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 Selecting important features in classifying wood defects remains  

a challenging issue to the automated visual inspection domain. This study 

aims to address the extraction and analysis of features based on statistical 

texture on images of wood defects. A series of procedures including feature 

extraction using the Grey Level Dependence Matrix (GLDM) and feature 
analysis were executed in order to investigate the appropriate displacement 

and quantisation parameters that could significantly classify wood defects. 

Samples were taken from the Kembang Semangkuk (KSK), Meranti and 

Merbau wood species. Findings from visual analysis and classification 

accuracy measures suggest that the feature set with the displacement 
parameter, d=2, and quantisation level, q=128, shows the highest 

classification accuracy. However, to achieve less computational cost,  

the feature set with quantisation level, q=32, shows acceptable performance 

in terms of classification accuracy. 
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1. INTRODUCTION 

Wood is classified as a natural biological material and it is easily attacked by microorganisms [1]. 

These microorganisms can destroy the wood structure and allow the presence of defect on the wood surface, 

thus also affecting the quality of the wood [2]. Poor quality will lead to unsatisfactory and unappealing 

wooden products should this defect material be used. The presence of defects in wooden material reduces its 

value. In order to avoid this from happening, the manufacturer should take preventive measure where they 

should check and determine the presence of defect on the wood surface. These wood defects can be detected  

manually using visual inspection. The manual inspection cou ld lead to human error and this is affected 

depending on the skill level, experience of the worker and alertness. However it takes a lot of time and  

the process is slow [3]. Due to this problem, it is difficult to ensure that a complete inspection had bee n done 

and the results and quality control could be unreliable. Many studies and research had been done in order to 

improve the process of detecting wood defects. One of the solutions is to use a machine vision based 

inspection system which can save inspection time and indirectly the results can lead to a reliable quality 

control process [3]. 

AVI is an automated tool that controls the quality of the manufacturer products. It needs to be setup  

and the automation process will follow certain standards that are strictly set by the manufacturer. By having 

AVI in the wood industry, it can increase the production line by inspecting a large number  

of products without having the human limitations such as tiredness, boredom, lack of knowledge, and lack  
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of training. When doing an inspection using AVI, the hardware, such as a camera, is connected  

to a computer. It also needs to consider integration with other aspects which are the lighting, working 

practices and how to handle the equipment. The AVI system works by the  computer controlling the camera, 

lighting, and handling system. The camera will analyse the image captured using an image processing routine 

and afterwards the handling system will perform the appropriate action. The images will be displayed  

on the Visua l Display Unit (VDU). 

The features extraction is one of the ways to detect a defect on the timber surface. Once the features 

are extracted, it could lead to another step which classifies them into different defect classes but this resea rch  

is focused on the process of features extraction only. The defect on each of the timber surface is not equal  

in size and shape. The extraction is not only done on the defect surface but also on clear wood to differentiate 

whether the timber surface has defects or not. Therefore, it is very crucial to determine and generate a quality  

feature set in order to find the right features to be used to detect a defect. By selecting the optimum set  

of features, the detection process could be performed with high accuracy and reliab ility [4].  

The purpose of this study is to contribute to a part of the process in developing an automated vision 

inspection which is the feature extraction technique using the Grey Level Dependence Matrix (GLDM) for 

wood defect classification. By using this feature extraction technique, it can lead to an analysis of the most 

appropriate displacement and quantisation parameters of GLDM. As an addition, the techniques also shows 

the simplicity of the feature extraction, easy comparability computing and the statistical features show good 

directional qualities [5]. This study also could contribute to generate a feature set of timber defect and this 

will make it easier to detect the defect on the timber surface. 

 

 

2. RESEARCH METHOD 

This section explains in detail the research methodology for the proposed texture feature technique 

which is GLDM. This chapter further discusses the research design which includes the operational 

framework and previous studies on wood defect detection. The operational framework discusses  

the procedure flow on how to perform the GLDM technique. The previous studies will be discussing  

on the texture that every article emphasize in their work. 

 

2.1.  Operational framework 

The operational framework in Figure 1 shows the proposed approach to determine the feature 

extraction set in characterizing the wood defects. Firstly, the orientation of spatial dependence matrix was set, 

and the features were extracted with various displacement and quantisation parameters. The data source used  

in this study is from the Universiti Teknikal Melaka Malaysia (UTeM) wood defect database  [6]. There are 

nine defect types from four wood species, namely Rubberwood, Kembang Semangkuk (KSK), Merbau and 

Meranti. Example of images from the data source are displayed in Table 1. Next, the extracted features were 

further analysed to investigate the appropriate displacement and quantization setting for GLDM.  

