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Hybrid nanofluid flow towards a 
stagnation point on a stretching/
shrinking cylinder
Iskandar Waini1,2, Anuar Ishak2 ✉ & Ioan Pop3

This paper examines the stagnation point flow towards a stretching/shrinking cylinder in a hybrid 
nanofluid. Here, copper (Cu) and alumina (Al2O3) are considered as the hybrid nanoparticles while water 
as the base fluid. The governing equations are reduced to the similarity equations using a similarity 
transformation. The resulting equations are solved numerically using the boundary value problem 
solver, bvp4c, available in the Matlab software. It is found that the heat transfer rate is greater for 
the hybrid nanofluid compared to the regular nanofluid as well as the regular fluid. Besides, the non-
uniqueness of the solutions is observed for certain physical parameters. It is also noticed that the 
bifurcation of the solutions occurs in the shrinking regions. In addition, the heat transfer rate and the 
skin friction coefficients increase in the presence of nanoparticles and for larger Reynolds number. It is 
found that between the two solutions, only one of them is stable as time evolves.

Boundary layer flow caused by the stretching/shrinking surface has been practiced in industrial engineering and 
manufacturing processes. To name a few, the polymer or metal extrusions, wire drawing, and continuous glass 
casting are such processes that involved these kinds of surfaces1,2. Historically, it seems that Crane3 is the first 
researcher to examine the flow over a linearly stretching surface. Instead of a stretching surface, the problems of 
a shrinking surface have become the topic of interest in the last few years. The flow caused by the shrinking sur-
face is fundamentally a reverse flow as pondered by Goldstein4. This type of flow is different from the stretching 
surface owing to the existence of the vorticity inside the boundary layer, which discovered by Wang5. Thus, some 
other outside force is required to overcome this situation and only then the steady flow is possible. In the work 
of Miklavčič and Wang6, they suggested that the flow can be preserved by the application of suction on the sur-
face. Besides, the existence of the stagnation flow velocity can confine the vorticity to maintain the flow, thus the 
application of suction on the shrinking sheet is not necessary as discussed by Wang7. The stagnation point flow 
describes the fluid movement close to the stagnation region of a solid surface.

The problem of stagnation point flow towards a cylinder has been also considered by many researchers. For 
example, Wang8 considered the stagnation flow towards a circular cylinder. Then, Wang9 extended this problem 
by considering partial slip condition on the cylinder surface. After that, Gorla10 examined a similar problem of 
Wang8 but with the effect of Prandtl numbers on the heat transfer. Then, Cunning et al.11 investigated the transpi-
ration and rotation effects on the stagnation flow towards a circular cylinder. However, there is a limited reference 
on the flow over a shrinking cylinder in the literature. In this respect, Lok and Pop12 investigated this problem by 
considering the stagnation point flow and suction effects. Merkin et al.13 studied the stagnation-point flow and 
heat transfer over an exponentially stretching/shrinking cylinder. Further, Zaimi et al.14 examined the effect of 
suction on the unsteady flow over a shrinking cylinder and found the dual solutions exist for a certain range of 
suction and unsteadiness parameters. Besides, Soomro et al.15 examined the nanofluid flow along a permeable 
shrinking vertical cylinder with slip effects. Other than that, some other useful studies to simulate the flow over a 
cylinder under different conditions can be found in the literature16–21.

Nowadays, the problem of heat transfer enhancement in industrial processes has become the main topic of 
interest to the researchers. Previously, the fluids like water, oil, and ethylene glycol were regularly considered as a 
cooling liquid in those processes, but their heat transfer rates are low. In 1995, Choi and Eastman22 introduced the 
fluid called ‘nanofluid’ to replace the use of regular fluids in the industrial processes. Nanofluids are engineered by 
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dispersing one type of nanoparticle in the aforementioned fluids to enhance their thermal conductivity. Khanafer 
et al.23 and Oztop and Abu-Nada24 have utilized nanofluids to study the heat transfer enhancement in a rectan-
gular enclosure. However, the researchers found that the thermal properties of the nanofluid could be improved 
with the addition of more than a single nanoparticle in the base fluid and named it ‘hybrid nanofluid’. The exper-
imental studies that considered the hybrid nano-composite particles have been conducted by several researchers, 
for example, Turcu et al.25 and Jana et al.26. Hybrid nanofluid is an advanced fluid that incorporates more than one 
nanoparticle which has the capacity of raising the heat transfer rate because of the synergistic effects27.

