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Abstract: The problem of a steady flow and heat transfer past a permeable moving thin needle
in a hybrid nanofluid is examined in this study. Here, we consider copper (Cu) and alumina
(Al2O3) as hybrid nanoparticles, and water as a base fluid. In addition, the effects of thermophoresis
and Brownian motion are taken into consideration. A similarity transformation is used to obtain
similarity equations, which are then solved numerically using the boundary value problem solver,
bvp4c available in Matlab software (Matlab_R2014b, MathWorks, Singapore). It is shown that heat
transfer rate is higher in the presence of hybrid nanoparticles. It is discovered that the non-uniqueness
of the solutions is observed for a certain range of the moving parameter λ. We also observed that the
bifurcation of the solutions occurs in the region of λ < 0, i.e., when the needle moved toward the
origin. Furthermore, we found that the skin friction coefficient and the heat transfer rate at the surface
are higher for smaller needle sizes. A reduction in the temperature and nanoparticle concentration
was observed with the increasing of the thermophoresis parameter. It was also found that the
increase of the Brownian motion parameter leads to an increase in the nanoparticle concentration.
Temporal stability analysis shows that only one of the solutions was stable and physically reliable as
time evolved.

Keywords: Brownian motion; dual solutions; hybrid nanofluid; stability analysis; thermophoresis;
thin needle

1. Introduction

The development of advanced heat transfer fluids has received considerable coverage from the
researchers and scientists over the last few years. Regular fluids (ethylene glycol, oil, water) are
commonly used in the industrial and engineering applications. However, the heat transfer rate of these
fluids is limited due to weak thermal conductivity. Therefore, to resolve its deficiency, a single form
of nanosized particles is applied to the above-mentioned fluids and is called ‘nanofluid’. This term
was introduced by Choi and Eastman [1] for the first time in 1995. To name a few, the advantages of
utilizing nanofluids filled in a rectangular enclosure have been examined by Khanafer et al. [2] and
Oztop and Abu-Nada [3].

Nevertheless, ‘hybrid nanofluid’ was developed to upgrade a regular nanofluid’s thermal
properties. It seems that Turcu et al. [4] and Jana et al. [5] are among the earliest researchers who
considered the hybrid nanocomposite particles in their experimental studies. Hybrid nanofluid is an
advanced fluid that incorporates more than one nanoparticle which has the capacity of raising the
heat transfer rate because of the synergistic effects [6]. In addition, the desired heat transfer can be
accomplished by combining or hybridizing the suitable nanoparticles [7].
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Over the past few years, the boundary layer flow past a stretched or shrunk surface in a hybrid
nanofluid has been extensively investigated. The research in this area was rapidly established due to
its important applications in the industrial processes, for example, in paper production, extraction
of polymer, artificial fiber and glass blowing. The investigations of the hybrid nanofluid flow over a
stretched surface considering 2D and 3D flows were done by Devi and Devi [8,9]. In these studies,
they discovered that the larger nanoparticle volume fractions contributed to the enhancement of the
heat transfer rate. Furthermore, a new hybrid nanofluid’s thermophysical model was introduced in
their studies. The validity of this new thermophysical model was achieved by comparing the results
with the experimental data from Suresh et al. [10]. Moreover, Hayat and Nadeem [11] studied the
problem of a hybrid nanofluid composed of Ag–CuO/water for the three-dimensional rotating flow.
In addition, the dual nature of the flow past a stretched and shrunk surface in a hybrid nanofluid with
temporal stability analysis was reported by Waini et al. [12]. They discovered that one of the solutions is
unstable in the long run, while the other is stable and thus physically reliable. After that, various flows
and heat transfer of a hybrid nanofluid were extended to the different aspects by Waini et al. [13–20].