Finally, the performance of the features extracted were measured using visual explo ratory analysis and  

classification accuracy. 

 

 

 
 

Figure 1. Proposed approach to determine the feature extraction  
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Table 1. Example of images of 9 defect types [6] 
Defect Image Defect Image Defect Image 

Knot 
 

Bark Pocket 

 

 
Blue Stain 

 

Surface 

Check 
 

Borer Holes 
 

Wane 
 

Brown Stain 
 

Rot 
 

Split 
 

 

 

2.2.  Previous studies on wood defect detection 

Many researches had been done on finding an appropriate feature extraction technique for wood 

defect classification. It is supported that texture is the most favourable features to be used for the purpose  

of feature extraction method [7]. In a study, the Grey Level Co-occurrence Matrix (GLCM) technique was 

used and the dataset is taken from the University of Oulu, Finland. The data set consisted of 90 images  

with 51x48 resolutions. The features used in this study were contrast, correlat ion, energy and homogeneity.  

The maximum and minimum values were calculated for contrasting data [3].  

In another work, Hashim et al. focused on three features which are energy, contrast and correlation 

based on spatial dependence matrix. The spatial dependence matrix is parameterized with distance=1  

and image quantisation at 64 intensity levels. It shows that the energy feature value for clear wood is higher 

compared to the defect image which means clear wood has a higher homogeneity [8]. Hashim et al. further 

extended their work with 20 statistical features from Grey Level Dependence Matrix (GLDM)  

and demonstrated an acceptable classification accuracy  across multiple wood species [9]. Hittawe et al. 

proposed the use of LBP and SURF features extraction in his study. The training dataset contained 50 images 

of knot and 50 images of cracks. The technique extracts a set of low-level features and builds a visual 

vocabulary by quantisation of the features [10].  

Meanwhile, Mahram, Shayesteh and Jafarpour proposed three feature extraction techniques which 

are GLCM, LBP and Statistical moments. The GLCM method calculates co -occurrence matrix at four 

rotation directions (0⁰, 45⁰, 90⁰, and 135⁰) and fifteen texture features were computed, which are as follows: 

mean, energy, entropy, variance, dissimilarity, contrast, correlation, inverse difference moment, cluster 

shade, cluster prominence, sum average, sum variance, sum entropy, and difference entropy  [11].  

From the previous studies, it shows that there is no unique solution to represent defect features. Every study 

chooses a different set of feature extraction technique depending on the problem and dataset used.  

Table 2 summarised feature extraction technique used in previous wood defect detection or  

classification studies. 

 

 

Table 2. Feature extraction technique used in previous wood defect detection or classification studies 
Feature Extraction Techniques Texture Features References 

Grey level dependence matrix (GLDM)/ 
Grey level co-occurrence matrix 
(GLCM) 

4 features: Contrast, correlation, energy, homogeneity [3], [12] 
3 features: Energy, contrast, correlation [8] 
20 statistical features [9] 
3 features: Smoothness, coarseness, and regularity [13] 

5 features: Angular Second Moment, Contrast, Correlation, Entropy, 
Inverse Difference Moment 

[14] 

15 features: Mean, Energy, Entropy, Variance, Dissimilarity, Contrast, 

Correlation, Inverse Difference Moment, Cluster Shade, Cluster 
Prominence, Sum Average, Sum Variance, Sum Entropy, and 
Difference entropy 

[11] 

4 features: Energy, Entropy, Homogeneity, Inverse Difference Moment [5] 

4 features: Not mentioned [15] 
 5 features: Angular second moment, Contrast, Correlation, Entropy, 

Variance 
[16] 

Local binary pattern (LBP) Not mentioned [11] 

Correlation [17] 
Low-level feature [10] 

 Viola Jones Algorithm (Haar features) [18] 
Statistical moment Geometrical moment of order [11] 

Image block percentile colour histogram 
and eigenvector texture feature 

k-max eigenvectors as image block 
 

[6] 

SURF Low-level feature [10] 

Tamura texture 6 features: Coarseness, contrast, directionality, linearity, regularity and 
roughness 

[16] 

Independent component analysis (ICA) FastICA Algorithm (Negentrophy) [19] 
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3. RESULTS AND DISCUSSION 

Figure 2 illustrates the procedures to extract statistical texture features using the GLDM approach. 