Furthermore, the studies of hybrid nanofluid were extended to the boundary layer flow problem. For instance, 
Devi and Devi28,29 started to examine the advantages of utilizing hybrid nanofluid over a stretching surface. 
They found that the heat transfer rate was intensified in the presence of the hybrid nanoparticles. In their stud-
ies, the new thermophysical model was introduced and validated with the experimental data of Suresh et al.30. 
Furthermore, Waini et al.31 examined the stability of the multiple solutions of the flow over a stretching/shrinking 
surface in a fluid containing hybrid nanoparticles. They discovered that only one of the solutions is stable and 
thus physically reliable as time evolves. Besides, Waini et al.32–37 in a series of papers have extended the problem 
to different surfaces. Moreover, the effects of MHD and viscous dissipation have been studied by Lund et al.38, 
considering Cu–Fe3O4/H2O hybrid nanofluid in a porous medium. Additionally, the problem of hybrid nanofluid 
flow with the effect of different physical parameters was also considered by several authors39–45.

Thus, the objective of this paper is to examine the hybrid nanofluid flow towards a stagnation point on a 
stretching/shrinking cylinder. Here, copper (Cu) and alumina (Al2O3) are considered as the hybrid nanoparticles, 
while water as the base fluid.

Mathematical Model
Consider a hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder with radius a 
as illustrated in Fig. 1. Here, (z,r) is the cylindrical polar coordinates which assigned in the axial and radial 
directions, respectively. The flow is assumed to be symmetric about the z = 0 plane and also axisymmetric about 
the z-axis, with the stagnation line is at z = 0 and r = a. The surface velocity of the cylinder is given as ww(z) = 
2bz where the static cylinder is denoted by b = 0, whereas the cylinder is stretched or shrunk when b > 0 or b 
< 0, respectively. Meanwhile, the free stream velocity is taken as we(z) = 2cz where c > 0. Moreover, the surface 
temperature Tw and the ambient temperature T∞ are constant, where Tw > T∞. Also, it is assumed that the shape 
of the nanoparticle is spherical and its size is uniform, while the agglomeration is disregarded since the hybrid 
nanofluid is formed as a stable composite. Therefore, the equations that govern the hybrid nanofluid flow are (see 
Wang8, Lok and Pop12):
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Figure 1.  Physical configuration.
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→ → → ∞∞w w T T r, as (4)e

where w and u represent the velocity components along the z- and r- axes, and T represents the temperature of 
the hybrid nanofluid. Further, the thermophysical properties of the hybrid nanofluid are defined in Table 1 24,28,31. 
Besides, the physical properties of Al2O3, Cu, and water are provided in Table 2 24,31. Here, Al2O3 and Cu volume 
fractions are given by ϕ1 and ϕ2 and the subscripts n1 and n2 correspond to their solid components, respec-
tively. Meanwhile, the fluid, nanofluid, and the hybrid nanofluid are designated by the subscripts f, nf, and hnf, 
respectively.

An appropriate transformation is introduced as follows (see Wang8, Lok and Pop12):
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Employing these definitions, Eq. (1) is identically fulfilled. Then, the following similarity equations are 
obtained:
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where (′) represents the differentiation with respect to η, Re = ca2/2νf represents the Reynolds number, and 
µ= ( )C kPr /f p f f  represents the Prandtl number. Besides, the stretching/shrinking parameter symbolized by ε = 

b/c with ε > 0 and ε < 0 are for stretching and shrinking cylinder, respectively, while the static cylinder is denoted 
by ε = 0.

The skin friction coefficient Cf and the Nusselt number Nu are defined as:
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Table 1.  Thermophysical properties of nanofluid and hybrid nanofluid24,28,31.