The flow over a thin needle has become a topic of interest for the researchers because of its
importance in industrial applications such as the hot wire anemometer, electronic devices and
geothermal power generation. The thin needle is viewed as a body of revolution where its thickness is
smaller compared to the boundary layer thickness. Historically, Lee [21] initially studied the viscous
fluid flow past a thin needle. Then, this work was explored by the researchers [22–29] by considering
various physical aspects. Furthermore, in the work of Ishak et al. [30], the dual solutions were obtained
when the movement of the needle is in the opposite direction to the free stream. Then, a similar problem
was studied by Waini et al. [31] but with the heat flux surface temperature. Apart from that, the effect
of the nanoparticle on the flow over a thin needle was initiated by Grosan and Pop [32] and then
extended by Soid et al. [33] to a moving needle in a nanofluid. Furthermore, the effect of the magnetic
field on the flow past a moving vertical thin needle in a nanofluid was reported by Salleh et al. [34].

This study aims to examine the flow past a permeable moving thin needle in a hybrid nanofluid
by employing Tiwari and Das [35] and Buongiorno [36] nanofluid models. Here, we consider water as
the base fluid, while copper (Cu) and alumina (Al2O3) as the hybrid nanoparticles. Further, the effect
of thermophoresis and Brownian motion are also considered. The results are obtained for several
physical parameters and presented graphically and through tables. Also, the comparison results for
limiting cases are done with previously published data.

2. Mathematical Formulation

The flow configuration past a permeable moving thin needle in a hybrid nanofluid is demonstrated
in Figure 1. Here, x and r are the cylindrical coordinates with x- and r- being the axial and radial
coordinates, respectively. The needle moves with a constant speed U∞ in a moving fluid with the same
speed U∞. Furthermore, the surface temperature Tw and the ambient temperature T∞ are constant
such that Tw > T∞, whereas C∞ is the ambient nanoparticle concentration with the normal flux of
nanoparticles is zero at the wall. The shape of the nanoparticle is spherical, and its size is uniform,
while the agglomeration is disregarded since the hybrid nanofluid is formed as a stable composite.
After employing the usual boundary layer approximations, the governing equations of the hybrid
nanofluid are given by (see Soid et al. [33]; Kuznetsov and Nield [37]):

∂
∂x

(ru) +
∂
∂r

(rv) = 0 (1)
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u
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∂x

+ v
∂C
∂r

=
DB

r
∂
∂r

(
r
∂C
∂r

)
+

DT

T∞
1
r
∂
∂r

(
r
∂T
∂r

)
(4)

subject to:
u = U∞λ, v = vw, T = Tw, DB

∂C
∂r + DT

T∞
∂T
∂r = 0 at r = R(x)

u→ U∞, T→ T∞, C→ C∞ as r→∞
(5)

where the surface of the thin needle is described by R(x), u and v are the velocity components in
the axial x- and radial r- directions, DT and DB are thermophoretic diffusion and Brownian diffusion
coefficients, respectively. Additionally, σ, T, C and vw represent the effective heat capacity ratio,
hybrid nanofluid’s temperature, nanoparticle concentration and mass flux velocity.
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Further,
(
ρCp

)
hn f

, khn f ,µhn f , and ρhn f characterize the heat capacity, thermal conductivity, dynamic

viscosity and density of the hybrid nanofluid, respectively, where their thermophysical properties are
defined in Table 1. Meanwhile, the physical properties of Cu, Al2O3 and water are given in Table 2.
Here, k,ρ,µ,

(
ρCp

)
, and Cp represent the thermal conductivity, density, dynamic viscosity, heat capacity

and specific heat at constant pressure, respectively. Meanwhile, the nanoparticle volume fractions
of Al2O3 and Cu are symbolized by ϕ1 and ϕ2, while their solid components are indicated by the
subscripts n1 and n2, respectively. In addition, the hybrid nanofluid, nanofluid and fluid, are indicated
by the subscripts hn f , n f and f , respectively.

Table 1. Thermophysical properties of nanofluid and hybrid nanofluid (see [3,8,15]).

