visual inspection. Good surfaces machining with generation of smooth surface on the mild steel components during turning operation is a challenge to the manufacturing engineers in practice.

2

# FIGURE

# TITLE

### PAGE

| 4.6  | Plot of residual versus predicted response of surface roughness data | 52 |
|------|----------------------------------------------------------------------|----|
| 4.7  | One factor plot of surface roughness versus cutting speed            | 53 |
| 4.8  | One factor plot of surface roughness versus cutting feed rate        | 54 |
| 4.9  | One factor plot of surface roughness versus cutting depth of cut     | 54 |
| 4.10 | Interaction graphs of factors versus surface roughness               | 55 |
| 4.11 | Interaction graphs of factors versus surface roughness               | 55 |
| 4.12 | 3D surface plot for surface roughness model                          | 56 |
| 4.13 | 3D surface plot for surface roughness model                          | 56 |
| 4.14 | Contour plot of surface roughness model                              | 57 |
| 4.15 | Contour plot of surface roughness model                              | 57 |
| 4.16 | Solution selected                                                    | 60 |
| 4.17 | Solution selected                                                    | 60 |
| 4.18 | Solution selected                                                    | 60 |
| 4.19 | Ramps for each factors and response requirement of the               |    |
|      | combination selected                                                 | 61 |
| 4.20 | Response surface contour for prediction of surface roughness value   | 62 |
| 4.21 | 3D surface plot prediction for surface roughness model               | 62 |

#### **CHAPTER 1**

#### INTRODUCTION

This chapter explains the introduction of the research on "Surface Roughness Study on Aluminium in High Speed Turning Process". In extension, this chapter will elaborate on the problem statement, objectives and scopes of the research.

### 1.1 Project Background

The global manufacturing sector has undergone a great decade with large developing economies leaped into the first tier of manufacturing nations. Manufacturing industries in this modern era remains a critical force in both advanced and developing economies. As the end of the twentieth century approached, manufacturing industries faced new technology in many areas. In the latter, it remains a vital source of innovation and competitiveness, making outsized contributions to research and development.

When a traditional manufacturing process such a turning is used, the surface layer sustains local plastic deformation. Traditional processes involve the tool contacts with the workpiece surface. These processes will only damage the surface integrity if the improper parameters are used, such as dull tools, too high feed speeds, improper coolant or lubrication, or incorrect grinding wheel hardness. Turning operation is the machining operation in which a single-point cutting tools removes material from the surface of a

#### **1.2 Problem statement**

The manufacturing process of material and the specification or enhanced surfaces require an understanding of the interrelationship among metallurgy, machinability and mechanical testing. To satisfy this requirement, an encompassing discipline known as surface integrity was introduced and it has gained worldwide acceptance. Surface integrity is the surface condition of a workpiece after being modified by a manufacturing process. The surface integrity of a workpiece or item changes the material's properties and can have a great impact on a parts function and is very important for the components adapting to high thermal and mechanical loads during their applications (Axinte, Dewes and Twardowski, 2011). Surface integrity technology describes and controls the many possible alterations produced in a surface layer during manufacture, including their effects on material properties and the performance of the surface in service. Surface integrity is achieved by the selection and control of manufacturing processes, estimating their effects on the significant engineering properties of work materials, such as fatigue performance. Surface roughness is one of the various properties of an engineering surface that affect the performance of this surface in service (Davim, 2010). Surface roughness also affects several functional attributes of parts, such as friction, wear and tear, light reflection, heat transmission, ability of distributing and holding a lubricant, coating etc. Therefore, the desired surface finish is usually specified and appropriate processes are required to maintain the quality (Bhushan, 1999). Hence, the inspection of surface roughness of the work piece is very important to assess the quality of a component. To ensure better and finer surface roughness, special attention must be paid in selection of workpieces material, cutting parameters, tool material and geometry and tool coatings (Krolezky,Nieslony and Stoic 2013). The effect of machining parameters on the surface integrity in the context of

3

surface roughness characteristics /quality of the machined part is very important in order to understand the relationship between machining parameters and finer surface roughness value.

### 1.3 Objectives

The objectives of the research are;

- 1. To investigate the influence of machining parameters to the surface roughness value, Ra during high speed turning of aluminium material under dry condition.
- 2. To define optimum process parameter setting to minimize surface roughness value, Ra of aluminium steel.
- 3. To develop mathematical model for surface roughness of machined surface.

#### **1.4** Scope of study

The scope of the research focuses on the surface integrity (surface roughness) on sub-surfaces of aluminium alloy material grades 6061 – T6 during high speed turning with dry cutting condition. The surface roughness variations in single point turning operation are investigated at different cutting speed and feed rate. The machining parameters evaluated are feed rate, cutting speed and depth of cut. The depth of cut will be constant value mean while the cutting speed and feed rate are will be manipulate. The value of the parameters and types of cutting tool are discussed in Chapter 3.

#### **1.5** Significant of study

This topic is being study because of the idea to find the smooth surface roughness while doing it in high speed. Also because of the facility that were have in here at Politeknik Muadzam Shah and UTeM so that it will make the experiment can be done easier as the facilities were near. Hence, we can see as the high speed turning will effect the surface roughness of aluminium and to see whether the deepest of the penatration will effect on the surface roughness in high speed. Nowadays situation, more faster machine, meant more product can be produce and without neglect of its quality. As for it, we can discover how surface roughness textures will be in the high speed turning process and how the deep of penatration will effect on surface roughness where in this case by using aluminium as its material to study.

The paper plan for this research is experimental type of research by controlling the variable in order to find the surface roughness result. The variable would be the quality of the surface roughness as to seen when applying the high speed turning process and the parameter in this research paper would be the speed of the turning process and the deep of the penatration.