Thermophysical Properties Al2O3 Cu water

ρ(kg/m3) 3970 8933 997.1

Cp(J/kgK) 765 385 4179

k(W/mK) 40 400 0.613

Prandtl number, Pr 6.2

Table 2.  Thermophysical properties of nanoparticles and water24,31.
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Stability Analysis
The existence of the non-uniqueness solutions of Eqs. (6) to (8) is observed for a certain range of the physical 
parameters. A temporal stability analysis is therefore needed to determine which solution is stable and thus phys-
ically reliable as time evolves. This technique was initiated by Merkin46 in 1986. A dimensionless time variable τ 
was introduced by Weidman et al.47 to further study the stability of the solutions in the long run. They concluded 
that the upper branch (first) solutions are stable, while the lower branch (second) solutions are unstable. The new 
variables based on Eq. (5) are given as follows:
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To study the stability of the solutions of Eqs. (1) to (3), the unsteady form of these equations are considered. 
Using (11) and following the same procedure as previous section, the equations transformed to:
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To examine the stability behaviour, the disturbance is imposed to the steady solution f = f0(η) and θ = θ0(η) of 
Eqs. (6) to (8) by using the following relations (see Weidman et al.47):

η τ η η θ η τ θ η η= + = +γτ γτ− −f f e F e G( , ) ( ) ( ), ( , ) ( ) ( ) (15)0 0

where γ indicates the unknown eigenvalue that determines the stability of the solutions, whereas F(η) and 
G(η) are small compared to f0(η) and θ0(η). The disturbance is taken exponentially as it demonstrates the rapid 
decline or development of the disturbance. By employing Eq. (15), Eqs. (12) and (13) become
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Wang8 Wang9
Lok and 
Pop12

Present 
results

Present 
results

0.2 0.78605 0.78604 0.786042 0.786042 1.508635

1 1.484185 1.48418 1.484183 1.484183 2.793424

10 4.16292 4.16292 4.162920 4.162920 7.701472

Table 3.  Values of f″(1) and −2θ'(1) under different values of Re for regular fluid (ϕ1 = ϕ2 = 0) when  ε = 0 and 
Pr=6.2.
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Without loss of generality, the values of γ from Eqs. (16) to (18) are obtained for the case of F″(1) = 1 as pro-
posed by Harris et al.48.

Numerical Method
The boundary value problem solver, bvp4c, available in the Matlab software is utilized for solving Eqs. (6) to 
(8), numerically. As described in Shampine et al.49, the aforementioned solver is a finite difference method that 
employs the 3-stage Lobatto IIIa formula. The selection of the initial guess and the boundary layer thickness η∞ 
depend on the parameter values applied to obtain the required solutions. Moreover, several researchers50–55 were 
also employing this solver for solving the boundary layer flow problems. First, Eqs. (6) and (7) are reduced to a 
system of ordinary differential equations of the first order. Equation (6) is written as:

=f y(1)

′ = ′ =f y y(1) (2) (19a)

ϕ2 Re ε

Cu/water (ϕ1 =0)   Al2O3-Cu/water (ϕ1 = 0.04)

(Rez/a)Cf Nu (Rez/a)Cf Nu 

0 0.2 0 0.786042 1.508635 0.873892 1.632938

0.02 0.856892 1.584409 0.946858 1.712793

0.04 0.928449 1.660081 1.021036 1.792922

0.04 0.5 1.326543 2.330191 1.457949 2.509315

1 1.769560 3.072779 1.944092 3.302625

2 2.391980 4.113770 2.627041 4.414274

1 −0.5 2.266010 2.074241 2.490374 2.279514

0.5 0.994933 3.924611 1.092842 4.177081

1.5 −1.181197 5.325017 −1.297131 5.621329

Table 4.  Values of (Rez/a)Cf  and Nu for Cu/water (ϕ1 = 0) and Al2O3-Cu/water (ϕ1 = 0.04) under different 
values of physical parameters. when Pr = 6.2.

Figure 2.  Plot of (Re z/a)Cf against ε for different values of ϕ1 and ϕ2.
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Figure 3.  Plot of Nu against ε for different values of ϕ1 and ϕ2.

Figure 4.  Plot of (Rez/a)Cf against ε for different values of Re.
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Then, Eqs. (19) to (21) are coded in Matlab software to obtain the required solutions.