Thermophysical Properties Nanofluid Hybrid Nanofluid

Density ρn f = (1−ϕ1)ρ f + ϕ1ρn1 ρhn f = (1−ϕ2)
[
(1−ϕ1)ρ f + ϕ1ρn1

]
+ ϕ2ρn2

Heat capacity (ρCp)n f = (1−ϕ1) (ρCp) f +ϕ1 (ρCp)n1

(
ρCp

)
hn f

= (1−ϕ2)
[
(1−ϕ1)

(
ρCp

)
f
+ ϕ1(ρCp)n1

]
+ ϕ2

(
ρCp

)
n2

Dynamic viscosity µn f =
µ f

(1−ϕ1)
2.5 µhn f =

µ f

(1−ϕ1)
2.5 (1−ϕ2)

2.5

Thermal
conductivity

kn f

k f
=

kn1+2k f−2ϕ1(k f−kn1)
kn1+2k f +ϕ1(k f−kn1)

khn f

kn f
=

kn2+2kn f−2ϕ2(kn f−kn2)
kn2+2kn f +ϕ2(kn f−kn2)

where
kn f

k f
=

kn1+2k f−2ϕ1(k f−kn1)
kn1+2k f +ϕ1(k f−kn1)

Table 2. Thermophysical properties of nanoparticles and water (see [3,15]).

Thermophysical Properties Al2O3 Cu Water

ρ
(
kg/m3

)
3970 8933 997.1

Cp (J/kgK) 765 385 4179
k (W/mK) 40 400 0.613

Prandtl number, Pr 6.2
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An appropriate transformation is introduced as follows (see Soid et al. [33] and Kuznetsov and
Nield [37]):

ψ = ν f x f (η), θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C−C∞
C∞

, η =
U∞ r2

ν f x
(6)

where ψ denotes the stream function with u = (1/r)(∂ψ/∂r) and v = −(1/r)(∂ψ/∂x) so that
Equation (1) is identically satisfied. Thus, we have:

u = 2U∞ f ′(η), v = −
ν f

r
( f (η) − η f ′(η)) (7)

and,

vw = −
ν f

r
λ
2

c (8)

where primes denote differentiation with respect to η and ν f is the fluid’s kinematic viscosity.
Setting η = c (refer to the wall of the needle) in Equation (6), the needle’s surface can be defined as:

R(x) =
(ν f c x

U∞

)1/2
(9)

Using (6), Equations (2) to (4) become:

2
µhn f /µ f

ρhn f /ρ f
(η f ′′ )′ + f f ′′ = 0 (10)

2
Pr

khn f /k f

(ρCp)hn f /(ρCp) f
(ηθ′)′ + fθ′ + 2η

(
Nbφ′θ′ + Ntθ′2

)
= 0 (11)

2(ηφ′)′ + Sc fφ′ + 2
Nt
Nb

(ηθ′)′ = 0 (12)

subject to:
f (c) = λc, f ′(c) = λ

2 , θ(c) = 1, Nbφ′(c) + Ntθ′(c) = 0
f ′(η)→ 1

2 , θ(η)→ 0, φ(η)→ 0 as η→∞
(13)

Here, Pr represents the Prandtl number, Sc is the Schmidt number, Nt and Nb denote the
thermophoresis and Brownian motion parameters, respectively and λ is the constant moving parameter.
The needle moves away from the origin if λ > 0 and moves toward the origin if λ < 0. All these
parameters are defined as:

Pr =

(
µCp

)
f

k f
, Sc =

ν f

DB
, Nt =

σ DT (Tw − T∞)
ν f T∞

, Nb =
σ DB C∞
ν f

(14)

The physical quantities of interest are the skin friction coefficient C f , the local Nusselt number
Nux and the local Sherwood number Shx which are defined as

C f =
τw

ρ f U2
∞

, Nux =
x qw

k f (Tw − T∞)
, Shx =

x qm

DB C∞
, (15)

where the shear stress along the surface of the needle τw, the heat flux qw and the mass flux from the
surface of the needle qm are given by

τw = µhn f

(
∂u
∂r

)
r=R(x)

, qw = −khn f

(
∂T
∂r

)
r=R(x)

, qm = −DB

(
∂C
∂r

)
r=R(x)

(16)
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Using (6), (15) and (16), we get