The first step was to convert all the sub-images into greyscale images. Subsequently, GLDM were 
constructed at various displacement value (d=1…30) and quantisation level (q=8, 16, 32, 64, 128, 256).  

The generated GLDM from previously selected parameter was generated for all four orientations which  

are 0°, 45°, 90°, and 135°. Twenty statistical feature values were extracted and normalized from the GLDM.  
Next, the data is normalized to plot a graph showing feature values for every displacement and quantisation 

case in order to find the most appropriate parameters for GLDM. 
 
 

 
 

Figure 2. Procedures to extract statistical texture features 
 

 

3.1.  Parameter analysis of GLDM 
The feature extraction was repeated at various displacement and quantisation levels which produced  

150 datasets, and for each of these datasets the mean of the normalized data was calculated to compare  

the feature values across displacement values and qua ntisation levels. The displacement chosen was  
up until 30 as it is half of the image size which is 60x60. Figure 3 shows graph of normalized feature values 

across displacement and quantisation levels for knots defect from KSK species. Only few features are shown  

in the figures which are cluster prominence, cluster shade, contrast and correlation. 
 

 

  

 

   

  

 

 

Figure 3. Normalized feature values for KSK species (defect=knots) 
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From the observation of the plotted graph, the curves patterns do not have much change across 

different quantisation levels for 20 features. The similarities of upward and downward slopes indicate  

that the quantisation level does not affect the extracted texture properties. Even though some of the slopes  

are slightly different in degree, it still preserves the displacement curve. However, the quantisation level  

of 8 and 16 differ from other quantisation levels. This is possibly due to the loss of informa tion whenever  

the image is reduced to a lower resolution. Meanwhile, the higher quantisation level shows that the curves  

are closely similar to each other and it is hard to distinguish between the curves. For later performance 

comparison, the suggested quantisation level, therefore must be higher than q=16,  

which are q=32, 64, 128, 256.  

The upward or downward trend of the graph shows a consistent pattern for all features up to 

displacement, d<=5. All graph started to show changes in the slope direction when it reached  

displacement, d>5. From the observation, it can be concluded that the texture property began to have a 

structural change whenever a higher displacement is applied. Petrou and Sevilla [20] emphasized that a high 

displacement value is most suitable for capturing textures of large primitive patterns while the lower 

displacement fits for textural with detailed patterns. This study is focused on the detailed patterns.  

Hence, for later performance analysis, it is suggested that the most appropria te displacement should be less 

than 5 (d<=5). 

 

3.2.  Feature range analysis 

In feature range analysis, we selected 35 samples from each defect type for two species which 

consisted of 630 dataset. Subsequently, the dataset will be used to generate a graph t o discriminate between 

defect and clear wood. The graph will be generated according to the displacement, d<=5 and quantisation 

level, q=32, 64 and 128. Each dataset needs to be normalized in the range of 0 to 1 in order to plot the feature 

range graph. Figure 4 shows graph plotted for two features which are correlation and contrast extracted  

at d=5 and q=32 for KSK species across multiple defects. From the graphs, it is noticeable that clear wood 

shows a clear distinction where the curves deviate from other defect classes. Meanwhile, the other defects  

are overlapping and clustered. This give us an indication that features extracted at parameter d<5 and q=32  

is sufficient to separate between defect and clear wood classes. 

 

 

  

  

Figure 4. KSK species (q=32, d=5) 

 

 

3.3.  Classification performance 

From the previous section, we concluded that the displacement parameter is at its best at  

d=1, 2, 3, 4, 5 because there is no significant change in slope when the displacement is less 5.  

For quantisation level, it is most appropriate at quantisation level, q=32, 64, 128 because the curves are 

closely similar to each other. Feature range analyses also have shown promising result in discriminating 

between defect and clear wood classes. Next, we further investigated the feature performance using 

classification accuracy measure. The normalized features for KSK and Merbau were used in the experiment. 

We compared the classification accuracy (F-measure) of the feature set across various quantisation and 

displacement parameters using the classification performance of a standard classifier which is the Artificial 

Neural Network (ANN).  
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The experiment was run across multiple species, namely Merbau, KSK and Meranti. The dataset  

for Meranti was taken from Hashim et al. [21]. The experiment was run at displacement, d=1, 2, 3, 4, 5 and 

quantisation level, q=32, 64, 128 for each species, whereby each dataset contained nine defects including 

clear wood. For this classification experiment, we performed a cross-validation of 10 folds and ran  

the experiment at 20 repetitions. Table 3 shows the classification accuracy (F-measure) across species  

at different quantisation and displacement parameter. 