Results and Discussion
In the present study, the volume fractions of Cu are varied from 0 to 0.04 (0 ≤ ϕ2 ≤ 0.04), while the volume 
fraction of Al2O3 is kept fixed at ϕ1 = 0.04 and water as the base fluid. Table 3 provides the numerical values of 
f″(1) and −2θ'(1) under different values of Re for regular fluid (ϕ1 = ϕ2 = 0) when ε = 0 and Pr = 6.2. In the 
present study, η∞ = 35 is sufficient for the velocity and temperature profiles to reach the far-field boundary con-
ditions asymptotically, which supports the validity of the numerical results. The increase of f″(1) and −2θ'(1) are 

Figure 5.  Plot of Nu against ε for different values of Re.

Figure 6.  Plot of f′(η) for different values of ϕ2.
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observed as Re increases. Also, the comparison values of f″(1) with those of Wang8,9 and Lok and Pop12 are shown 
in the same table. It is observed that the comparison is in excellent agreement with the mentioned literature which 
supports the validity of the present numerical results. Additionally, Table 4 shows the effects of ϕ2, Re, and ε on 
the skin friction coefficient (Rez/a)Cf and the Nusselt number Nu for Cu/water (ϕ1 = 0) and Al2O3-Cu/water (ϕ1 
= 0.04) when Pr = 6.2. It is observed that the values of (Rez/a)Cf and Nu increase with the increasing values of ϕ2 
and Re. Besides, the values of (Rez/a)Cf decrease, whereas Nu increases with increasing values of ε. Also, the heat 
transfer rate for Al2O3-Cu/water hybrid nanofluid is intensified if compared to Cu/water nanofluid.

The non-uniqueness of the solutions of Eqs. (6) to (8) is observed for some values of ε as can be seen in 
Figs. 2–5. For example, the variations of (Rez/a)Cf and Nu against ε for several values of ϕ1 and ϕ2 when Re = 1 
and = .Pr 6 2 are displayed in Figs. 2 and 3. It is noticed that dual solutions are possible for εc < ε < −1, and the 
solution is unique for ε ≥ −1. Besides, both branch solutions (first and second) merge up to certain critical values 
of ε, say εc. Here, εc1 = −1.54398, εc2 = −1.54269, and εc3 = −1.52549 are the critical values for the case of regular 
fluid (ϕ1 = ϕ2 = 0), Al2O3/water nanofluid (ϕ1 = 0.04, ϕ2 = 0), and Al2O3-Cu/water hybrid nanofluid (ϕ1 = ϕ2 = 
0.04), respectively. In addition, the Nusselt number Nu enhances for both stretching and shrinking cases in the 
presence of nanoparticles. However, the skin friction (Rez/a)Cf increases for fixed values of ε started from ε < 1, 
but these values decrease for ε > 1 and zero skin friction is observed for ε = 1. Comparing the three types of fluid, 
it is found that these physical quantities are intensified for hybrid nanofluid compared to the others. The observa-
tion is consistent with the fact that the added hybrid nanoparticles have the capacity of raising the heat transfer 
rate because of the synergistic effects as discussed by Sarkar et al.27.

Figure 7.  Plot of θ(η)f for different values of ϕ2.

Figure 8.  Plot of f′(η) for different values of Re.
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Figures 4 and 5 show the variations of the skin friction coefficient (Rez/a)Cf and the Nusselt number Nu 
against ε for several values of Re when ϕ1 = ϕ2 = 0.04 and = .Pr 6 2. The effect of increasing Re has a similar trend 
if compared to the effect of nanoparticles on the skin friction (Rez/a)Cf. Physically, Reynolds number Re indicates 
the relative significance of the inertia effect compared to the viscous effect. As expected, the skin friction coeffi-
cients (the surface shear-stress) increases for increasing values of the Reynolds number Re. The upsurge of Re has 
a tendency to enhance the Nusselt number Nu for ε > −1.2, and it decreases for ε < −1.2, where the heat transfer 
occurs almost at the same rate as ε = −1.2. Also, it is noticed that the increment is more dominant for the stretch-
ing case (ε > 0). Besides, the range of ε for which the solution is in existence decreases as Re increases. As shown 
in Figs. 4 and 5, the minimum values of ε for the solution to exist are εc1 = −1.76968, εc2 = −1.61586, and εc3 = 
−1.52549 for = . .Re 0 2, 0 5, 1, respectively.