Re1/2
x C f = 4c1/2 µhn f

µ f
f ′′ (0), Re−1/2

x Nux = −2c
1
2

khn f
k f
θ′(c)

Re−1/2
x Shx = −2c1/2φ′(c) = 2c1/2 Nt

Nbθ′(c),
(17)

where Rex = U∞x/ν f is the local Reynolds number. Note that, the reduced Sherwood number follows
the reduced Nusselt number due to the passive control condition in Equation (13) for Nb = Nt.
The effect of the changes in the boundary condition is instantly obvious where the parameters Nb and
Nt now appear in the boundary conditions as well as in the differential equations.

3. Stability Analysis

The existence of the non-uniqueness solutions of Equations (10) to (13) is observed for a certain
range of the physical parameters. A temporal stability analysis is therefore needed to determine
which solution is stable and thus physically reliable in the long run. This technique was initiated
by Merkin [38] in 1986. A dimensionless time variable τ was introduced by Weidman et al. [39] to
further study the stability of the solutions as time passes. They concluded that the first solutions are
stable, while the second solutions are unstable. As in Weidman et al. [39], the new variables based on
Equation (6) are given as

ψ = ν f x f (η, τ), θ(η, τ) =
T − T∞

Tw − T∞
, φ(η, τ) =

C−C∞
C∞

, η =
U∞ r2

ν f x
, τ =

2U∞t
x

(18)

The unsteady form of Equations (1) to (4) are considered to analyze the stability of the solutions.
Using (18) and following the similar approach as in Section 2, we get

2
µhn f /µ f

ρhn f /ρ f

∂
∂η

(
η
∂2 f
∂η2

)
+ f

∂2 f
∂η2 −

∂2 f
∂η ∂τ

− τ

(
∂ f
∂τ

∂2 f
∂η2 −

∂ f
∂η

∂2 f
∂η∂τ

)
= 0 (19)

2
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

∂
∂η

(
η
∂θ
∂η

)
+ f

∂θ
∂η

+ 2η

Nb
∂φ

∂η
∂θ
∂η

+ Nt
(
∂θ
∂η

)2− ∂θ∂τ − τ
(
∂ f
∂τ
∂θ
∂η
−
∂ f
∂η
∂θ
∂τ

)
= 0 (20)

2
∂
∂η

(
η
∂φ

∂η

)
+ Sc f

∂φ

∂η
+ 2

Nt
Nb

∂
∂η

(
η
∂θ
∂η

)
− Sc

∂φ

∂τ
− Scτ

(
∂ f
∂τ

∂φ

∂η
−
∂ f
∂η

∂φ

∂τ

)
= 0 (21)

subject to:

f (c, τ) − τ∂ f
∂τ (c, τ) = λc, ∂ f

∂η (c, τ) = λ
2 , θ(c, τ) = 1, Nb∂φ∂η (c, τ) + Nt∂θ∂η (c, τ) = 0

∂ f
∂η (η, τ)→ 1

2 , θ(η, τ)→ 0, φ(η, τ)→ 0 as η→∞.
(22)

To examine the stability behavior, the disturbance is imposed to the steady solution f (η) = f0(η),
θ(η) = θ0(η) and φ(η) = φ0(η) of Equations (10) to (13) by using the following relations (see [39]):

f (η, τ) = f0(η) + e−γτF(η), θ(η, τ) = θ0(η) + e−γτG(η),
φ(η, τ) = φ0(η) + e−γτH(η),

(23)

where γ indicates the unknown eigenvalue that determines the stability of the solutions and F(η), G(η)

and H(η) are comparatively small to f0(η), θ0(η) and φ0(η). The disturbance is taken exponentially as
it demonstrates the rapid decline or development of the disturbance. By inserting Equation (23) into
Equations (19) to (21) and by setting τ = 0, we obtain

2
µhn f /µ f

ρhn f /ρ f
(ηF′′ )′ + f0F′′ + f ′′0 F + γF′ = 0 (24)
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2
Pr

khn f /k f

(ρ Cp)hn f /(ρ Cp) f
(ηG′)′ + f0G′ + θ′0F

+2η
(
Nbφ′0G′ + Nbθ′0H′ + 2Ntθ′0G′

)
+ γG = 0

(25)