#### **CHAPTER 2**

### LITERATURE REVIEW

This research paper is about impact of surface roughness on aluminium in high speed turning process. The literature reviewed about workpiece material (aluminium alloy), turning operation, cutting condition (dry condition), cutting tool, tool wear, surface roughness and the design of experiments of methods.

### 2.1 Aluminium as material

Aluminium or also known as aluminum were one of the substance that exist in periodic table and located in the group of boron as group 13. It usually found as silvery-white, soft, nonmagnetic, ductile metal. Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Because of its characteristic that is less in weight, fatigue performance and corrosion resistance , it were becomes the main component in large commercial jet airliners for the fuselage, wing as well as other structural components nearly for a decade. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials (Tolga Dursun and Costas Soutis, 2014). The hardness of this material can be enhanced where thus strengthen the aluminium alloy (S.H Lee et al., 2002). Table 2.1 shows a short breakdown of each of the grades properties.

| Alloy 1100 | This grade is commercially pure aluminum. It is soft and ductile and has           |
|------------|------------------------------------------------------------------------------------|
|            | excellent workability, making it ideal for applications with difficult forming. It |
|            | can be welded using any method, but it is non heat-treatable. It has an excellent  |
|            | resistance to corrosion and is commonly used in the chemical and food              |
|            | processing industries.                                                             |
| Alloy 2011 | High mechanical strength and excellent machining capabilities are the              |
|            | highlights of this grade. It is often called - Free Machining Alloy (FMA), an      |
|            | excellent choice for projects done on automatic lathes. The high-speed             |
|            | machining of this grade will produce fine chips that are easily removed. Alloy     |
|            | 2011 is an excellent choice for production of complex and detailed parts.          |
| Alloy 2014 | A copper based alloy with very high strength and excellent machining               |
|            | capabilities. This alloy is commonly used in many aerospace structural             |
|            | applications due to its resistance.                                                |
| Alloy 2024 | One of the most commonly used high strength aluminum alloys. With its              |
|            | combination of high strength and excellent fatigue resistance, it is commonly      |
|            | used where a good strength-to-weight ratio is desired. This grade can be           |
|            | machined to a high finish and it can be formed in the annealed condition with      |
|            | subsequent heat treating, if needed. The corrosion resistance of this grade is     |
|            | relatively low. When this is an issue, 2024 is commonly used in an anodized        |

7

l

|            | finish or in clad form (thin surface layer of high purity aluminum) known as      |
|------------|-----------------------------------------------------------------------------------|
|            | Alclad.                                                                           |
| Alloy 3003 | The most widely used of all aluminum alloys. A commercially pure aluminum         |
|            | with added manganese to increase its strength (20% stronger than the 1100         |
|            | grade). It has excellent corrosion resistance, and workability. This grade can be |
|            | deep drawn or spun, welded or brazed.                                             |
| Alloy 5052 | This is the highest strength alloy of the more non heat-treatable grades. Its     |
|            | fatigue strength is higher than most other aluminum grades. Alloy 5052 has a      |
|            | good resistance to marine atmosphere and salt water corrosion, and excellent      |
|            | workability. It can be easily drawn or formed into intricate shapes.              |
| Alloy 6061 | The most versatile of the heat-treatable aluminum alloys, while keeping most      |
|            | of the good qualities of aluminum. This grade has a great range of mechanical     |
|            | properties and corrosion resistance. It can be fabricated by most of the          |
|            | commonly used techniques and it has good workability in the annealed              |
|            | condition. It is welded by all methods and can be furnace brazed. As a result, it |
|            | is used in a wide variety of products and applications where appearance and       |
|            | better corrosion resistance with good strength are required. The Tube and         |
|            | Angle shapes in this grade typically have rounded corners.                        |
| Alloy 6063 | Commonly known as an architectural alloy. It has reasonably high                  |
|            | tensile properties, excellent finishing characteristics and a high degree         |
|            | of resistance to corrosion. Most often found in various interior and              |
|            | exterior architectural applications and trim. It is very well suited for          |
|            | anodizing applications. The Tube and Angle shapes in this grade                   |

|            | typically have square corners.                                            |
|------------|---------------------------------------------------------------------------|
| Alloy 7075 | This is one of the highest strength aluminum alloys available. It has an  |
|            | excellent strength-to weight ratio, and it is ideally used for highly     |
|            | stressed parts. This grade can be formed in the annealed condition and    |
|            | subsequently heat treated, if needed. It can also be spot or flash welded |
|            | (arc and gas not recommended).                                            |

The grades of the aluminium were registered in the IADS that stand for International Alloy Designations. The Aluminum Association Inc. Is the organization that responsible for the allocation and registration of aluminum alloys. These publications can be extremely useful to the welding engineer when developing welding procedures, and when the consideration of chemistry and its association with crack sensitivity is of importance. As for it, there were two system of identification such as 4 digit systems and the 3 digit and 1 decimal place system.

The first digit (Xxxx) indicates the principal alloying element, which has been added to the aluminium alloy and is often used to describe the aluminium alloy series.

**Table 2.2** : Wrought aluminum alloy designation system (ESAB)

| Alloy Series | Principal Alloying Element |
|--------------|----------------------------|
| 1xx          | 99.000% Minimum Aluminum   |
| 2xx          | Copper                     |
| 3хх          | Manganese                  |
| 4xx          | Silicon                    |
| 5xx          | Magnesium                  |
| 6xx          | Magnesium and Silicon      |
| 7xx          | Zinc                       |
| 8xx          | Other Elements             |

9