Further, the velocity profiles f'(η) and the temperature profiles θ(η) for selected values of parameters are pro-
vided in Figs. 6–11. These profiles asymptotically satisfy the free stream conditions (8), and thus supports the 
validity of the numerical solutions. The increasing behaviour for both branch solutions of f'(η) is observed with 
the increase of ϕ2 when ε ϕ= − . = = .1 5, Re 1, 0 04,1  and = .Pr 6 2, however, the observation is reversed for 
θ(η) as can be seen in Figs. 6 and 7, respectively. Moreover, the effect of Re on f'(η) and θ(η) when ε = −1.5, ϕ1 = 
ϕ2 = 0.04, and = .Pr 6 2 are exhibited in Figs. 8 and 9. As predicted, the velocity f'(η) increases with the rise of 
Reynolds number Re and as a result, the temperature θ(η) decreases once the thermal diffusion is overcome. This 
observation shows similar results as those of Lok and Pop12 for the viscous fluid case. In addition, the effect of ε 

Figure 9.  Plot of θ(η) for different values of Re.

Figure 10.  Plot of f′(η) for different values of ε.
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on f'(η) and θ(η) when ϕ ϕ= = = .Re 1, 0 04,1 2  and = .Pr 6 2 are presented in Figs. 10 and 11. It can be predicted 
that both solutions merge at ε = εc. This observation is consistent with the results presented in Figs. 2–5.

The variations of the smallest eigenvalues γ against ε when ϕ1 = ϕ2 = 0.04 and =Re 1 are portrayed in 
Fig. 12. It is noticed that the values of γ are positive for the first solution, while it is negative for the second solu-
tion. Also, the values of γ approach to zero for both solutions when ε → εc = −1.52549. Thus, this finding con-
firms that the first solution is stable and physically reliable while the second solution is not. Besides, it is concluded 
that the bifurcation of the solutions happens at the critical (minimum) value ε = εc.

Equations (6) to (8) admit dual solutions due to the reverse flow occurs in the boundary layer induced by the 
shrinking sheet. The occurrence of this phenomenon creates the separation of the boundary layer where the flow 
moves in the opposite direction as shown in Fig. 1(b). The stability of the solutions is indicated by the sign of the 
eigenvalue γ. As described in Eq. (15), there is an initial decay of disturbance when γ > 0 as time evolves, i.e. 
e−γτ → 0 as τ → ∞. Thus, the flow is stable in the long run when γ > 0. In contrast, the flow is unstable when γ < 0 
since e−γτ → ∞ as  → ∞. The latter shows an increase of disturbance as time evolves. This analysis shows that the 
first solutions are stable and thus physically reliable in the long run, while the second solutions are not and have 
no physical sense. Although such solutions are deprived of physical significance, they are nevertheless of interest 
so far as the differential equations are concerned. These solutions are of mathematical interest since they are also 
solutions to the differential equations. Similar equations may arise in other situations where the corresponding 
solutions could have more realistic meaning56.

Figure 12.  Plot of γ against ε for F''(1) = 1.

Figure 11.  Plot of θ(η) for different values of ε.
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Conclusion
In the present study, the hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder has 
been accomplished. The results were obtained through the bvp4c solver in Matlab software. The results validation 
was done for limiting cases where the current results were found to compare well with the existing results. The 
effects of the nanoparticles volume fractions (ϕ1 and ϕ2), stretching/shrinking parameter ε, and Reynolds num-
ber Re on the flow and heat transfer characteristics have been examined. From this investigation, we can draw the 
following conclusions:

•	 The findings revealed that the heat transfer rate improved in the presence of hybrid nanoparticles.
•	 It was found that dual solutions are possible for certain physical parameters, where the bifurcation of the 

solutions occurred in the shrinking region (ε < 0).
•	 The Nusselt number Nu enhanced with increasing values of the Reynolds number Re. The effect of Re was 

more dominant for the case of the stretching surface (ε > 0).
•	 The velocity increased, but the temperature decreased with the rising of ϕ2 and Re.
•	 Between the two solutions, only one of them is stable and physically reliable, while the other is unstable as 

time evolved.
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