2(ηH′)′ + Sc f0H′ + Scφ′0F + 2
Nt
Nb

(ηG′)′ + γScH = 0 (26)

subject to:
F(c) = 0, F′(c) = 0, G(c) = 0, NbH′(c) + NtG′(c) = 0

F′(η)→ 0, G(η)→ 0, H(η)→ 0 as η→∞
(27)

Without loss of generality, the values of γ from Equations (24) to (27) are obtained for the case of
F′′ (c) = 1 as suggested and discussed by Harris et al. [40].

4. Numerical Method

The bvp4c solver in Matlab software (Matlab_R2014b, MathWorks, Singapore) is utilized for
evaluating the Equations (10) to (13), numerically. As described in Shampine et al. [41], the aforesaid
solver occupies a finite difference method that employs the 3-stage Lobatto IIIa formula. The selection
of the initial guess and the boundary layer thickness, η∞ are particular depend on the parameters
applied to obtain the solutions. Moreover, several researchers [42–46] are also employing this solver
for solving the boundary layer flow problems. First, Equations (10) to (12) are reduced to a system of
ordinary differential equations of the first order. Now, Equation (10) may be written as

f = y(1)
f ′ = y′(1) = y(2)

(28a)

f ′′ = y′(2) = y(3) (28b)

f ′′′ = y′(3) = −
1

2η

{
ρhn f /ρ f

µhn f /µ f
y(1)y(3) + 2y(3)

}
(28c)

while Equation (11) reduces to:
θ = y(4)

θ′ = y′(4) = y(5)
(29a)

θ′′ = y′(5) = −
1

2η

Pr

(
ρCp

)
hn f

/
(
ρCp

)
f

khn f /k f

[
y(1)y(5) + 2η

(
Nby(7)y(5) + Nty(5)2

)]
+ 2y(5)

 (29b)

and Equation (12) reduces to:
φ = y(6)

φ′ = y′(6) = y(7)
(30a)

φ′′ = y′(7) = −
1

2η

{
Scy(1)y(7) + 2

Nt
Nb

(ηy(5))′ + 2y(7)
}

(30b)

with the boundary conditions:

ya(1) = λc, ya(2) = λ
2 , ya(4) = 1, Nbya(7) + Ntya(5) = 0

yb(2)→ 1
2 , yb(4)→ 0, yb(6)→ 0

(31)

Then, Equations (28) to (31) are coded in Matlab software (Matlab_R2014b, MathWorks, Singapore)
and their solutions are obtained by the bvp4c solver. The solver will then run, and the outcomes will
be printed out as numerical solutions and graphs.
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5. Results and Discussion

In the present study, we consider various volume fractions of Cu (ϕ2), while the volume fraction of
Al2O3 is kept fixed at ϕ1 = 0.1 and water as the base fluid. To ensure the accuracy of the computation,
the present results are validated with the existing data from the previous studies. The values of f ′′ (c)
and −θ′(c) when ϕ1 = ϕ2 = 0 (regular fluid), λ = Sc = 0 and Pr = 0.733 for various values of c in
the absence of Nt and Nb are displayed in Tables 3 and 4, respectively. The results are comparable
with those obtained by the previous studies. On the other hand, Table 5 is provided to describe the
values of f ′′ (c) and −θ′(c) for Cu/water nanofluid when ϕ1 = λ = Sc = 0 and Pr = 7 with various
values of c and ϕ2 in the absence of Nt and Nb. The present numerical results are compared with the
previous results obtained by Grosan and Pop [32] and show a favorable agreement. The increment
values of f ′′ (c) and −θ′(c) are observed for the smaller needle size as can be seen in Tables 3–5. It is
also observed that the increasing values of ϕ2 tend to increase the values of f ′′ (c) but decrease the
values of −θ′(c) as shown in Table 5.