 

 

Table 3. F-measure across species 
Quantisation, q Displacement, d KSK Merbau Meranti 

32 1 0.85 0.90 0.83 
32 2 0.85 0.86 0.88 
32 3 0.92. 0.85 0.88 
32 4 0.89 0.91 0.88 

32 5 0.84 0.94 0.87 
64 1 0.85 0.92 0.83 
64 2 0.83 0.87 0.86 
64 3 0.89 0.87 0.86 

64 4 0.89 0.92 0.88 
64 5 0.92 0.91 0.85 

128 1 0.85 0.91 0.83 
128 2 0.86 0.85 0.86 

128 3 0.87 0.90 0.86 
128 4 0.93 0.91 0.86 
128 5 0.92 0.95 0.83 

 

 

From the experiments, it reveals that all datasets have a score of 0.83 and above although  

the performance slightly varied across species and also across various displacement and quantisation 

parameters. This clearly shows that lower quantisation does not  affect the performance of the classification, 

therefore, lower quantisation does not indica te loss of information [22, 23]. This is further supported by  

Ma et al. [24], where it is claimed that lower quantisation level decreases the computational load wh ile not 

affecting the discriminatory power of GLDM. Although higher quantisation will improve both accuracy and 

separability, lower quantisation will aid in decreasing computational load. The classification can still  

be successful even if the quantisation level is reduced. Figure 5 further shows the pictorial representation  

of independent orientation GLDM for blue stain defect at different displacement and quantisation levels.  

It can be observed that, even at varying quantisation level, the GLDM still ma naged to capture the same 

pattern for the defect. However, when applying a higher quantisation level, the matrix image becomes clearer 

and more precise. 

 

 

    
Original image Q=32, D=2 Q=32, D=4 Q=128, D=2 

    

Figure 5. GLDM pictorial representation (species=KSK, defect=bluestain) 

 

 

4. CONCLUSION 

In this study, we aim to investigate on how to discriminate each type of wood defect using GLDM 

feature extraction technique and we worked on experiments in determining the significant feature set using 

visual analysis and classification measures. The research was divided into two phases, where the first phase 

extracted the feature from an image sample and the second phase used the feature extract from the first phase 

to experiment using the classification measures [25]. The first phase began with the first step which was to 

convert the image into grayscale image and select the parameter for four orientations which are 0⁰, 45⁰, 90⁰ , 

and 135⁰. The mean and normalized data were calculated f rom the feature extracted and a graph of 

normalized feature values against displacement and quantisation levels was plotted. From the graph, we can 

observe the trends and reduce the number of quantisation levels to be run in the experiment. It is summarize d  
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that the best displacement are at d<5 and quantisation level, q=32, 64, 128, 256. However, quantisation, 

q=256 was excluded from the experiment due to the image itself which was at quantisation level of 256.  

In the feature range analysis, a  plotted graph was generated to distinguish between defect and clear 

wood. The feature value of energy, correlation and contrast can be used as a guideline to discriminate 

between defect and clear wood. The second phase used the classification measures to measure the ac curacy 

of which parameters that are most suited to be used in timber defect detection. To determine the most 

appropriate parameter to be selected is by comparing the F-measure across different datasets used in  

the experiment. The experiment had 45 datasets, where each 15 datasets were for three different species 

(KSK, Merbau and Meranti). Each dataset had 35 samples for each defect which resulted in 315 samples for 

each dataset. The total of samples used was 14175. From the investigation of the experiment,  it can be 

resolved that the utmost parameters can be used is displacement, d=2 and quantisation, q=128.  

However, if one wants a less computational load and cost, it is worthwhile to select the displacement, d=2 

and quantisation, q=32 or displacement, d=4 and quantisation, q=32. It is finally concluded that although 

higher quantisation will improve both accuracy and separability, lower quantisation will aid in decreasing 

computational load.  

Therefore, the classification of wood defect can still be successful even if the quantisation level  

is reduced. To conclude the research objectives, which include the two phases mentioned above have been 

accomplished. Including a feature extraction using the Grey Level Dependence Matrix (GLDM) technique, 

analysing the appropriate displacement and quantisation level from the feature extraction and lastly 

identification of a significant feature set of timber defects using visual analysis and classification measures.  
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