Table 3. Values of f ′′ (c) for regular fluid (ϕ1 = ϕ2 = 0) when λ = 0 with various values of c.

c Chen and Smith [26] Ishak et al. [30] Grosan and Pop [32] Soid et al. [33] Present Results

0.1 1.28881 1.2888 1.289074 1.288778 1.288778
0.01 8.49244 8.4924 8.492173 8.491454 8.491454

0.001 62.16372 62.1637 62.161171 62.158227

Table 4. Values of −θ′(c) for regular fluid (ϕ1 = ϕ2 = 0) when λ = Sc = 0 and Pr = 0.733 for various
values of c in the absence of Nt and Nb.

c Chen and Smith [26] Grosan and Pop [32] Present Results

0.1 2.434 2.441675 2.439692
0.01 16.306544 16.283107

0.001 120.55034 120.264815

Table 5. Values of f ′′ (c) and −θ′(c) for Cu/water nanofluid when ϕ1 = λ = Sc = 0 and Pr = 7 for
various values of c and ϕ2 in the absence of Nt and Nb.

f”(c) −θ
′

(c)

c ϕ2 Grosan and Pop [32] Present Results Grosan and Pop [32] Present Results

0.1 0.05 1.347208 1.347125 3.682009 3.681817
0.1 1.382008 1.381635 3.586544 3.586427
0.2 1.404136 1.404050 3.389762 3.389682

0.01 0.05 8.771680 8.771503 22.284916 22.284751
0.1 8.935933 8.935143 21.816182 21.816075
0.2 9.041011 9.040694 20.877668 20.877591

0.001 0.05 63.884384 63.718195 153.570113 153.569704
0.1 64.653616 64.621235 150.977665 150.977406
0.2 65.235057 65.200519 145.860889 145.860701

The plots of f ′′ (c) and −θ′(c) for selected parameters with various values of ϕ2 and c against λ
are portrayed in Figures 2–5, respectively. Results show that dual solutions exist for a certain range of
λ. We observe that the critical values λc increase and move slightly to the right with the increasing
of ϕ2 and c. From our computation, λc = −1.13048, −1.10314 and −1.08436 are the critical values for
ϕ2 = 0.01, 0.05 and 0.1, respectively as shown in Figures 2 and 3. Furthermore, the increasing of ϕ2 has
the tendency to decrease the skin friction coefficient for λ < −0.7 but increase the heat transfer rate
for λ < −0.3. We also observe that the heat transfer rate is almost the same for λ = −0.3. Meanwhile,
the critical values of λ for c = 0.1 and 0.2 are λc = −1.08436 and −0.90271 as can be seen in Figures 4
and 5. It is observed that the values of f ′′ (c) and −θ′(c) are greater for smaller c.
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The impact of several parameters on the velocity f ′(η), temperature θ(η) and nanoparticle
concentration φ(η) profiles are presented in Figures 6–14. These profiles asymptotically satisfy the free
stream conditions (13), thus giving us confidence in the accuracy of the numerical solutions. Figures 6–8
depict the effect of ϕ2 on velocity profiles f ′(η), temperature profiles θ(η) and concentration profiles
φ(η) when λ = −1, Sc = Nb = Nt = 0.5, c = ϕ1 = 0.1 and Pr = 6.2. Small effects are observed



Mathematics 2020, 8, 612 10 of 18

for the first solutions (upper branch) of f ′(η), θ(η) and φ(η) with rising ϕ2, but the effects are more
pronounced for the second solutions (lower branch).Mathematics 2020, 8, x FOR PEER REVIEW 12 of 19 
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The profiles of f ′(η), θ(η) and φ(η) for different values of λ when Sc = Nb = Nt = 0.5,
c = ϕ1 = ϕ2 = 0.1 and Pr = 6.2 are plotted in Figures 9–11, respectively. It is observed that the first
solution approaching the second solution as the critical value λc is approached. This observation is
consistent with the results presented in Figures 2–5. Moreover, the effect of Nt on θ(η) and φ(η) when
λ = −1, Sc = Nb = 0.5, c = ϕ1 = ϕ2 = 0.1 and Pr = 6.2 are displayed in Figures 12 and 13. It is clear
that θ(η) and φ(η) decrease for both branches as Nt increases. Figure 14 exhibits the behavior of φ(η)
with the variation of Nb when λ = −1, Sc = Nt = 0.5, c = ϕ1 = ϕ2 = 0.1 and Pr = 6.2. A rise in Nb
produces an increase of φ(η) for both branches. Obviously, θ(η) does not affected by Nb due to the
passive control condition applied in (13) and consequently, the energy Equation (11) does not contain
the parameter Nb.

Figure 15 displays the smallest eigenvalue γ against λ when c = ϕ1 = ϕ2 = 0.1. As described
in Equation (23), the flow is stable when there is an initial decay of disturbance as time passes,
i.e., e−γτ → 0 as τ→∞ . This will happen for γ > 0. Meanwhile, the flow is unstable for γ < 0 due to
the initial growth of disturbance as τ→∞ . From Figure 15, we notice that the values of γ are positive
for the first solutions (upper branch), while they are negative for the second solutions (lower branch).
Also, the values of γ approach to zero for both branches when λ→ λc = −1.08436 . Thus, this finding
confirms that the first solutions are stable and physically reliable in the long run, while the second
solutions are not. Furthermore, we also conclude that the bifurcation of the solutions happens at the
critical value λ = λc.
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6. Conclusions

In this paper, the flow past a permeable moving thin needle in a hybrid nanofluid with
thermophoresis and Brownian motion effects was studied. The results validation was done for
the limiting cases where the present results are comparable with the existing results. The present
results revealed that the added hybrid nanoparticles led to the increment of the heat transfer rate.
Dual solutions were obtained for a certain range of the constant moving parameter λ. Furthermore,
it was discovered that the bifurcation of the solutions occurs in the region λ < 0, i.e., when the needle
moved toward the origin. The critical values of λ slightly increased for larger values of ϕ2 and c.
Furthermore, the values of f ′′ (c) and −θ′(c) are higher for smaller c. It was also observed that θ(η)
and φ(η) decreased for larger values of Nt. The increase of Nb led to an increase in φ(η). It was shown
that between the two solutions, only one of them is stable, while the other is unstable as time evolved.
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Nomenclature

c needle size
C nanoparticle concentration
C∞ ambient nanoparticle concentration
C f skin friction coefficient
Cp specific heat at constant pressure (Jkg−1K−1)
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient(
ρCp

)
heat capacitance of the fluid (JK−1m−3)

f (η) dimensionless stream function
k thermal conductivity of the fluid (Wm−1K−1)



Mathematics 2020, 8, 612 16 of 18

Nux local Nusselt number
Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number
R(x) surface of the needle
Sc Schmidt number
Shx local Sherwood number
qm surface mass flux (Wm−2)
qw surface heat flux (Wm−2)
Rex local Reynolds number
T fluid temperature (K)
Tw surface temperature (K)
T∞ ambient temperature (K)
t time (s)
u, v velocity components in the x and r directions (ms−1)
U∞ velocity of the needle and the mainstream (ms−1)
vw velocity of the wall mass transfer (ms−1)
x, r cylindrical coordinates (m)
Greek symbols
ϕ1 nanoparticle volume fractions for Al2O3 (alumina)
ϕ2 nanoparticle volume fractions for Cu (copper)
γ eigenvalue
η similarity variable
λ moving parameter
θ dimensionless temperature
φ dimensionless nanoparticle concentration
µ dynamic viscosity of the fluid (kgm−1s−1)
ν kinematic viscosity of the fluid (m2s−1)
ρ density of the fluid (kgm−3)
τw skin friction or wall shear stress (kgm−1s−2)
τ dimensionless time
σ ratio of effective heat capacity
Subscripts
f fluid
n f nanofluid
hn f hybrid nanofluid
n1 solid component for Al2O3 (alumina)
n2 solid component for Cu (copper)
Superscript
′ differentiation with respect to η
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